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Abstract

Recently, Iraq has experienced an increase in seismic activity, especially, near the east boundary with Iran which enhanced
the need to study its effect on the behavior of buildings. In this study, a comprehensive methodology was applied to
investigate the behavior of a moment frame system with respect to its height after subjected to the design ground motion
at Baghdad according to the recently developed seismic hazard maps and, after developing and designing the required
configurations of archetype models, specifying life safety as an aimed performance level, modeling nonlinearity and
applying the nonlinear static analysis (NSP) according to ASCE/SEI41-13, FEMA356 and FEMA P-695. This
methodology is started by sizing members cross-sectional dimensions and applying reinforcement detailing requirements
according to ACI318-14. Results show that, for a given building height and number of bays, inelastic drifts increase with
decreasing the bay width because the overall building stiffness is decreased and it will be more slender, and consequently,
the P- delta effects increased. Also, as the building height increased, both, target and minimum shear capacities decrease
and the target displacement increases under the effect of the same earthquake ground motion. Consequently, a necessary
limitation on the height of these buildings were deduced to ensure their ability to withstand the future ground shaking and,
in the same time, maintaining the life safety performance level of damage. Where, it is found that the maximum allowed
heights of framed buildings in Baghdad are 17, 25 and 32 stories for 6, 7.5 and 9 m bay widths, respectively.
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1. Introduction

Recently, Iraq has experienced an unprecedented seismic activity, specifically, near the east boundary with Iran
which pushed towards re-evaluating the seismic hazard at this region. The most recent studies were made by
AbdulMuttalib et al. (2018) and Mustafa et al. (2018), where the PGA and spectral accelerations at 0.2 second and 1.0
second were presented in the form of contour maps. Also, they presented the future forecasting design response spectrum
of the main cities in Iraq [1, 2]. Their findings showed that the future forecasting earthquakes will be increased towards
the east-northeast and north, therefore, there is a big need for investigating the performance of the seismic-force resisting
system under the effect of the future forecasting earthquakes.

In order to apply the analysis and study the performance of any seismic-force resisting system under the effect of the
future forecasting earthquake, the structure, foundation and loading of building need to be modeled. Moment frames are
generally selected as the seismic force- resisting system when architectural space planning flexibility is desired [3].
Among the types of moment frames, the special Moment frame is the only one can be used for all Seismic Design
Categories especially Categories D, E and F of ASCE/ SEI 7- 05 or Iragi seismic code, therefore, it is preferred to be
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adopted in selecting frame models. In this study, the future forecasting earthquake will be represented by the design
response spectrum of Baghdad city from the study of Mustafa Sh. F. and AbdulMuttalib I. S. (2018).

In the Iranian code of practice (2007) the maximum permissible building height for Special reinforced concrete
moment- resisting frames (SMRFs) is 150 m. Also, the performance factor R is Equals to 10 [6].

In Turkish earthquake code TEC (2007) the reinforced concrete moment frames of nominal ductility in the two
directions or in one and the other is of high ductility, are permitted to be used with a height not exceeding 25 m. Also,
the Seismic Performance Factor, (R), for frames of nominal ductility is differ than that in frames of high ductility level,
which means that R for frames with long periods is differ than that in frames of lower periods, or implicitly R is
dependent on building height [7].

In FEMA_P695 (2009) the methodology used to develop the Seismic Performance Factors (R , Qo, Cd) of ASCE/
SEI 7- 05 for each seismic-force resisting system is presented. In this methodology, a number of archetype configurations
are developed which representing the main differences or variations in the framing bay sizes, period or height, the ground
motion intensity and other factors that may affect the seismic behavior of the moment frame system. These archetype
models are firstly analyzed linearly based on a trial values of (R, Qo, Cd) same as that in Table (12.2.1) of ASCE/SEI
7- 05 and then designed. After that, the components nonlinearity were modeled and then these archetype nonlinear
models were analyzed nonlinearly [8]. Finally, it was found that frames models based on trial constant values from
ASCE/ SEI 7- 05 are performed poorly as the height increased. This means, the acceptability of the trial values from
ASCE/ SEI 7- 05 was weaker as increasing the height and it was suggested to limit the number of stories to a 12 stories.
But they may be accept Table between 12 and 20 stories because the variation of number of stories that represented in
the models was only 4, 8, 12 and 20 stories [8].

Haselton and Deierlein (2007) explained that this poor performance is due to the damage localized more for taller
moment frames since damage localization is driven mainly by higher P-delta effects as the building height increases. So
as to assure better performance in taller reinforced concrete frame buildings strength requirements can be increased for
taller buildings, by using a period-dependent R factor [9].

In Indian standard ICS (2016) of tall buildings that are of heights between 45 and 250 m that usually used as office
and residential buildings, the moment frame system is permitted to be used only in low and moderate seismic zones with
maximum heights not exceeding 80 and 60 m, respectively. Also, the maximum slenderness ratio, that is the building
height to smaller plan dimension, is not exceeding 5 and 4 for the low and moderate seismic zones, respectively [10,11].

Increasing the strength or decreasing R with height means mainly increasing columns sections to be as a strong
vertical shafts which distribute damages over the building height. But this will conflict with the fact that the column
section cannot continue to be increased without limit, in addition to the economic aspect. Instead, the height of a moment
frame can be limited up to a level at which a concrete wall needs to be used as a strong vertical shaft which distributes
damages over the height. But, this height limit will depend on the bay sizes, sizing the members cross-sectional
dimensions, reinforcement details and on the design ground motion. Consequently, the objective of this study is
investigating the performance of a moment frame system with respect to its height, this is for a given cases of bay sizes
and design ground motion, and based on a robust criteria for sizing the members cross-sectional dimensions and for
applying reinforcement detailing requirements. This needs specifying the aimed performance level, modeling and
analysis procedure, or in other words specifying the overall methodology used to conduct this study based on known
standards and specifications. As a whole, this study is divided into two stages, which are;

a) Preparing and analyzing the nonlinear models of archetypal buildings, which including:
1. Preparation of archetype models.
2. Developing of nonlinear models.
3. Applying the design load combinations.
4. Linearly analyzing and designing the nonlinear models.
5. Applying the Nonlinear Static analysis.
b) Parametric study is to be done to study the effect of height of building (or number of stories), building slenderness
ratio (or bay size) and the new seismic hazard maps values for framed buildings in the Baghdad city.
2. Preparing and Developing Nonlinear Models
2.1. Preparation of Archetype Models

The two-dimensional model presented in Figure 1 is firstly used by Haselton and Deierlein (2007) and will be used
here as a basis for sorting the minimum number of archetype configurations comprising the important and satisfying
range of reinforced concrete moment frame buildings in this study.

467



Civil Engineering Journal Vol. 5, No. 2, February, 2019

Considering typical office occupancies, three basic configurations of reinforced concrete special moment frame,
(SMF), archetypes will be adopted which are 6, 7.5 and 9 m bay widths. This is to cover the range of bay sizes of (6 to
9) m of typical office occupancies [10]. Accordingly, the plan dimensions will be 18m by 18, 22.5 m by 22.5 and 27 m
by 27 m. Story heights were taken as 15 feet (= 4.5 m), for the first story and 13 feet (= 4 m), for the upper stories.

