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Abstract 

Crack propagation in structures is an important issue which is engineers and designers should consider. Modeling crack 

propagation in structures and study the behavior of this phenomenon can give a better insight to engineers and designers for 

selecting the constructionôs materials. Extended finite element method (XFEM) was used successfully in the past few years for 

simulating crack initiation and propagation in sophisticated and complex geometries in elastic fracture mechanics. In this paper, 

crack propagation in three-point bending beam including initial crack was modeled based on ABAQUS software. The following 

consequences were attained through the study of simulation data. First, the effects of youngôs modulus and fracture energy on 

force-displacement curve at three-point bending beam were investigated. It was observed that, by increasing the value of 

youngôs modulus and fracture energy, three-point bending beam was showed more load carrying against initiation. Second, in 

multi-layer beam, the effect of youngôs modulus on force-displacement curve was investigated. In case I (the thin upper layer is 

harder than the substrate) the value of youngôs modulus in substrate was kept constant and the amount of youngôs modulus in 

thin layer was risen in each step rather than the substrate, the peak in force-displacement curve was ascended and three-point 

bending beam resisted better against crack initiation. Next, similar conditions was considered in case II (the thin upper layer is 

softer than the substrate), by decreasing the value of youngô modulus in top layer, peak in force-displacement curve was 

declined and crack initiation was happened in lower loading in each step. Finally, sensitivity analysis for thickness of top layer 

was conducted and the impact of this parameter was studied. 
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1. Introduction  

One of the most significant aspects of structures is their ability to resist the service loads that are subjected to them. 

The most prevalent reasons that cause early failure in structures are: environmental conditions, constructionôs error, voids, 

microscopic flaws, and cracks. Modelling crack propagation is a practical solution to predict failure in structures. Finite 

element method (FEM) implements different cracks that are occurred in various shapes, sizes, and locations. The 

requirement of re-meshing the discontinuous of crackôs domain is the notable restriction of FEM, which leads to lots of 

problems for modelling the crack propagation in complex geometry. In order to mitigate the difficulties of computational 

crack propagation in FEM, Belytschko and Black [1] suggested the extended finite element method (XFEM), as a 

powerful method to resolve the problem of FEM by enriching in the proximity of the crack and simulate the domain 

without requiring re-meshing which is based on the partition of unity. Later, XFEM was boosted by Moes et al. [2] and 

Sukumar et al. [3]. Computer implementation of XFEM was defined by Sukumar et al. [4] then Areias et al. [5] 

Developed the XFEM to 3D. Dolbow et al. [6] modeled fracture with frictional contact on the crack face and modeling 

dynamic crack propagation was done by Belytschko et al. [7, 8], Grégoire et al. [9], and Prabel et al. [10]. XFEM is 

powerful and more effective than boundary element method [11], Re-meshing method [12, 13] and element deletion 

methods [14], these advantages convinced the researchers to select this method. This paper was presented an XFEM 
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procedure to investigated 2D crack propagation in elastic, homogenous and isotropic three-point bending beam with initial 

crack. The modelling was done by the finite element software ABAQUS version 6.10.1. 

2. Extended Finite Element Method 

1.1. Basic Formulation  

High accuracy and independence to mesh refinement in crackôs domain caused this method has been preferred to the 

other methods. The enriched displacement approximation in 2D crack modeling is written as following: 
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Where ה ,ה and ‰  are the shape function associated with node i, j and k. H is the modified Heaviside function and 

is used to introduce discontinuity in crack faces and shows by the following formulation: 
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Ὂ is enrichment function and describes by following: 
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Where Òȟʃ are the local polar coordinates in proximity of crack tip. In (1) όȟὦ and ὧ are the degree of freedom to 

common DOFs, I is the set of all nodes in the domain, J and K are the set of nodes enriched by discontinuous enrichment 

function, J is cut completely by the crack and K exist in two side of crack tip which are shown in Figure 1.   

 

Figure 1. Enriched nodes in the XFEM 

 

Starting crack initiation is a result of beginning the degeneration of enriched elements. In the following, some criteria 

in ABAQUS implementation which are related to stress and strain are shown below [15]. 

