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Abstract 

In the event of an earthquake, the beam-column joints in the reinforced concrete moment-resisting frame structures are 

affected by a high level of deformations and stresses. Due to these deformations and stresses, the joint can be damaged and 

even fractured in some cases. The failure of the beam-column joint can cause the building to collapse. In recent years, 

particular attention has been paid to strengthening joints in the substandard RC buildings. In this paper, the beam-column 

joint is investigated considering the nonlinear behavior for concrete and steel. For concrete, the damage plasticity model 

and for reinforcing steels bilinear plasticity model is used. Several examples of tested joints in the technical literature have 

been modeled before and after strengthening, then numerical and experimental results are compared. Seismic performance 

of joints has also been studied. The results of this research show good agreement between the results of finite element 

model and experimental results. Moreover, the retrofitting method have shown could improves the seismic performance 

of the joint. 
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1. Introduction 

The beam column joints due to experiencing cyclic deformations during an earthquake are one of the most critical 

parts of the RC moment-resisting frames. Hanson carried out the first experiments on beam-column joints in the 1960s 

[1]. Other researchers pursued Hanson works to improve the seismic performance of the RC joints. The results of 

researches carried out until 1976 led to the release of ACI-ASCE352. Today, also many studies are carrying out on the 

behavior of RC joints under earthquake loads or strengthening the joints in the existing non-conforming structures [2-

7]. Pimanmas et al. studied the effect of joint area enlargement on the shear strength of the joint [8]. In their proposed 

method, joint area enlarged with monotonically cast square concrete. They concluded that the joint enlargement could 

increase the strength, stiffness and energy dissipation. Their experimental results indicated the decrease in joint shear 

stress in strengthened specimens. They also proposed a strut and tie model for analyzing joint area. Li et al. proposed 

rehabilitation of interior beam-column joints using ferrocement jackets with embedded diagonal reinforcements [9]. 

Their results have indicated that the proposed rehabilitation method can improve the seismic performance of interior 

beam-column joints. Agarwal et al. studied the effect of confinement due to transverse reinforcement and FRP jacketing 

on external beam-column joints, before and after retrofitting [10]. They concluded GFRP jacketing could be an effective 

technique to regain the strength and stiffness of damaged joints. Another research which is conducted by Del Vecchio 

et al. also used FRP for retrofitting of external joints [11]. Del Vecchio also proposed an analytical model to account for 

the strength increase provided by FRP systems in the seismic retrofit of poorly detailed corner joints [12]. Hejabi et al. 
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proposed a nonlinear procedure for analysis of FRP strengthened beam-column joint based on a softened truss model 

[13]. Karayannis has investigated the continuous rectangular spiral reinforcement applied as shear reinforcement in 

beam-column joints instead of the commonly used stirrups [14]. He obtained that rectangular spiral reinforcement has a 

better response in terms of the developing failure mechanisms, maximum loads and hysteretic energy absorption 

compared to the stirrups. Arzeytoon et al. presented a new seismic retrofitting method for beam-column joints based on 

the planner enlargement of the joint by using a steel plate, angles, and post-tensioning rods [15]. They show that the 

proposed retrofitting technique is effective and easy to install.  Kalogeropoulos et al. experimentally and analytically 

investigate the effectiveness of a rehabilitation scheme for substandard exterior beam-column joints [16].  

The retrofitting technique proposed in that research combines the improvement of the beam longitudinal reinforcing 

bars' anchorage in the joint, by using extension bars and steel plates and the reinforced concrete jacketing of the columns 

and the joint area. Their experimental results shows a substantial improvement of the overall seismic behavior of the 

joints retrofitted according to the proposed technique. Yurdakul and his coworker investigated the efficiency of the 

strengthening method using diagonal post-tension rods in external beam-column joints, which do not comply with any 

code requirements [17]. They used post-tension rods, which were mounted diagonally on each side of the joint and found 

that the lateral force capacities of the beam-column assemblies could be improved up to code requirements by the 

proposed rehabilitation scheme. However, their proposed method was not so applicable for the joints with transverse 

beams.  Mostofinejad et al. have conducted an experimental study to investigate the effects of grooving method in the 

seismic behavior of exterior beam-column substandard joints strengthened with CFRP sheets taking advantage of the 

special technique of externally bonded reinforcement on grooves [18]. Their study reveals that application of CFRP 

composites on grooves was able to produce a significant enhancement in the seismic capacity of the test specimens. Lee 

et al. investigated beam-column joint behavior reinforced with high strength steel and concrete [19]. They found that 

