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Abstract 

In Europe, most of the social housing heritage, built before the 1980s, suffers of architectural and functional 

obsolescence and seismic vulnerability, raising questions about the future of the cities and their inhabitants. In an era of 

environmental emergency and lack of resources demolition and reconstruction is not a sustainable alternative. A multi -

purpose campaign of architectural, functional and structural retrofit is fundamental but the complex information and 

requirements to handle require integrated and innovative solutions. The bio-mimicry design approach led to the 

definition of the “building exoskeleton”: an external steel frame, two or three-dimensional, encapsulating the existing 

building and provided of shape memory alloys-based devices for passive seismic dissipation. The simplicity of the 

structure gives high flexibility in the definition of the new architectural features and functional performances, adapting to 

the changing necessities on both space and time scales. The energy performances result also radically improved. The 

efficiency of this scheme to improve the seismic response of the constructions is verified for a real case study – a 

concrete frame with brick infill – through static and dynamic nonlinear analyses with the software SAP2000. Finally, the 

economic and technical feasibility of the proposal is discussed together with the implications of the project and the 

possible developments. 
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1. Introduction 

A consistent percentage of masonry and reinforced concrete buildings, old or recently built, cannot provide 

appropriate levels of seismic safety, because of the poor quality of the construction even before that degradation and 

aging of materials run their course [1]. An aggravating factor is that earthquakes of significant intensity occur today in 

areas not traditionally considered seismically risky, revealing the limits of the approaches used to classify the territory 

and consequently enlightening the necessity to increase the safety levels for conventional buildings everywhere [2]. 

Social and economic losses caused by earthquakes are not easily quantifiable but Dolce [3] estimated that in Italy 

the expenses associated to seismic events are around € 2-3 billion per year, still without considering the incalculable 

damages related to the destruction of the historical and cultural heritage. As said, some key causes are the obsolescence 

of buildings and their high seismic vulnerability, in conjunction with the late classification of the territory [4], but also 

the deficient quality control and the insufficient analysis of the degradation processes along the entire life cycle of the 

buildings resulted in less durability [5] and lack of a prevention program. 

Vulnerable buildings are a manifestation of the vulnerability of the urban system, since the response of the city can 

be interpreted as the sum of the single responses of its composing elements but also because they are the expression of 

the attitude towards disasters and unexpected events [6-8]. 
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The seismic vulnerability of buildings can be reduced designing consistently with regulations and promoting a 

campaign of seismic rehabilitation for existing buildings [9]. 

Fukuyama and Sugano [10] indicated three possible strategies for seismic rehabilitation: recovering the original 

performances, upgrading them or reducing the seismic response of the building. The selection of the most suitable 

strategy depends on several factors, such as the structural typology and technology, the historical and functional 

importance of the building and the socio-economic issues connected with serious damages during and after an 

earthquake [11]. Therefore selecting the appropriate retrofit is a complex task with multiple possible choices in relation 

to the factors considered and their relative importance [12]. It is rare to find the “best” intervention on a general level 

[13], but typically the ratio between the costs and the performances achieved is determinant for the definition of the 

retrofit program. This is one reason for the designers to propend for integrated approaches, a single intervention that 

solves a complex set of problems (architectural, functional, structural): the seismic retrofitting should be realized 

together with renovations and refurbishments and this synergy should improve the overall characteristics of the 

building at the same time reducing the ancillary construction expenses. In this way, the high costs associated with 

seismic retrofitting could be substantially reduced. 

Already Caffrey [14] defined “Intelligent” a building able to provide a “productive and cost effective environment 

through optimization of its four basic elements: Structures, Systems, Services, Management, and the interrelation 

between them”. In the same way, an “Intelligent retrofit” for existing buildings should offer an intervention that 

integrates all of the different performance requirements – such as structural safety, energy efficiency and architectural 

quality – optimizing the construction process and the expenditures.  

This paper presents a specific integrate approach for retrofit of social housing buildings based on the definition of 

an “adaptive exoskeleton”, connected to the existing structure with shape memory alloys-based dampers (SMADs). 

In the first paragraph, the problem definition and the research scope are shown, together with the design 

requirements and considerations. Subsequently, the design approach and the construction process will be discussed, 

considering the possibility of exploiting industrialized construction methods. The seismic retrofit strategy will be 

shown in detail, together with the result of the numerical study for an existing case study and the economic feasibility 

of the proposal. Finally, the scheme will be validated also in relationship to the need of new energy performances. 

2. Problem Definition 

The most consistent portion of social housing heritage was built before the 1980s, so in advance with respect to the 

introduction of the new regulations, with their specific requirements for the achievement of minimal levels of energy 

performances and seismic safety. Moreover, buildings have specific life cycle expectancy, generally around 50-60 

years [15], after which other weaknesses, such as the obsolescence of the technical apparatuses and of the architectural 

characteristics, must be considered for the quality of the cities and the satisfaction of the users. 