The maximum nominal stress criterion: 
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The maximum nominal stress criterion: 
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The quadratic traction- interaction criterion: 
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The maximum principal strain criterion: 
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The maximum nominal strain criterion: 

 Ὢ άὥὼ
ộ‐Ớ

‐
ȟ
‐

‐
ȟ
‐

‐
  (8) 

The quadratic separation- interaction criterion: 
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In this paper, crack propagation was occurred when material was reached to max principal stress. In (4), 

ʎ  expresses maximum principal stress and the symbol ộ Ớ represents Macaulay bracket that disallows the compressive 

stress leads to damage initiation: 

ộʎỚ
π               „ π
„              „ π

 (10) 

Damage was occurred in the material when f in expression (6) reaches to a value of one. Scalar damage parameter, D, 

represents damage evolution which was equal to zero at first. In this paper, damage evolution was modeled and its effect 

on normal and shear stress components is defined as below: 

Ô
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 (11) 
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Where 4, 4 and 4 represents the normal and shear stress components. 

2. Finite Element Modeling 

This section divides into three parts; in the first part, a procedure for simulating the growth and propagation of 

localized tensile cracks [16] was verified. In the second part, the influences of youngôs modulus and fracture energy on 

force-displacement curve in one layer three-point bending beam were investigated. In the third part of this section the 

effect of youngôs modulus on force-displacement curve in a thin layer beam was studied. Ultimately, sensitivity analysis 

for thickness of thin layer was discussed. 

2.1. Model Verification 

 This example is a three-point test on a notched beam under the vertical displacement Ὗ ρ άά that was applied to 

in the midpoint. Geometry and boundary conditions are given in Figure 2. 

 

 

 

 

 

 

 

 

 

 
Figure 2. Geometry and boundary conditions of notched beam 

 

Table 1. Mechanical properties [16] 

 

Youngôs modulus 

(GPa) 

Poisson ratio  

- 

Tensile strength 

(MPa) 

Mode I fracture 

energy (N/m)  

20 0.2 2.4 113 

 

Figure 3 illustrates force-displacement curve for different steps and compares the results between experimental [17] and 

numerical analysis [16]. The force-displacement curve that was modeled with XFEM is represented in Figure 4. Both 
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curves in Figures (3 and 4) are to support each other. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Force-displacement curve for different magnitude of step [16] 

 

 
 

Figure 4. Force-displacement curves obtained from XFEM simulation 

2.2. One Layer Three-Point Bending Beam Specimen  

In this part, the influence of youngôs modulus and fracture energy on force-displacement curve were investigated. 

Geometry and boundary conditions of one layer beam including initial crack with values ὒ υυ άά, ὄ ρπ άά and 

crack length ὥ ς άά are schematically shown in Figure 5. Material was considered as elastic, homogenous and 

isotropic solids in 2D and plain strain condition was assumed. Vertical displacement was imposed at the upper mid-point 

of specimen for 1 mm in 60 second and with a constant speed; morever, pure mode I was considered for this study. The 

material parameters are taken to be as follows in table 2. The finite element mesh density zones and CPE4R plane strain 

meshes with 7354 elements which was used to attain the results is illustrated in Figure 6. 
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Figure 5. Geometry and boundary conditions for one layer beam 

 

Table 2. Mechanical properties for three-point bending beam 

 

Youngôs modulus 

(GPa) 

Poisson ratio  

- 

Tensile strength 

(MPa) 

Mode I fracture 

energy (N/m)  

80 0.3 500 15 

 

 

 

 

 

 

 

Figure 6. CPE4R plane strain meshes with 7354 elements of one layer three-point bending beam 
 

Hardness is an intrinsic property of materials that affects load carrying; this parameter is dependent on youngôs 

modulus. Figure 7 displays force-displacement curve for different values of youngôs modulus in one layer three-point 

bending beam taken as: 80, 100, 120, 140, 160, 180, 200, and 210 GPa. The other parameters were kept constant 

according to table 2. Due to Figure 7, by increasing the value of youngôs modulus, elementôs hardness was grown and 

three point-bending beams was simultaneously shown better resistance against crack initiation. On the other hand, by 

ascending the value of peak in force-displacement curve, the displacement corresponding to the peak, changes backward 

and leads to brittle failure rather than before. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Force-displacement curve for different values of youngôs modulus 

 

In the second section of this part the influence of fracture energy on force-displacement curve was studied, fracture 

energy is an intrinsic parameter that independence to the geometry and loading. The values for this parameter were 

chosen as: 7.2, 11, 15, 19, 23 and 24 N/mm, and the other parameters were kept fixed as stated in Table 2. 