Also for each one of the three basic configurations of a bay size, four primary archetype heights or number of stories
were considered, which are 5, 10, 15 and 20 stories, each with a basement of 4 m height. That means the four primary
archetype heights are 20.5, 40.5, 60.5 and 80.5 m above ground and 4 m below ground, leading to a total of 12 archetype
models, Figure 2.
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Figure 1. Archetype model for moment frame buildings [9]
2.2. Design Load Combinations

The combinations of design loads including earthquake effects, according to ASCE/SEI 7-05, ACI 318-14 and Iraqi
seismic code that must be used are [4, 12, 5]:

U=1.2D+ 1.6L 1)
U=1.2D+ 0.5L+ 1.0E (2a)
U=0.9D+1.0E (3a)

In case where seismic and gravity load effects are additive:
E=pQk + 0.2Sps D 4)

While in the case of counteracting effects of seismic and gravity loads:

E=pQk - 0.2Sps D ®)
Equations 2a and 3a will become:

U=(1.2+0.2Sps )D + 0.5L + pQe (2b)
U=(0.9-0.2Sps )D =+ pQe (3b)

Equation 1 represents the design gravity loads only, which will be used to compute the effective stiffness values
according to Table 10.5 in ASCE/ SEI 41-13 [13]. According to Section 12.3.4.2b in ASCE/SEI 7-05, the redundancy
factor p = 1. The values of Sps will be taken from Mustafa Sh. F. and AbdulMuttalib I. S. (2018), which is Equals 0.47
for Baghdad city. For Baghdad, Equations (2b, 3b) will become:

U=1.294D + 0.5L + Q¢ (2c)

U=0.806D + Q¢ (30)
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Figure 2. Archetype configurations for a reinforced concrete moment frame system

The key design variables identified to have a significant impact on the performance of reinforced concrete moment
frame systems, and their applicable ranges, are presented in Table 1 [8].

Table 1. Summary of key design variables and ranges, and design parameters considered in the design space for reinforced
concrete moment frame systems, based on ACI 318-14, ASCE/ SEI 41-13, ASCE/SEI 7-05 and Iragi seismic code

Key design variable

The range considered in the design space of archetype

Configuration

Special reinforced concrete moment frame (as
per ASCE/SEI 7-05, ACI 318-14)

Building height
Bay width
First and upper story heights

All designs meet code requirements

5, 10, 15 and 20 stories, in principle
6,75and9m
45and4m

Element design

Confinement ratio and stirrup spacing
Concrete compressive strength

Longitudinal bar diameter

Conforming to ACI 318-14 and ASCE/ SEI 41-13
5 ksi (=34.5 MPa) to 7 ksi (=48.3 MPa), ACI318-14/ sec.18.7.5.2 and, NIST (2016).
@18 to @32 mm in columns, @16 to @25 mm in beams

Loading

Design floor loads

Lower and upper bounds on design floor load
Design floor live load

Design roof live load

Design parameter

Member stiffness assumed in design: Beams

Member stiffness assumed in design: Columns

Footing rotational stiffness assumed in design

Joint stiffness assumed in design
SC-WB design principle

175 psf (= 8.4 KN/ m?), [34]

150 to 200 psf (= 7.2 t0 9.6 kN/ m? ), [34]
Constant: 50 psf (= 2.4 kN/ m?)
Constant: 20 psf (= 1.0 kN/ m?)

Design assumption

0.3Elg, Table 10.5 in ASCE/ SEI 41-13

Linear interpolation between 0.3Elg and 0.7Elg according to design gravity axial
load levels, Table 10.5 in ASCE/ SEI 41-13.

Basement assumed; exterior columns fixed at basement wall, interior columns
consider stiffness of first floor beam and basement column.

Extending columns rigidity into joints.
Using a minimum ratio of 1.2
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The design dead load will be taken as an average of 8.4 kN/m? while the design floor and roof live loads are 2.4 and
1.0 kN/m?, respectively, [8].

ACI 318-14 adopts the (SC-WB) concept by requiring that the ratio of the sum of column moment strengths to the
sum of beam moment strengths at their connection joint (XMnc / XMnb) is not less than 1.2. According to ASCE/ SEI
41-13 and based on Elwood et al. (2007), and for Mnc / XMnb > 1.2, the joints could be modeled implicitly by extending
the column rigidity inside the joint in the mathematical model [13, 14].

2.3. Preliminary Proportioning of Members Sections

Proportioning of members sections, especially columns, have an important impact on the response of the archetypes
models and thereby final results. Therefore, members sections should be estimated carefully and based on reliable and
practical bases. The load combination of Equation 1 represents the design gravity loads only, which will be used
preliminarily to proportion columns sections based on the concept that the design axial load Pu is preferred to be:

Pu<0.3Agfc' (6)

Accordingly, a summary of the preliminary selected columns sections is shown in Table 2. Then, columns sections
will be checked, and revised where required to satisfy Equation 6, based on the worst design load combination including
seismic load, Equation 2c.

For beams in the first basic archetype configuration of 6m bay width, (6 x 6 m plan panels), the slab thickness has
been estimated to be 0.15 m after a preliminary calculations. According to ACI 318-14/ sec.6.3.2.1, the effective flange
width of beams is 1.5 m. The depth of beams has preliminarily been selected equals ten percent of the bay size, (0.6 m).
Taking into consideration the limits of beams dimensions in ACI 318-14, the web width of beams has been selected to
be 0.3 m. Accordingly, The Preliminary sections for beams of the three basic configurations are shown in Figure 3.

Table 2. Summary of the preliminary selected columns sections

Column’s section depth h in meter and values of f., in ksi, for ;

Archetypes height steps in

terms of num_ber of stories, 5 stories Model 10 stories Model 15 stories Model 20 stories Model
0 h fo h fo h fo h fo
Bay width 6 m
16 to 20 0.80 5
11to 15 0.70 5 0.80 5
6to 10 0.60 5 0.70 5 0.80 6
1to5 0.50 5 0.60 6 0.70 7 0.80 7

Bay width 7.5 m

16 to 20 1.00 5
11to 15 0.90 5 1.00 5
6 to 10 0.75 5 0.90 5 1.00 6
1to5 0.60 5 0.75 6 0.90 7 1.00 7
Bay width 9 m
16 to 20 1.15 5
11to 15 1.00 5 1.15 5
6to 10 0.85 5 1.00 5 1.15 6
1to5 0.70 5 0.85 7 1.00 7 1.15 7
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a) First basic configuration: 6m bay width. [I

b} Second basic configuration: 7.5m bay width.

0.75
0.16

) Third basic confi guration: 9m bay width.

0.9
0.17

Figure 3. Preliminary beams sections for the three basic configurations

The foundations will be modelled so that a basement will be used and the exterior columns will be fixed at basement
wall level while the interior columns consider stiffness of basement columns and basement roof beams, which is more
realistic. This is according to FEMA_P695.

2.4. Linear Analysis and Design of Archetype Models

The Modal Response Spectrum analysis (MRS) method of Section (12.9) in ASCE/SEI 7-05, is preferred to be used
in developing archetype designs because the ELF method is not permitted, in some cases, by ASCE/SEI 7-05 and the
Iragi seismic code, for example, in the design of taller buildings in Seismic Design Category D which have a fundamental
period, T, greater than 3.5Ts (Table (12.6-1) in ASCE/SEI 7-05), where Ts=(Sp1/Sps).