Those buildings, obsolete or approaching disuse and demolition, can be an unexpected source for new projects [16], 

either if demolished to make space for new constructions or if rehabilitated and reused [17]. 

Demolition and rebuilding is a feasible option in order to build seismically safe houses with all the modern 

comforts, services and performances, improving the life quality and the internal and external environment but despite 

that, the process has high prices in terms both of costs and of natural impacts. A research of the Preservation Green 

Lab [18] declared that demolition today is not a sustainable solution:  it increases the ecological emergency producing 

residuals and wastes difficult to remove and to reuse while the subsequent reconstruction of a new “green” building 

requires 80 years to compensate the use of natural resources. Moreover, considering the amount of new constructions 

per year, usually less than 2% of the existing, sadly, the good performances of the new buildings are currently not 

influential in the reduction of greenhouse gas emissions. A sustainable use of the resources would be instead to 

requalify the existing building heritage obtaining an overall increase of the performance of 30%, with the provision 

also of new services and spaces [19].  

The cost of the conversion is usually lower due to the presence of pre-existing elements and materials and 

rehabilitation takes around half of the construction time necessary for demolition and reconstruction of the same floor 

area, reducing for instance the financing, the effects of inflation and the risk of collateral events with the related 

expenses [20]. Moreover, a problem not to underestimate is the necessity of temporary relocation of all the inhabitants 

of the buildings. 

The director of Habitech in the 2012 declared that it is possible to capitalize the money invested in retrofit in 

relatively short time considering for instance the consequent increase in value of the construction, the reduced energy 

and water consumption and the new environmental quality achieved.  

In this way, the marketability of a building is improved and, in presence of seismic retrofit, the security for lives 

and properties, the losses reduction – in terms of building heritage but also in equipment – and the guarantee of 

business continuity, attract potential buyers: the correlated advantages are more significant than the retrofit expenses 

[21]. 
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Tierney [22] showed how seismic rehabilitation can assume a key role in the risk mitigation and prevention of 

disasters considering that earthquakes are more and more random in place, time and intensity [23]. Stevens and 

Wheeler [24] underlined that improving the quality of the building heritage guarantees the sustainability of the 

construction industries and of the cities. 

To maximize the achievements of the retrofit and its sustainability architectural features, energy performances, 

emissions reduction and structural behavior must be part of the same integrated intervention with consequent high 

complexity and costs. 

Nuti and Vanzi [25] declared that in order to make retrofit a good investment, the ratio between costs and reduction 

of the risk produced should be calculated on a large scale for a long term, but despite that, a systematic campaign, on a 

national or regional level, has not been undertaken yet, enduring the condition of the vulnerability of the territory.  

The broad scale of the intervention faces also the necessity to break the visual monotony widely imposed to the 

social housing districts, leaving space to individuality and variety for more vibrant and dynamic realities. The question 

so is still related to the design of “large projects without imposing uniformity and rigidity where variety and 

adaptability over time are desirable” and to how big projects can “do justice to the small scale” [26]. 

In this sense, a favorable aspect is that social housing is usually free of any historical and cultural constraints typical 

of the building heritage, allowing a broader operative margin with multiple options to consider and to apply. 

A deep retrofit is of primary importance to increase the safety and the life quality of the cities: residential districts 

can transform from a critical part of the city to a strategic resource to revitalize it [27]. 

3. The Retrofit Proposal 

3.1. The Design Approach 

The complexity of a retrofit intervention on social housing heritage was handled through a biomimicry process and 

a comparison with the natural world [28] that finally led to the definition of a “building exoskeleton”. 

In Nature the exoskeleton of an insect acts as the primary interface with the outside world, defining for instance the 

chromatic characteristics and the thermal regulation but also acting as the main structural defence for the internal 

apparatuses, responding and sometimes adapting to the external inputs.   

"The exoskeleton acts as a detector of displacement, strain or load via special organs called sensilla, which are 

partly integrated into local sections of exoskeleton. These organs amplify the information for the main detector organ, 

which is connected to the nerve stem. The local information obtained is used to modify the exoskeleton by changing 

thickness, stiffness and fibre orientation depending on the situation" [29]. 

Additionally the exoskeleton adjusts in time in order to respond to the growth and to the development of the insect, 

such as a construction today should be ideally able to modify and adapt to the changing needs of the users and the 

environmental requirements.  

To find the best physical representation of this design concept it is necessary to determinate the relationship 

between construction techniques and flexibility. 

Researches underlined how many of the most successful flexible housing schemes rely on simple and efficient 

construction techniques, which facilitate future intervention, also locating the elements needing of more maintenance 

and control in easily accessible areas [30]. Together with reducing the constructional complexity, the structure should 

indeed increase the efficiency of the whole building [31], during the construction phase, during the use and finally 

during the renovation processes or demolition. 