the deformation capacity of beam-column joints could be increased by reducing the joint shear demand or increasing 

the joint transverse reinforcement ratio. Their study proposes several modifications to the existing design provisions for 

beam-column joints using high-strength reinforcement and concrete. Another studies using high strength concrete also 

is conducted with Liu et al. [20] and Alaee et al. [21]. Several numerical studies using finite element method have 

performed on the behavior of beam-column joints [3, 22]. In this study, exterior beam-column joints utilizing damage 

plasticity model for concrete and nonlinear plastic model for reinforcing steel bars and geometric nonlinearity effects 

are modeled in Abaqus. Considered analyzed cases are previously tested in half-scale. Subsequently, numerical and 

experimental results are compared. 

2. Nonlinear Material Models  

Reinforced concrete is one of the most complex materials in finite element modeling due to complicated nonlinear 

behavior in tension and compression. The correct definition of materials in finite element method modeling, in elastic 

and plastic behaviors as well as in compression and tension domains can have a great impact on the responses and 

outputs.  

In this study, damage plasticity model is used for concrete. The model is a continuum, plasticity-based, damage 

model, which assumes that the main two failure mechanisms are tensile cracking and compressive crushing of the 

concrete material. The model assumes that the uniaxial tensile and compressive response of concrete is characterized by 

damaged plasticity, as shown in Figure 1.  

 

(a)                                                                                               (b) 

Figure 1. Response of concrete to uniaxial loading (a) in tension and (b) in compression 

Under uniaxial tension, the stress-strain response follows a linear elastic relationship until the value of the failure 

stress 𝜎𝑡0 is reached. Beyond the failure stress, the formation of micro-cracks is represented macroscopically with a 
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softening stress-strain response, which induces strain localization in the concrete structure. Under uniaxial compression 

the response is linear until the value of initial yield  𝜎𝑐0 . In the plastic regime, the response is typically characterized by 

stress hardening followed by strain softening beyond the ultimate stress 𝜎𝑐𝑢. Some of the parameters required to define 

concrete behavior in tension is initial (undamaged) elastic stiffness of the material 𝐸0 failure stress 𝜎𝑡0 and 𝜎𝑡  in terms 

of cracking strain 𝜀𝑡
𝑐𝑘 for softening branch. Cracking strain can be calculated from Equation (1): 

ck el

t t otε εε = -    (1) 

Where el

οt t οσ Eε = is elastic strain corresponding to undamaged material and 
t  is total tensile strain. On the other 

hand, for compression behavior, it is required to define 
c  in terms of inelastic strain. Total strain can be converted to 

inelastic strain according to Equation (2): 

in el

c c οtε ε ε= -    (2) 

In above equation el

οt c οε σ E=  is the elastic strain corresponding to undamaged material and 
cε  is total compressive 

strain.  

As shown in Figure 1, when the concrete specimen is unloaded from any point on the strain-softening branch of the 

stress-strain curves, the unloading response is weakened: the elastic stiffness of the material appears to be damaged (or 

degraded). The degradation of the elastic stiffness is characterized by two damage variables, 
td  and 

cd , which are 

assumed to be functions of the plastic strains. These parameters have values between one, which shows the undamaged 

state of material and zero, which corresponds to completely damaged state. These parameters also should be defined in 

terms of plastic strains.  For the reinforcing steel bars, bilinear plasticity model is used.  

To define stress-strain curve for the concrete, the experimental stress-strain behaviors of tension and compression 

obtained by Velasco [23] are used. These curves are illustrated in Figure 2. 

 

Figure 2. Ideal stress-strain curve for (a) uniaxial tension before crack initiation, (b) uniaxial tension post-failure and (c) 

uniaxial compression [23] 

The tension behavior of concrete is defined by two curves, including one stress-strain curve before crack nucleation 

and another post failure stress-cracking displacement curve illustrated in Figure 2. The linear stress-strain relationship 

is expressed by  t t 0 t t t0E ,       and the tri-linear model for stress-cracking displacement is determined by the 

following points,  00, t  ,  1 1, tw   ,  2 2, tw   and  ,0uw  ,where t1 1 tοσ k σ=  , 
t2 2 tο
σ = k σ  , 1 u 1w w c=  and 

2 u 2w w c= . 1k  and 2k  are the empirical parameters that can better describe the post-failure softening behavior in 

uniaxial tension test, while 1c  and 2c  are the constants, 1 20c   and 2 5c   , respectively. 