The MRS analysis method will be used, with the Seismic Performance Factor R = 8 for SMF from Table (12.2.1) in
ASCE/SEI 7-05, to compute the seismic forces needed in the design load combinations of equations (2c and 3c) for
Baghdad city.

The MRS analysis and then the design of all archetype models according to the design load combinations of equations
(1, 2c and 3c) will be executed by using the program ETABS2016 considering at least 90% mass participation, this is
to compute the earthquake load component to be used in the load combinations for seismic design.

From Mustafa Sh. F. and AbdulMuttalib I. S. (2018), Sps and Sp1 values were 0.47 and 0.25 g for Baghdad. According
to ASCE/SEI 7-05 and Iraqi seismic code (2016), the Seismic Design Category SDC will be the more severe one from
Tables (11.6.1 and 2) in the ASCE/SEI 7-05, or Tables (2.4.1 and 2) in the Iragi seismic code (2016). Accordingly, any
building in Baghdad will be designed based on SDC D.

2.5. Modeling Nonlinearity of Members

According to ASCE/ SEI 41-13, FEMA 356 (2000) and Peer/ ATC-72-1, and after assigning their effective stiffness,
columns and beams will be modeled as elastic elements having concentrated plastic hinges at each end, [13, 18, 19].
These plastic hinges are defined by the generalized load-deformation relation shown in Figure 4.
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Figure 4. Generalized component load-deformation relation for nonlinear analysis showing performance levels [13]
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The modeling parameters a, b and ¢ of Figure 4 and the numerical acceptance criteria at different structural
performance levels for nonlinear components are provided in Tables (10.7) and (10.8) of ASCE/ SEI 41-13 for beams
and columns. The values in these Tables are adopted in ETABS2016 as default values, therefore; it will be used to model
all archetypes mathematically and to model their members nonlinearity. According to section (7.5.3.2) in ASCE/ SEI
41-13, "Component demands must be within the acceptance criteria for nonlinear components at the selected Structural
Performance Level".

According to part-2 of the commentaries of ASCE/SEI 7-05 and FEMA-450 for design of new buildings, [20, 21],
and using the response design spectrum for Baghdad with ordinary and office buildings (category Il), the life safety
performance level will be aimed, which is the performance objective of most building codes.

3. Nonlinear Static Analysis Procedure (NSP)

According to ASCE/ SEI 7—- 05, FEMA 450 and ASCE/ SEI 41-13, [4, 22, 13] the gravity load combination for
nonlinear analysis in equation 7 will be used and applied before applying the seismic load.

W =1.05D + 0.25L @

Using ETABS program, the nonlinear designed archetypes shall be subjected into monotonically increasing
lateral loads which representing inertia forces in an earthquake till a target displacement (6t) at the control node is
exceeded, then the pushover capacity curve will be established.

ETABS2016 will compute the target displacement, using the modified coefficient method of FEMA 440 [23] that
adopted in ASCE/SEI 41- 13, to be identified on the pushover curve as the performance point and then to establish the
idealized force- displacement curve to get the significant yield point of each nonlinear model.

Gravity loads and P-A effects will be included in all analyses. Pushover analyses will be performed by first applying
gravity loads, followed by monotonically increasing lateral forces with a specified height-wise distribution.

Based on FEMA 356, the SRSS pattern of lateral force distribution will be used in the NSP analysis, which represents
inertia forces in an earthquake. That means, the linear MRS analysis is also performed to supplement the NSP in two
ways. The first is to compute the SRSS distribution by back-calculating the lateral forces at each it" floor (S™;) from the
stories shear forces that determined by linear MRS analysis of each model, considering sufficient number of modes to
capture a minimum of 90% of the total mass, this will supplement the NSP in case of significant higher mode effects.
And secondly; since the NSP analysis required the structure to be designed firstly, it will be designed using the linear
MRS analysis considering at least 90% mass participation, this is to compute the earthquake load component to be used
in the load combinations for seismic design, and this will verify the adequacy of the design before applying the NSP,
which in turn will supplement the NSP analysis to be more trusty. Also, the uniform pattern of lateral force distribution
(S"i = m;) will be used in the NSP analysis. In addition and Based on ASCE/ SEI 41- 13 and recommendations of FEMA
440, the first mode shape pattern of lateral force distribution will also be used as a third distribution to take into account
all possible actions that may occur during actual seismic response, and then the worst case will be the one governing.

4. Response Limits and Acceptability Criteria

In this section, the important structural response limits which constitute an acceptance criteria for the archetype
structure and adopted in this study, will be summarized as following:

e According to the life safety performance level in ASCE/SEI 41, and Table (12.12.1) in ASCE/SEI 7-05 and Table
(4.5.1) in FEMA-450 for ordinary and office buildings (category I1), the maximum drift must not exceed 2%. The
maximum drift in any one of the nonlinear archetypes is the maximum inter-story drift at the performance point
displacement.

e Referring to Table (C1.3) in ASCE/SEI 41, the permanent drift of 1% is indicating the range of inelastic drift that
typical structures may undergo when responding within the life safety performance level. The maximum inelastic
drift of each of the nonlinear archetypes is defined as the portion of the maximum inter-story drift beyond the
effective yield point of the idealized pushover curve [24].

e The ultimate displacement, at which gravity load can no longer be supported and failure occurs, is defined as the
roof displacement at a point on the pushover curve of a nonlinear archetype where 20% loss of its maximum
strength occurs [4, 8]. The target displacement of a nonlinear archetype represents its performance point or its
response to the design earthquake. Thus, the target displacement of a nonlinear archetype need not to exceed its
ultimate roof displacement.

e The best collapse mechanism is when the plastic hinges are formed at the ends of beams as much as possible.
Then, if the hinges at columns ends are also formed, they are preferred to be in the ground story columns and,
their damages are preferred to be just above the foundations. At this stage the collapse mechanism will be
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considered to has happened before other hinges at other columns' ends to occur. Thus, the target displacement
need to be reached on the pushover curve before the displacement at which the collapse mechanism will be
occurred.

e According to ASCE/SEI 41-13 and referring to Figure 4 which represents the generalized load-deformation
response for plastic hinges showing the acceptance limit at each performance level, the target displacement need
to be reached on the pushover curve of a nonlinear archetype before any hinge response has exceed the acceptance
limit at life safety performance level.

5. Materials and Methods

Formation of more number of hinges means the stiffness is well distributed, and the seismic forces and then the
seismic energy are well distributed along the height which will lead to a more energy dissipation before any one of
hinges has reach to failure, and vice versa.