Dry-technologies, based on lightness and flexibility principles, give the possibility to obtain reversible 

interventions allowing the eventual removal critical parts, favoring durability, adaptability and sustainability. These 

systems provide also reduced environmental impacts during construction and at the end of the useful life of the 

building organism, thanks to the high percentage of recovery of the individual components. 

The structure must seek a balance between efficiency and economy reducing the required amount of material [32] 

exploiting at best the mechanical and physical proprieties.  

Consequently, the “adaptive exoskeleton” (Figure 1) is materialized as an external steel frame encapsulating the 

existing building to preserve its materials and elements while at the same time granting a completely new set of 

performances.  

The exoskeleton can be, in each side of the construction, two or three-dimensional in relation to the site conditions 

and to the urban planning restrictions: when it reaches an appropriate thickness, it can house new spaces and functions 

or new accessibility schemes being able to modify completely the overall space distribution.  

The new functions and services are represented by modules, which can be inserted and mounted within the frame 

with mechanical processes. Every module can be realized using different technologies, components and material, and 
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the solution chosen at the design stage by the user can be modified and extended in time with a relevant reduction of 

maintenance costs due to the easiness of disassembly, repair and replacement. 

 

Figure 1. A scheme of the “building exoskeleton” 

The reversibility and simplicity of the scheme, based on dry-construction technologies, allows multiple and 

progressive reconfiguration and confer a longer life span to the building in relation to changing needs of the users thus 

enhancing the economic value of the apartments [33]. The temporariness that characterizes the design is the most 

important assurance for the building to be durable in a dynamic and mutable housing market. 

The quality of the structure is also expressed aesthetically [34] thanks to the vibrancy and the variety of the 

possible solutions, radically in opposition to monotone and impersonal traditional mass housing. 

3.2. The Construction Process 

The design concept directly suggests the possibility to exploit industrial construction methods, able to provide 

efficient and economic production allowing at the same time variety of form and solutions, since the “variety might be 

the logical outcome of efficient production” [35]. 

Industrial construction experienced a consistent growth from after the Second World War, thanks also to the new 

materials and technology available on the market. However, prefabrication in the housing field is still commonly 

unpopular due to the poor aesthetics, comfort and quality, sacrificed for fast and cheap production processes [36]. 

On the other hand, the standardized components, the quality assurance provided and the fast construction times 

granted by industrialized processes are still synonymous of achieving expected quality. 

The construction industry has the potential to be the cost-effective solution to cope with the demand of housing but 

it must face the responsibility to provide a vibrant environment to live in, while economic reasons are no longer an 

acceptable excuse to justify low aesthetical quality and performances. 

Moreover, if until recently the sector contributed to environmental problems by building energy-efficient buildings 

and using sustainable materials, soon the society will ask to justify the use of materials and energy in every phase of 

the lifespan of a building, including re-use of materials and re-manufacturing of components [37]. This approach 

implies the application of the cradle-to-cradle principle [38], so the design approach consider a careful use of the 

materials but also the way in which they are connected into components, with a relevant impact on the overall energy-

consumption of a building [39]. 

The “adaptive exoskeleton” promotes also the “supply-driven demand” [40], so the suppliers will offer to the 

client/user a catalogue of possible options and product that fit in the system. In the same way, the user can decide to 

modify the dwelling during its operational life to create new or different functions; this can be done with partially 

disassembling/re-assembling caused modest disturbance to the user and to the neighbours.  

Removed modules can be re-used in the same or in another building, or they can be disassembled into singular 

usable components. Since the process is dramatically dependent on joints, it is fundamental a deep design of the 

details [41]. 
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3.3. The Seismic Retrofit 

The seismic retrofit will consider the use of emerging technologies, since it results to be far less intrusive to 

building occupants and offered savings in construction cost. In addition, since no two buildings are the same, the 

challenge to structural select the alternative solutions that are technically, economically and socially acceptable [42].  

A successful project requires the exploitation of the full potential of the technologies, of the materials and of the 

design; at the same time making new buildings energy and resource efficient is a core task for the current society [43].  

In this respect, Peter Rice planned to use materials “to express more clearly their engineering nature, and thereby 

find a new and interesting aesthetic”. 

In this research, shape memory alloys are experimented to provide passive dissipation to seismic loads, thanks to 

their super elasticity, a property allowing stress-induced transformations between two crystallographic phases, 

completely reversible after the removal of the load for many loading cycles [44-45]. 

These materials has been studied for the first time in the field by for the bell tower of St. Giorgio in Trignano, Italy, 

[46] and in the same year for the tympanum of St. Francesco church in Assisi, Italy [47-48]. 