According to Figure 8, by growing the amount of fracture energy in each step, peak in force-displacement curve was 

gone upward and crack initiation was occurred in superior loading. 
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Figure 8. Force-displacement curve for different values of fracture energy 

2.3. Two Layer Three-Point Bending Beam Specimen  

In this part the effect of youngôs modulus on force-displacement curve in a multilayer beam was presented. Loading 

conditions were considered similar to the pervious part. Geometry and boundary conditions are shown in Figure 9, 

thickness of top layer was taken as ὸ ρ άά. The interface between two layers was modeled as perfectly-bonding. The 

beam was constructed by CPE4R plane strain meshes with 7385 element (See Figure 10). In case I the values of youngôs 

modulus for top layer were considered as: 100, 120, 140, 160, 180, 200, and 210 GPa, and for substrate was chosen as 80 

GPa, the other parameters were considered as the same as Table 2 for both layer. Figure 11 represents force-displacement 

curve for different values of youngôs modulus assigned to the top layer. Increasing the value of youngôs modulus at top 

layer led to rising the elementôs participation in absorbing the load rather than the elements in substrate. As a result, 

superior load for crack initiation has been achieved.   

 
 

 

 

 

 

 

 

 
 

Figure 9. Geometry and boundary conditions for multilayer beam 

 

 

 

 

 

 
 

 

Figure 10. CPE4R plane strain meshes with 7385 element of multilayer beam 
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Figure 11. Force-displacement curve for case I (thin upper layer is harder than the substrate) 

 

In the following, the effect of youngôs modulus on force-displacement curve in case II is depicted in Figure 12. The 

values of youngôs modulus for top layer were chosen: 80, 100, 120, 140, 160,180, and 200 GPa, and for substrate was 

considered as: 200GPa, the other parameters were kept constant similar to pervious section. In contrast with case I, 

participation of elements in top layer compared with substrate for absorbing load was decreased. As a result, by 

decreasing the amount of youngôs modulus in the top layer, peak in load-displacement curve decreased and crack 

initiation occurred in lower loading. 

 

 
 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Force-displacement curve for  case II (thin upper layer is softer than the substrate) 

 

In this study, a sensitivity analysis for thickness of top layer in case I and case II with perfectly-bonded was conducted 

for five different simulation thicknesses namely 1, 1.5, 2, 2.5, and 3 mm. Mechanical material properties for case I  are 

given in Table (3). 

 
Table 3. Mechanical properties for case I (the thin upper layer is harder than the substrate) 

 

Location 
Youngôs modulus 

(GPa) 
Poisson ratio 

Tensile strength 

(MPa) 

Mode I fracture 

energy (N/m) 

Top layer 210 0.3 500 15 

Sub layer 140 0.3 500 15 
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Figure 13 depicts force-displacement curve for different thickness layers in case I. By increasing the thickness of top 

layer, the number of elements in top layer made a larger contribution of the beam in absorbing the load rather than subôs 

elements and led to the higher peak in force-displacement curve which due to higher crack resistance against propagation.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Force-displacement curve at different thickness for case I (thin upper layer is harder than the substrate) 

 

At the end of this part, the sensitivity analyze for thickness of top layer in case II will be discussed. The thicknesses 

for top layer were considered similar to the pervious step. Figure 14 illustrates force-displacement curve for different 

thickness in case II. With increasing the thickness of top layer, the number of elements that resist against the load was 

weaker than before this procedure caused crack resistance was decreased and crack initiation was occurred in lower 

loading than before. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Force-displacement curve at different thickness for case II (thin upper layer is softer than the substrate) 

3. Conclusion 

In this paper, simulation of crack propagation was presented in three-point bending beam with XFEM procedure. The 

effect of youngôs modulus and fracture energy on force-displacement curve in one layer three point bending beam were 

investigated and the results are as follows. By increasing the value of youngôs modulus, the peak in force-displacement 

curve was risen and the beam resisted better against crack propagation; meanwhile, the displacement which is related to 

the peak in force-displacement curve decreased and failure was gone to the brittle manner. With increasing the value of 

fracture energy, both the peak and displacement which is related to the peak in force-displacement curve had higher value 

than before and the behavior of the beam in failure was gone to the ductile manner. In the next part of this study, 