In this section, the overall methodology used for investigating structural behavior will be summarized in the
following sequential steps, where for each archetype model and after modeling its joints and supports by ETABS:

e The preliminary columns sections in Table 2 and the preliminary beams sections in Figure 3 are assigned, the
effective stiffness of beams (Ine) will be set to 0.3 of their gross moment of inertia (0.31,g) according to Table 10.5
in ASCE/ SEI 41-13, while the effective stiffness of columns (lc) will preliminarily be set to 0.5 of their gross
moment of inertia (0.51¢g).

e The nonlinear hinges will be modelled by ETABS based on ASCE/ SEI 41-13, then they are assigned at the two
ends of each beam and column.

e Applying the design gravity load combination of equation 1, then the resulting compression (P) of the outer and
inner columns at each story is used to compute the values of (Py/Aq fc), then using linear interpolation from Table
10.5 in ASCE/SEI 41-13 to compute the values of I at each story, or in other words, lce = (Py / Ag fc) + 0.2,
which will be reassigned to columns.

e The linear MRS analysis is applied considering a number of modes satisfying at least 90% mass participation,
this is to compute the earthquake load component to be used in loads combinations for seismic design.

e Applying the design load combinations of Equations 2c, then the resulting compressions (P,) of the outer and
inner columns at the lower of each five stories are used to check whether they are satisfying Equation 6, if they
are not, the preliminary sections of columns need to be changed to satisfy Equation 6, and return to Step 2 to
reapply Steps 3, 4 and 5 till satisfying Equation 6. It will be seen later that satisfying Equation 6 will keep the
column longitudinal reinforcement ratio (pg) at the minimum value of 0.01.

¢ Designing the archetype model according to the design load combinations of Equations 1, 2c¢ and 3c using the
program ETABS2016.

e For the worst drift case Steps 3, 4, 5 and 6 will be repeated several times, in each once, the beams depth will be
decreased by a step of 5 cm till reaching the depth satisfying two issues; that the longitudinal reinforcement ratios
of beams are limited up to the most practical value which is approximately 0.01, and in the same time, to ensure
the (SCWB) principle of the ACI 318-14, namely to ensure that (XMn/XMn, > 1.2) at the face of each joint, which
in turn will ensure that beams will yield before columns or no column yield if (XMn/=Mnb) is much greater than
1.2 at lower stories. This will promote formation of a better collapse mechanism which is the beam mechanism
with much numbers of beams hinges. In most cases, beams sections may need one trial changing.

e When applying the linear MRS analysis as mentioned in Step 3 by considering a number of modes satisfying at
least 90% mass participation, the SRSS lateral load distribution will be back- calculated from the shear forces at
each floor by copying these shear forces directly from ETABS into a simple MATLAB program and the output
will be the SRSS lateral load distribution which will be copied directly into ETABS to be applied at roofs levels.

e Applying the analysis gravity loads combination of Equation 7 and considering the P- A effects in ETABS for
each nonlinear designed archetype, and then applying the SRSS lateral load distribution by monotonically
increasing its lateral forces at roofs along the height till a target displacement (6t) which will be calculated by
ETABS at the control node (the roof of the building), is exceeded, then the pushover capacity curve will be
established by ETABS. Also, this step is repeated on another copy of the same nonlinear designed archetype but
this time the uniform pattern of lateral force distribution will be applied. Also, this step is again repeated on
another copy of the same nonlinear designed archetype but this time the first mode shape pattern of lateral force
distribution will be applied.

e Checking items of Section 4 to identify the accepted response limit. The nonlinear structural behavior of the
archetype model can be tracked by the part of pushover curve till target displacement (performance point). Also,
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the performance point at target displacement represents the maximum response reached by the building through
the earthquake. For more clarity, this methodology was represented in Figure 5.

6. Results and Discussions

After applying the steps in Section 5 and with reference to steps in Section 4, the columns sections and beams sections
for archetypes models in Baghdad have been updated as shown in Table 3 and Figure 6, respectively. Additional
archetype models were needed to reach the bound of acceptance limit for each of the three basic configurations, their
columns sections are presented in Table 4. The results for the models of each of the three basic configurations are
presented and discussed in the following subsections.

6.1. Models of the 6 m bay Width Configuration

Figure 7 represents the analysis and design results for archetype model frame of five stories height before applying
NSP analysis. Referring to part-c of Figure 7, "It may be reasonable to make an exception to the requirement of ACI
318 regarding strong-column/weak-beam concept at the roof level of a building where a column does not extend above
the beam-column joint. At such locations, an interior column may be required to resist moments from two beams in a
given framing direction. Columns at such locations commonly support relatively low axial forces, and flexural hinging
of the columns at this level will not adversely affect the overall frame mechanism”, [3]. Part-b of Figure 7 represents the
used columns reinforcement and the required beams reinforcements. Consequently, Figure 8 represents the used
reinforcements in beams before applying the NSP. After applying the NSP analysis under the action of the three
horizontal load distributions, Figure 9 represents the starting of the formation of the first, second, third and last plastic
hinges of columns, (steps 10, 11, 12 and 13), in archetype model frame of five stories height under the action of the
2modes SRSS load distribution pattern. It is clear that all four hinges of columns are formed in the first story during the
building response till life safety performance level, although, the columns are weaker than beams at roof level.

The preliminary columns and beams sections are assigned, the | |
effective stiffness of beams and columns will preliminarily be
set to 0.3 and 0.5 of their gross moment of inertia, respectively.

The nonlincar hinges will be modelled by ETABS based on ASCE! SET 9
41-13, then they are assigned at the two ends of each beam and column.

& {

Applying load combination of equation 1, then the resulting compression (Pu)ﬂ
of the outer and inner columns at cach story is used to compute the values of
(Pu/ Ag £&"), then from Table 10.5 in ASCL! SEI41-13, the values of foe at
cach story equal (Pu/ Ag £') + 0.2, which will be reassigned to columns.

MRS analyzis is applicd considering number of modes satisfying at [east 90% of mass,[ 4
this is to compute the carthquake load component to be used in loads combinations.

of the outer and inner columns at the lower of cach five storics are (Pu).

Applying the Toad combinations of cquations 2¢, then the resulting compressions P‘

The preliminary
sections of columns
need to be changed
to satisfy equ. 6

Designing the archetype model according to the design load | g
combinations of equations 1,2¢ and 3¢ using ETABS2016

Beams depth will
be decreased by a
step of 5 em

The SRSS Tateral Toad distribution will be back -caleulated from[ g
shear forces at each floor which resulted from MRS analysis

o

Applying gravity Toads combination ol equ. 7 and considering P- A efTecls in ETABS for _I
each nonlinear designed archetype, then applying the SRSS distribution by monotonically
increasing its lateral forces at roofs along the height till a target displacement (8t ) is
exceeded, then the pushover capacity curve will be established by ETABS .

Repeating step 9 twice on two other copies of the same nonlinear designed archetype| g
but using the uniform and the first mode shape patterns of lateral foree distributions.

| Checking items of section 4 to identify the acoepted responsc |imiLM

Figure 5. Flowchart of the used methodology, the number in the square represents the corresponding step number
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Table 3. Summary of selected column sections after modification

Column’s section depth h in meter and values of f:, in ksi & for ;
Archetypes height steps in

terms of num_ber of stories, 5 stories Model 10 stories Model 15 stories Model 20 stories Model
® h fo h fo h fo h fe
Bay width 6 m
16 to 20 0.75 5
11to 15 0.65 5 0.75 5
6t0 10 0.55 5 0.65 5 0.75 6
1to5 0.45 5 0.55 6 0.65 7 0.75 7

Bay width 7.5 m

16 to 20 0.95 5
11to 15 0.85 5 0.95 5
6to 10 0.75 5 0.85 5 0.95 6
1to5 0.60 5 0.75 6 0.85 7 0.95 7
Bay width 9 m
16 to 20 1.15 5
11to 15 1.00 5 1.15 5
6to 10 0.85 5 1.00 5 1.15 6
1to5 0.70 5 0.85 6 1.00 7 1.15 7

a: 5 ksi = 34.5 MPa, 6 ksi = 41.4 MPa, 7 ksi = 48.3 MPa

| 1.5 |
| |
a) First basic configuration: 6m bay width. I |
S “
e
0.3
| 1.875 |
| |
b) Second basic configuration: 7.5m bay width.
2
S =
(=]

|_O_.3_|

, 2.25 ,

c) Third basic configuration: 9m bay width.