As proposed by Velasco, the ideal stress-strain curve under compression is composed by three sections: (a) initial 

elastic branch, (b) damage-based plastic rising branch and (c) damage-based plastic declining branch, illustrated in 

Figure 2, and the relations are given by the following equations: 

ο c c o
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   (3) 

Where cu  is the strain corresponding to the ultimate stress, cm c cuk  is the maximum strain in the ideal model, ck  is 

the empirical parameter obtained from the compression tests, 1  and 2  are the exponentials describing the curvatures 
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of rising and declining branches, respectively. Some other parameters required for concrete damage plasticity model are 

listed in Table 1. 

In this research, reinforced concrete beam-column joints is modeled using Abaqus. Abaqus uses plastic damage 

model for concrete and required parameters are defined using Velasco model defined above.  

Table 1. Some parameters for concrete damage plasticity model 

Dilation Angle Eccentricity 𝒇𝒃𝟎/𝒇𝒄𝟎 𝒌𝒄 Viscosity 

30° 0.1 1.16 0.667 0.001 

3. Analyzed Models 

The RC beam-column joints investigated in this research are joints of an analyzed five-story building. Half-scale 

specimens of these joints are experimentally investigated by shafaei et al. Error! Reference source not found.. In these 

research dimensions are selected similar to work of shafaei at al. Error! Reference source not found. for comparison 

purpose. The column section is 250×250 mm and has 2110 mm length. In addition, the beam section is a 250 × 220 mm 

rectangle and has 1400 mm length. Upper and lower longitudinal reinforcement bars of the beam are 4Φ14 and 3Φ14, 

respectively. Moreover, shear reinforcement for the beam is equally spaced Φ8 closed stirrups, starting at 25 mm 

distance from the column surface and spaced 60 mm from each other. The longitudinal reinforcement bars for the column 

are 8Φ14, and shear reinforcement for the column are equally spaced Φ8 closed stirrups with 60 mm distance from each 

other. Three types of exterior beam-column joints are considered: without shear reinforcement in the joint area, with 

shear reinforcement in the joint area and strengthened with post-tensioned steel angles. Material properties for the 

concrete and steel bars are as for Table 2 and Table 3. Post-tensioning plate and angles have 18 mm thickness and post-

tensioning bars have 16 mm diameter. Dimensions and reinforcement details for analyzed cases can be find in Figure 3.  

Table 2. Material properties of modeled examples 

Case Examples Description Compressive strength (MPa) Tensile Strength (MPa) Elastic Modulus (MPa) 

C1 WO Shear reinforcement 23.3 3 22687 

C2 W Shear Reinforcement 23 3 22540 

C3 Strengthened With Steel Angles 25.3 3.1 23500 

Table 3. Mechanical properties of reinforcement bars 

Bar diameter (mm) Yield Strength (MPa) Ultimate Strength (MPa) Yield Strain (%) Ultimate Strain (%) 

8 350 410 0.18 18 

14 460 680 0.2 13 

 

Figure 3. Dimension and reinforcement details of analyzed models 

 



Civil Engineering Journal         Vol. 4, No. 7, July, 2018 

1732 

 

 

4. Finite Element Modeling and Loading 

Above mentioned three joints are models in plane stress condition. Plane stress condition is selected for simplicity 

and high computational time consumption of 3D models. Moreover, finite element discretization of analyzed cases are 

shown in Figure 5. For discretization of concrete domain and reinforcement bars, plane stress and link elements are used 

respectively. For discretizing concrete domain C3D4R quadratic four node elements and for steel bars T3D2 linear two 

node elements are utilized. The whole model is divided to three domains, two far of joint domains, upper and lower 

domains of the column, and near joint domain. The two far of joint domains have assigned linear material properties 

and near joint domain has nonlinear material properties. These can reduce computational time and convergence 

problems. The roller support condition is assumed for the end of the beam and for upper and lower ends of the column 

pinned condition are assumed. The nonlinear static analysis is conducted with displacement based cyclic loading. The 

incremental cyclic loading, which is shown in Figure 4Error! Reference source not found., is applied at the end of the 

beam. Also axial load of the column is applied in the upper end of the column. It is noteworthy to mention that post-

tensioning effect, which is required in C3, can be applied directly in Abaqus.  

 

Figure 4. Incremental cyclic loading 

 

Figure 5. Finite element discretization of analyzed models, (a) C1 and C2, (b) C3 and (c) reinforcement bars for C1  

5. Results and Discussion 

In Figure 6 toFigure 8, the hysteresis response of the investigated joints both from experimental studies Error! 