0.85
0.17

|_O_.3__|

Figure 6. Modified beams sections for the three basic configurations

It is worth mentioning here that the target response point of this archetype model frame were reached before starting
the plastic hinges yielding in columns, i.e.; before reaching the overall frame failure mechanism. Also, no one of the
response limits presented in Section 4 was reached, that means it is need to increase the height till reaching one of them,
i.e.; in the other longer archetype models, they may be reached.

In the other archetype model frames and under the action of the three load distribution patterns, it is found that
the plastic hinges are also formed only in the archetype model frame of ten stories height during it's response till the life
safety performance level. Figures 10 and 11 represent the members sections, longitudinal reinforcement and other
responses of the archetype model frame of 6 m bay width and ten stories height. Referring to Figure 10c, and as in the
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five stories height model frame, the SCWB requirement at roof level of interior columns is not achieved, and it will be
as a reasonable exception as explained previously.

Part-b of Figure 10 represents the used columns reinforcement and the required beams reinforcements. Consequently,
Figure 11b represents the used reinforcements in beams and columns before applying the NSP analysis.

Figure 11a represents starting formation of the only plastic hinge in columns (Step 27) since whenever the building
height is increased, the required columns sections are increased and then the column/ beam capacity ratios increased to
the extent that there will be no plastic hinges formed in the columns, as it was noticed in archetype frame models taller
than ten stories height.

Table 4. Summary of selected column sections for the additional archetype models.

Column'’s section depth h in meter and values of f., in ksi, for ;

Archetypes height

gesinermsot ol ges Mo Mo Model  modd Mo
h fo h fo h fo h fo h fe h fo
Bay width 6 m

16to 18 0.70 5

16 to 17,0r 0.70 5
11to 15 0.70 5

6to 10 0.70 5

lto5 0.70 7

Bay width 7.5 m

261028 1.10 5
21t0 25 1.05 5 1.10 5
16 to 20 1.05 5 1.10 5
11to 15 1.05 5 1.10 5

6to 10 1.05 6 1.10 6

1to5 1.05 7 1.10 7

Bay width 9 m

33t035 1.45 5
31t032 1.40 5 1.45 5
26 t0 30 1.35 5 1.40 5 1.45 5
21t0 25 1.25 5 1.35 5 1.40 5 1.45 5
16to 20 1.25 5 1.35 5 1.40 5 1.45 5
11to 15 1.25 5 1.35 5 1.40 5 1.45 5
6to 10 1.25 6 1.35 6 1.40 6 1.45 6
lto5 1.25 7 1.35 7 1.40 7 1.45 7
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Figure 7. Archetype model frame of 6 m bay width and five stories height; a) Members sections, b) longitudinal
reinforcement, ¢) column / beam capacity Ratios
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Beam Name:‘ T A- SNsTo SNe- SP|, where; Column Name: ‘C h-SNsTo SNe- f¢'|, where;
T: Beam section type (Tee Beam), C: Column section type (square with reinforcement
h: Depth of section, [mm], equally distributed on four faces),
Beams of this section type are used in storeys from £k Depth of section, [mm],
storey number SNsto storey number SNg, Columns of this section type are used in stories from
SP: Span designation, where A, B and C meaning story number SN5sto story number SNg,
the first, middle and end spans, respectively. #': concrete compressive strength in [ksi].
8 18mm
C450-0T05-5 7 ¢

45cm

45cm
Symmetriclreinforcement
about centerline
Beam name at: first span (A) middle span (B) end span (C)
|
T op reinforcement Top reinforcement
Used at exterior support at interior support
reinforcement: Bottom reinforcement Bottom reinforcement
at exterior span at middle span
| T450-5-A | T450-5-B | T450-5-C
2025mm R@25mm+1022mm|
| 3020mm | [2020mm+10 16mm|
| T550-2To4-A |  T5502Tod-B |  T550-2T04-C
2022mm+1020mm| 2022mm+2018mm|
| 3020mm | | 3020mm |
| T550-1-A | T550-1-B | T550-1C
|
2022mm+1020mm| 2G22mm+2020mm|
| 3020mm | 12020mm+10 16mm|
| T550-0-A | T550-0-B | T550-0-C
4020mm 2020mm+2¢18mm|
2018mm+2016mm| 2018mm+2016mm|

Figure 8. The used reinforcements in columns and beams of archetype model frame of five stories height and the
designation used to define their names in Figure 6
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Figure 10. Archetype model frame of 6m bay width and ten stories height; a) Members sections,
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Figure 11. Archetype model frame of 6m bay width and ten stories height; a) formation of the only plastic hinge of columns
started, b) the used reinforcements in columns and beams

Figures 12, 13 and 14 represent the pushover curves for archetype model frame of five stories height under the
action of the 1% Mode, SRSS of first two modes and uniform load distribution patterns, respectively. The inter-story
inelastic or plastic drift ratio (IDRy) is the difference between the inter-story drift ratios at target displacement () and
that at the effective yield displacement (Dy), (IDR; and IDRy), both at a specified story, [24]. The maximum inter-story
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plastic drift ratio (IDRpmax) is the maximum IDR, of all stories, or in accurate words it is the difference at a specified
story where maximum difference is, in this case, IDR; and IDRy will be designated as IDRmax and IDRymax. Both, 8; and
Dy are taken from the output

Plate of each pushover curve. Each NSP analysis includes a number of loading steps to draw the pushover curve. To
identify the two steps at which &; and Dy are reached, the deformed archetype shape, like those in Figure 8, is pushed to
reach the values of Dy and &; at roof level, this is for each NSP analysis of each load distribution pattern. After identifying
the step number to reach Dy and that to reach &, from the stories drift distribution plot along the height at the identified
two steps for 8t and Dy, the value and the story at which the maximum difference, between the stories drift ratios in
these two steps, can be determined. In most cases, &: and Dy are not identified at exact steps, but, between two steps
which are previous and next steps, therefore, linear interpolation need to be applied.

From Figure 12, 8 = 146.395 mm and Dy = 60.615 mm. Figure 15 represents the deformed shape at the two pairs of
steps before and after reaching Dy and & at roof level which are Steps 2, 3, 5 and 6 respectively, this is from the NSP
analysis of the archetype model frame of five stories height under the action of the 1% Mode load distribution. At these
steps, the roof displacements are 47, 80.8, 143.2 and 147.2 mm, respectively.
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Figure 12. Pushover curve for archetype model frame of 6m bay width and five stories height under the action of the 1st-
Mode horizontal load distribution pattern
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Figure 16a, b, c and d represents the inter- story drift ratios along the height of archetype model frame of 6 m bay
width and five stories height resulted from the NSP of the 1st-Mode load pattern at steps directly before and after
reaching Dy, Steps 2 and 3, and at steps directly before and after reaching &, Steps 5 and 6, respectively, and it can be
extrapolated from this Figure that the maximum difference in drift ratios will be at Story 2, therefore; the drift ratios at
Story 2 in Steps 2, 3, 5 and 6 are determined from Parts a, b, ¢ and d of the same Figure, which Equal 0.002943, 0.005555,
0.010279 and 0.010631, respectively. Now, after getting the roof displacements and drift ratios at Story 2 corresponding
to the Steps that are immediately before and after Dy and &, (i.e.; steps 2, 3, 5 and 6), the maximum inelastic drift ratio
will be at Story 2 and will be calculated by linear interpolation between values in Steps 2 and 3 to determine the IDRymax
corresponding to Dy, and between values in Steps 5 and 6 to determine the IDRimax corresponding to & Then, the
difference between these two values of IDR will be the maximum inelastic drift ratio (IDRpmax), as shown schematically
in Figures 17 and 18 for three NSP analyses corresponding to the three adopted load distribution patterns.
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Figure 16. Inter-story drift ratios (IDR) along the height of archetype model frame of 6m bay width and five stories height
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Figure 17. Schematic sketch for the designation of items and their locations in the interpolation used to calculate the
maximum inter-story drift ratios at target and effective yield displacements
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Figure 18. Schematic sketches for the calculation of the maximum inter-story inelastic drift ratio (IDRpmax) from; a) the
NSP of the 1st mode load distribution, b) the NSP of the two- modes load distribution, ¢) the NSP of the uniform load
distribution of archetype model frame of 6m bay width and five stories height

Table 5 represents the IDRpmax computed values for the 5, 10, 15 and 20 stories heights frame models under the action
of the three load distributions, and also for the additional 17 and 18 stories heights frame models.

The values of IDRymax are plotted against height of frame models in Figure 19. It can be seen that the slope of the
two lines from the 1%- mode and the multi- mode load distributions clearly decreases at the frame models of 17 story
height and taller with more increase in plastic drift, while this is not appear clearly in the line of the uniform load
distribution. Also, the plastic drift ratios in cases of 1%t — mode and multi- mode load patterns exceed the limit of 1% of

item- 2 in Section 4. But, the maximum inter-story drift ratios at &; (IDRmax) do not exceed the limit of 2% of item- 1 in
Section 4.

Table 5. IDRpmax computed values for the 6m bay width and 5, 10, 15, 17, 18 and 20 stories heights frame models under
the action of the three load distributions

Inter- story drift ratios x 10
Height in terms

of number of 1t mode load distribution Multi-mode load distribution Uniform load distribution
stories

IDRinox at 8 IDRymaxat Dy IDRpmax  IDRymaxat 8t IDRymaxat Dy IDRpmax  IDRimax at 8t IDRymax at Dy IDRpmax

20 1.441 1.4053 0.3498 1.0555 1.29 0.3401 0.9499
18 1.385 0.346 1.039 1.352 0.351 1.001 1.275 0.347 0.928
17 1.335 0.343 0.992 1.295 0.3477 0.9473 1.2303 0.3463 0.884
15 1.284 0.351 0.933 1.246 0.355 0.891 1.162 0.3478 0.8142
10 1.155 0.386 0.769 1.122 0.388 0.734 1.044 0.398 0.646
5 1.05606 0.4 0.65606 1.018 0.3937 0.6243 0.9258 0.37547 0.55033
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Figure 19. IDRpmax computed values for the 6m bay width and 5, 10, 15, 17, 18 and 20 stories heights frame models under
the action of the three load distributions

Figures 20, 21 and 22 represent the pushover curves for archetype model frame of ten stories height under the action
of the 1% Mode, SRSS of first two modes and uniform load distribution patterns, respectively.

Also, Figures 23, 24 and 25 represent the pushover curves for archetype model frame of fifteen stories height under
the action of the 1% Mode, SRSS of first two modes and uniform load distribution patterns, respectively.

From these six Figures and their output plates, it can be noticed that the post-yield slope (a) started to become negative
in archetype frame model of 15 stories height, and it will be increased in negative in archetype frame models taller than
15 stories height. (a: called "Alpha" in output plate of pushover curve). Besides that, the target displacement (8+)
increases and, conversely, the target shear (shear capacity, V1) decreases, to be both clearly located on the descending
part of the curve where the ultimate point of displacement (8,) and the corresponding minimum shear (Vmin) will be. In
this case, it is need to check whether the target displacement still within the ultimate one or not, or in other word, it is
need to check whether the shear capacity (V) still higher than Vmin or not.

The ultimate point of displacement is located at 20% loss of the maximum shear (Vmax) on the right descending part
of the pushover capacity curve. In mathematical words, it is need to check whether V, on the the right descending part
of the pushover capacity curve, still higher than Vmin = 0.8Vmax Or not. The target shear (V) is directly taken from the
output plate of the pushover curve while Vmax is determined on the curve, or in fact will be written down the curve as a
"max and min" values, as clear in all previously mentioned Figures of pushover curves. For more clarity, and in reference
to Figure 23, Vi = 251.13 kN, Vmax = 283.23 kN, from which Vmin = 226.6 kN, therefore, the shear capacity (V) still
higher than Vmin.

Table 6 represents the Vi, Vmax and Vmin Values for the 15 and 20 stories heights frame models under the action of the
three load distributions, and also for the additional 17 and 18 stories heights frame models. The target shear capacity
(V) and the minimum shear capacity (Vmin) are plotted, against the heights of the 6m bay width archetype frame models
for the three load distributions, in Figure 26. Several notes can be concluded from Figure 26, first of all, the smallest
target shear capacity and the larger target displacement demand are under the effect of the 1%- mode load distribution
pattern, which is the worst case among the three load distributions. Also, as the building height increased, both, the
target and the minimum shear capacities decrease and the target displacement increases under the effect of the same
earthquake ground motion, this due to the increased P-delta effects.

But the rate of decrease in target shear is more than that in the minimum shear, and it continues more with height
until the target shear capacity becomes equal to and, then less than, the minimum shear capacity for the 1st- mode load
distribution and then the multi- mode load distribution, this is between stories 17 and 18, while this will be near 20
stories under the effect of the uniform load distribution. For this reason, the slope of lines in Figure 19 clearly decreases
after story 17 and with highly increase in plastic drift under the effect of the two load distributions, the 15- mode and
the multi- mode. While for the line of the uniform load, this behavior does not appear obvious on it. Anyway, and for
the previous reasons which meet item 3 in Section 4, the 17 stories height will be considered as the maximum limit for
the building frames of 6 m bay width.
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Table 6. The target, maximum and minimum shear values (Vt, Vmax and Vmin) for the 6m bay width and 15, 17, 18 and 20

stories heights frame models under the action of the three load distributions

Height in terms of
number of stories

Shear values in (kN)

1%t mode load distribution

Multi-mode load distribution

Uniform load distribution

Vit Vmax Vmin Vt Vmax Vmin Vit Vmax Vmin
20 175 253 202.4 189.24 266.5 2132 246.44 315 252
18 200.8 259 207.2 216.6 273 218.4 2747 324 259.2
17 22343 27437 2195 240.6 284 227.2 301 3375 270
15 251 283.23 226.6 265.3 294.5 235.6 333 356 284.8

Figure 26. The shear capacity and minimum shear against the height of the 6m bay width and 15, 17, 18 and 20 stories
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6.2. Models of the 7.5 m bay Width Configuration

Table 7 represents the values of IDR¢ maxand IDRymax from which IDRpmax is computed for the 5, 10, 15 and 20 stories
heights frame models under the action of the three load distributions, and also for the additional 25, 27, 28 and 30 stories
heights frame models. The maximum inter-story plastic drift ratio (IDRpmax) is also plotted in Figure 27 against heights

of the 7.5m bay width archetype frame models for the three load distributions.