Reference source not found. and numerical modeling are illustrated. In all cases, a good agreement between the 

experimental and the numerical results can be observed. In the elastic range, experimental and numerical results are 

almost coincident.  However, in inelastic range, the curve of numerical results are located above the curve of the 

experimental results. Moreover, the pinching effect can be seen in hysteresis curves of the experimental results.  This 

effect requires more details to be modeled and simulate in ordinary FEM modelings.  
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Figure 6. Hysteresis response of C1, numerical and experimental Error! Reference source not found. results 

 

Figure 7. Hysteresis response of C2, numerical and experimental Error! Reference source not found. results 

 

Figure 8. Hysteresis response of C3, numerical and experimental Error! Reference source not found. results 

Hysteresis response or force-displacement curve during cyclic loading is the most important feature for evaluating 

the seismic performance of a structural component. It also can show energy absorption and ductility of the joint. The 

hysteresis response of C1 shows a decrease in stiffness and strength of the joint with increasing displacement, which 

results in shear failure of the joint. The C2 shows a ductile response and also had a slight stiffness degradation. The 
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hysteresis loops of the case reinforced with post-tensioned angles (C3) are clearly larger and remain stable with low 

stiffness and strength degradation. Differences between experimental and numerical results can be attributed to 

deficiency of utilized constitutive model for concrete and steel, some expected and accepted loss of accuracy for 2D 

modeling, not accounting for bond failure between concrete and steel, and other simplifications related to finite element 

discretization.  

In Figure 9 toFigure 14, damage parameter distribution in tension, 
td  and in compression 

cd at the end of analysis 

time are shown. In these figures failure can be recognized from element deformations and damage parameter intensity.  

As can be seen, for case C1, the shear failure occurred in the joint area and in the case of C2 and C3, shear failure is 

transferred to the column surface and the edge of strengthening angles, respectively. 

 

Figure 9. Compressive damage parameter for C1 

 

Figure 10. Tensile damage parameter for C1 

Case C1 models an exterior joint without shear reinforcements. In some substandard buildings, unfortunately, the 

shear reinforcement is not implemented at the joint area. It can be understood from the deformations of the elements in 

the joint area (Figure 9 andFigure 10) that these elements have been damaged in tension or compression. In other words, 

in this case, in contrast to the other two models that will be presented below, failure is in the joint’s area, which can 

greatly decrease load capacity of the column. 
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Figure 11. Compressive damage parameter for C2 

 

Figure 12. Tensile damage parameters for C2 

The case C2 has modeled an exterior joint with shear reinforcement. Dimensions, other reinforcement and loading 

are similar to C1. According to Figure 11 and Figure 12 in this case, despite C1, the plastic hinge clearly moved into the 

beam. Although, according to the hysteresis diagram, the load-carrying capacity of the joint has not changed much, but 

its hysteresis loops are larger and, as a result, it is more ductile than C1. 

 

Figure 13. Compressive damage parameter for C3 
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Figure 14. Tensile damage parameter for C3 

Compressive and tensile damage parameters for case C3 are shown in Figure 13 and Figure 14, respectively. Also 

hysteresis response of this model can be seen in Figure 8. C3 is model of an exterior joint retrofitted with steel plate, 

angles and post-tensioned bars. Element deformation shows that plastic hinge obviously moved out from the joint area. 

In addition damage parameters in the joint area are meaningfully lower than two previous cases. Despite C1, shear 

failure in the joint area do not occurred. This model has also been able to withstand larger deformations. This can be 

concluded from hysteresis response of Figure 8. Above results shows that post-tensioned angles is an effective and 

efficient solution for retrofitting RC beam-column joints without shear reinforcement.  

6. Conclusion 

In this research, seismic behavior of RC beam-column exterior joints are numerically investigated. Nonlinear 

behavior for concrete is considered in both tension and compression. Damage plasticity model is utilized for concrete 

material. Moreover, for reinforcement steel bilinear plasticity model is assumed. Three case examples for beam-column 

joint are modeled and analyzed: the joint without shear reinforcement in the joint area, with shear reinforcement and the 

joint with strengthening post-tensioned steel angles. Numerical results shows good agreement with the experimental 

results. It can be concluded that the shear reinforcement in the joint area can effectively increase ultimate strength and 

ductility of the joint. Results show that for joints without shear reinforcement, post-tensioned steel angles is a very 

effective and efficient solution. The retrofitted joint with post-tensioned steel angles shows a good behavior is cyclic 

loading. This can be attributed to concrete confinement and moving shear failure point to out of the joint area. 
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