Table 7. IDRpmax computed values for the 7.5 m bay width and 5, 10, 15, 20, 25, 27, 28 and 30 stories heights frame models
under the action of the three load distributions

Inter- story drift ratios x 102

1%t mode load distribution

Multi-mode load distribution

Uniform load distribution

Height in terms of
number of stories

IDRimax at 8t IDRymyat Dy IDRpmax  IDRimaxat 8t IDRymmatD,  IDRomax  IDRumaxat 8t IDRymaxat Dy,  IDRpmax
30 1.310 0.378 0.932 1.258 0.3767 0.8813 1.1702 0.37757 0.7926
28 1.267 0.3868 0.8802 121 0.3855 0.8245 114 0.37727 0.7627
27 1.226 0.3774 0.8486 1177 0.3751 0.8019 111 0.365 0.745

25 1.185 0.3756 0.8094 1.145 0.3783 0.7667 1.088 0.37337 0.7146
20 1.076 0.359 0.717 1.041 0.370 0671 0.995 0.3736 0.6214
15 0.9732 0.3651 0.6081 0.9272 0.3696 05576 0.902 0.3684 05336
10 09178 0.3517 05661 0.864 0.3489 05151 0.8368 0.3335 05033
5 0.8523 0.201 0.56133 0.8193 0.307 05123 0.755 0.2868 0.4682
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Figure 27. IDRpmax computed values for the 7.5 m bay width and 5, 10, 15, 20, 25, 27, 28 and 30 stories heights frame
models under the action of the three load distributions

It can be seen that the slope of the line from the 1- mode load distribution clearly decreases at frame model of 27
story height and taller with more increase in plastic drift, and the line from the multi- mode load distribution will clearly
decrease at frame model of 28 story height and taller with more increase in plastic drift, while this is not appear clearly
in the line of the uniform load distribution. But, the plastic drift ratios do not exceed the limit of 1% of item 2 in section
4. Also from Table 7, the maximum inter-story drift ratios at 8; (IDRmax) do not exceed the limit of 2% of item 1 in
Section 4. The behavior of the plastic drifts from the three load distributions will be interpreted basing on the shear
capacities, as follows.

Table 8 represents the values of the Vt, Vimax and Vmin for the 20 stories height frame model under the action of the
three load distributions, and also for the additional 25, 27, 28 and 30 stories heights frame models. The target shear
capacity (V) and the minimum shear capacity (Vmin) Were plotted, against the heights of the 7.5 m bay width archetype
frame models for the three load distributions, in Figure 28. Same notes in archetype models of 6m bay width can be
concluded here from Figure 27 and Table 8, first of all, the smallest target shear capacity and the larger target
displacement demand are under the effect of the 1- mode load distribution pattern, which is the worst case among the
three load distributions. Also, as the building height increased, both, the target and the minimum shear capacities
decrease and the target displacement increases under the effect of the same earthquake ground motion, this due to the
increased P-delta effects in taller (i.e.; heavier ) buildings. But the rate of decrease in target shear is more than that in
the minimum shear, and it continues more with height until the target shear capacity becomes equal to and, then less
than, the minimum shear capacity.

In the 1st- mode load distribution, the target shear capacity (V) is the first among those in the other load distributions,
reaches, and then be less than, the corresponding minimum shear capacity (Vmin) at an archetype model height slightly
lower than 27 stories. In the multi- mode load distribution, the V; reaches, and then be less than, the corresponding Vmin
at an archetype model height lower than and near 28 stories, while in the uniform load distribution, it reaches, and then
be less than, the corresponding Vmin at an archetype model height lower than and near 30 stories, which is the last model.
That is why in Figure 27, the slope of the lines of IDRpmax from the 1%- mode and multi- mode load distributions clearly
decreases at, and taller than, frame model heights of 27 and 28 stories heights, respectively, with highly increase in
plastic drifts, while for the line of the uniform load, this behavior does not appear obvious on it because it's V; started to
be less than the corresponding Vmin near the last model. Anyway, and for the previous reasons which meet item- 3 in
section 4, the 25 stories height will be considered as the maximum limit for the building frames of 7.5 m bay width.

Table 8. The target, maximum and minimum shear values (Vt, Vmax and VVmin) for the 7.5m bay width and 20, 25, 27, 28
and 30 stories heights frame models under the action of the three load distributions

Shear values in (kN)

Height in terms of

o — ) . - —
number of stories 1 mode load distribution Multi-mode load distribution Uniform load distribution

Vvt Vmax Vmin Vit Vmax Vmin Vt Vmax Vmin
30 310.1 451.6 361.28 344.4 480.3 384.24 449.8 570.9 456.72
28 357.7 473.3 378.64 396.4 503.4 402.72 502.6 599.8 479.84
27 383.8 481.13 384.9 419.7 510.6 408.48 531.12 609.6 487.68
25 4219 507.5 406.0 458.5 527.6 422.08 572.4 630.3 504.24
20 520.7 547.3 437.84 555.7 578.7 462.96 685.03 698.4 558.72
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Figure 28. The shear capacity and minimum shear against the height of the 7.5m bay width and 20, 25, 27, 28 and 30 stories
heights frame models under the action of the three load distributions.

6.3. Models of the 9 m bay Width Configuration

Table 9 represents the values of IDR; max and IDRymax from which IDRpmax is computed for the 5, 10, 15 and 20 stories
heights frame models under the action of the three load distributions, and also for the additional 25, 30, 32 and 35 stories
heights frame models. The maximum inter-story plastic drift ratio (IDRpmax) is also ploted in Figure 29 against heights
of the 9m bay width archetype frame models for the three load distributions.

It can be seen that the plastic drift ratios from all load distributions increase with height as in the previous 6 and 7.5 m
bay width configurations, and as mentioned previously, this is due the strength degradation owing to the P-delta effects.
But, all lines do not show clear change or reduction in slope, and then the plastic drift ratios continue increasing with
the same rate in tall frame models till the last one of 35 stories height. The plastic drift ratios in Table 9 do not exceed
the limit of 1% of item- 2 in Section 4. Also, the maximum inter-story drift ratios at 6 (IDRwmax) do not exceed the limit

of 2% of item- 1 in Section 4.

Table 9. IDRpmax computed values for the 9m bay width and 5, 10, 15, 20, 25, 30, 32 and 35 stories heights frame models

under the action of the three load distributions

Inter- story drift ratios x 10

Height in terms

of number of 1t mode load distribution Multi-mode load distribution Uniform load distribution
stories
IDRmax at 8t IDRymaxat Dy IDRpmax  IDRunaxat 8t IDRymaxatDy  IDRpmax  IDRumaxat 8t IDRymacat Dy IDRpmax
35 1.169 0.4005 0.7685 1.12 0.4016 0.7184 1.044 0.4051 0.6389
32 1.104 0.3925 0.7115 1.070 0.3979 0.6721 0.9905 0.394 0.5965
30 1.077 0.395 0.682 1.034 0.3912 0.6428 0.9686 0.3996 0.569

35

3%}
[}

o=}
(a5}

o

o

Height in terms of number of Stories
(o)
[

5 &L
0.4 0.45

32 Stories

: : : : : Unifarm
8- ......... [EEREERRRE .......... ® Multi-Mode
: : : : : ¢ 1st Mode
: : : *  At32 Stories
1 1 i 1 T T
0.5 0.55 06 0.65 0.7 0.75 0.8
Maximum inter-story  plastic drift ratio (IORpmaxa)

Figure 29. IDRpmax computed values for the 9m bay width and 5, 10, 15, 20, 25, 30, 32 and 35 stories heights frame models

under the action of the three load distributions.
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Table 10 represents the values of the Vi, Vimax and Vmin for the additional frame models of 25, 30, 32 and 35 stories
heights resulted from the action of the three load distributions. The target shear capacity (V) and the minimum shear
capacity (Vmin) were plotted in Figure 30, against the heights of the 9 m bay width archetype frame models for the three
load distributions. It is clear that the smallest target shear capacity and the larger target displacement demand are under
the effect of the 1%'- mode load distribution pattern, which is the worst case among the three load distributions, as in the
previous configurations. Also, as the building height increased, the shear capacity decreases and the target displacement
increases under the effect of the same earthquake ground motion, this due to the increased P-delta effects in taller (i.e.;
heavier ) buildings. But the rate of decrease in target shear is more than that in the minimum shear, and it continues
more with height until the target shear capacity becomes equal to and, then less than, the minimum shear capacity.

The target shear capacity (Vi) from the 1st- mode load distribution is the only one among those in the other load
distributions, reaches and, then be less than, the corresponding minimum shear capacity (Vmin) at an archetype model
height just lower than 35 stories. That is why the lines of plastic drift ratios in Figure 29 do not show clear change or
reduction in slope, and then the plastic drift ratios continue increasing with the same rate in tall frame models till the
last one of 35 stories height.

Anyway, and for the previous reasons which meet item- 3 in Section 4, the 32 stories height will be considered as
the maximum limit for the building frames of 9 m bay width.

Also, it can be concluded from the previous sections that the 1st- mode load distribution pattern result in the lowest
target shear capacity and the largest target displacement demand, therefore, it mostly was the control load pattern, and
as stated in FEMA 440, "the 1st-mode load distribution is recommended ".

Table 10. The target, maximum and minimum shear values (Vt, Vmax and Vmin) for the 9m bay width and 25, 30, 32 and
35 stories heights frame models under the action of the three load distributions

Shear values in (kN)

Height in terms of

. 1t mode load distribution Multi-mode load distribution Uniform load distribution
number of stories

Vit Vmax  Vmin Vit Vmax Vmin Vit Vmax  Vmin
35 589.5 749.4 599.5 652.9 799.6 639.7 834.1 955.6 764.5
32 685.6 791.7 633.4 746.8 844.7 675.8 940.4 10135 810.8
30 739.1 823.6 658.9 801.1 875.6 700.5 999.4 1051.2 841
25 891 914 731.2 956.4 972.1 1777 1173 1178.4 942.7
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Figure 30. The shear capacity and minimum shear against the height of 25, 30, 32 and 35 stories heights of the 9m bay width
frame models under the action of the three load distributions.

7. General Discussion

In Figure 31, the maximum inter-story plastic drift ratios (IDRpmax) for all archetype models of the three groups of
the 6m, 7.5 and 9 m bay widths, have been plotted against their heights in terms of number of stories. A comparison
between these three groups reveals that in general the plastic drifts increase with decreasing the bay width for any load
pattern. Accurately, for a given building height and number of bays, the plastic drifts increase with decreasing the bay
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width because the stiffness is decreased and they will be more slender, and consequently, the P- delta effects increased.
And, that is why the only 6m bay width archetype model was exceeded the plastic drift limit of 1%, specifically, the 18
stories height model and taller under the action of the 1%- mode and multi- mode load patterns, as clear in Figure 31.
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Figure 31. IDRpmax computed values for all archetype frame models of the 6, 7.5 and 9 m bay widths under the action of
the three load distributions

From discussions of previous sections, it can be summarized that the maximum building heights are 17, 25 and 32
stories for the 6m, 7.5 and 9 m bay widths, respectively. Thus, the maximum building height in terms of maximum
number of stories (NSmax) can be plotted against the bay width (B), as shown in Figure 32 for a story height of 4m. It
can be noticed that as the bay width increased, the allowed maximum height increased, this is due to the same reasons
explained in the previous paragraph. Then, the relation between B and NSmax has defined by the two shown equations.
Or, they can be transformed into one second order equation, which is;

NS ax = (_?2) BZ + (23—5) B-25, for a story height =4 m (8)

Where, NSmax is rounded to the nearest lowest integer.

Or, for any other bay width between 6 and 9 m, NSmax can be determined by linear interpolation between the
surrounding 6m and 7.5m or 7.5m and 9m, whichever the nearest, and then, NSmax is rounded to the nearest lowest
integer.

It can be noticed that the lines of IDRs in Figure 31 having their first change in their slope at heights when the shear
capacity started to degrade or started to be in the second descending part of the pushover curve. And this can also be
concluded from Tables (7.3, 5, 7), where both the IDRymax and IDRwmax increase with height and then IDRymax Start to
stabilize while the corresponding IDRwmax Values are continue increasing when the target point (Vt) enters the descending
part of pushover curve (the greyed values in Tables) which cause the first change in the slope, i.e, start to stabilize at 10,
15 and 20 stories for the 6, 7.5 and 9 m bay widths which are the same heights of the first change in the slope of
corresponding lines.
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Figure 32. Maximum building heights in terms of number of stories against the bay width, for a story height of 4m
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8. Conclusions

e The 1%t mode load distribution pattern result in the lowest target shear capacity and the largest target displacement
demand, therefore, it mostly was the control load pattern, and as stated in FEMA 440, "the 1%'mode load distribution
is recommended "

e As the building height increased, both, the target and the minimum shear capacities decrease and the target
displacement increases under the effect of the same earthquake ground motion, this due to the increased P-delta
effects in taller (i.e.; heavier ) buildings.

e For a given building height and number of bays, the plastic drifts increase with decreasing the bay width because
the overall building stiffness is decreased and it will be more slender, and consequently, the P- delta effects
increased.

e The allowed maximum height of a framed building increased as the bay width increased, because the overall
building stiffness will be increased. And it is concluded that the maximum allowed heights of framed buildings
are 17 stories, 25 stories and 32 stories for 6, 7.5 and 9 m bay widths, respectively. For any other bay width between
6m and 9m, the maximum allowed height can be determined by linear interpolation between the surrounding 6
and 7.5 or 7.5 and 9 m, whichever the nearest, and then, it is rounded to the nearest lowest integer. All that based
on design and reinforcement detailing requirements of the ACI 318- 14, and basing on columns sections sized so
that their axial load intensity not to exceed the corresponding intensity at balance point on their moment- load
interaction diagram.
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