The SMADs used in this research are verified with a numerical study while laboratory tests are still needed. NiTi 

wires, wrapped around studs in order to work always in tension, provide tensile and compressive responses. The 

device was modelled with an inner and an outer tube to which studs are connected [49]. The outer studs are able to 

displace in both the longitudinal directions, in this way allowing the wires to work always in pure tension. This device 

(Figure 2), other than allowing the passive dissipation of the seismic energy, is projected for stress-induced 

transformation, thus providing re-centring capabilities at the end of an earthquake [50].   

 

Figure 2. Dolce and Marnetto’s device (2000) 

The shape memory alloys dampers (SMADs) are strategically located between the new and the existing structure 

in order to maximize their efficiency. 

The exoskeleton is built in order to be structurally independent from the existing building in relation to vertical 

loads, not adding any additional load and at the same time allowing to build completely from the outside, with low 

impact on the life of the inhabitants and no necessity for temporary relocation. 

On the other hand, for horizontal loads, as in case of earthquakes, the exoskeleton activates and start to collaborate 

to dissipate the seismic energy thus preventing the collapse of the building (Figure 3 and 4).  

 

Figure 3. Localization of SMADs and comparison with traditional strategies 
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Figure 4. Schematic detail of SMAD connecting the existing building with the exoskeleton. 

The frame structure provides good structural behaviour while not giving any restriction in terms of architectural 

characteristics: a various set of options and possibilities is feasible in relation to the environmental and cultural context 

of the construction site, finally giving a cost effective alternative to the facial monotony of social housing districts. The 

new three-dimensional envelope is also the place where the energy performance of the building can be improved 

through new solar protections, ventilation systems and climate control devices. 

So repeatability and simple base elements, modifiable on a territorial level and on a temporal scale, where the 

apparent simplicity of the design is the result of a complex analysis of requirements and objective, with adaptive 

behaviour as the final goal. 

3.3.1. A Case Study: Modeling and Results 

The efficiency of the “building exoskeleton” was verified for masonry buildings and concrete framed buildings 

leading to promising results.  

In this paper, a real case study is presented: a concrete framed building with brick infill of “Trieste” type located in 

Brescia (Italy), in the social housing neighborhood of San Bartolomeo.  

Infill walls and panels are commonly encountered in existing buildings around the world and in regions of low to 

moderate seismicity.  

When the infill is built in contact with the frame, it strongly influences the seismic response of the building: with 

the increase of horizontal loads, the panels progressively detach from the frame with horizontal and vertical relative 

displacements starting to act as equivalent diagonal struts. In this phase is reasonable to model the structure as a frame 

with diagonal braces with pure compressive behaviour. The prevalent stresses in the infill are normal compressive 

stresses in correspondence of the corners of the panels, still in contact with the frame, while shear stresses are less 

influential also because of the X-shaped fractures, typical of shear failure for alternate cyclic seismic loadings. 

Masonry infill of this type can enhance the lateral stiffness and the resistance to lateral loads, with a noticeable 

increase in energy dissipation through the formation of X-shaped fractures.  

The loads distribution can also be substantially different from case of a bare frame, generating unpredictable 
solicitations and, subsequently, results.  

The presence of infill is not always favourable so not considering its presence can lead to destructive effects such 

as: 

 The formation of soft story mechanisms caused by the irregular vertical pattern of the panels; 

 The detachment and consequent fall of the panels; 

 The localized brittle failure of structural elements due to irregular openings in the panels; 

 The failure of structures with regular plan distribution but with irregular infilling arrangement; 

 The formation of plastic hinges in the columns for the high tensile stress caused by the panels. 

The literature presents numerous studies about this topic but in this research, Al-Chaar’s considerations [51] are 

used to define the geometric characteristics of the struts, their behaviour and their location within the frame. 
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Figure 5. Geometrical parameters of the equivalent diagonal strut 

 
The relative flexural stiffness frame-panel with    concrete Young’s module,    masonry Young’s module,      

moment of inertia of the column and   thickness of the panel [52]: 

𝜆1𝐻 = 𝐻√
   sin(2𝜃)

4      ℎ

 

  (1) 

Width of the equivalent strut is function of the previous value with the relation [53]: 

𝑎 = 0.175𝐷(𝜆1𝐻)
−0.4  (2) 

If the panel presents openings, a reduction factor should be applied: 

𝑅1 = 0.6 (
𝐴 𝑝𝑒𝑛𝑖𝑛𝑔𝑠

𝐴𝑝𝑎𝑛𝑒 
)

2

− 1.6 (
𝐴 𝑝𝑒𝑛𝑖𝑛𝑔𝑠

𝐴𝑝𝑎𝑛𝑒 
) + 1  (3) 

Anyway if the area of the opening is not minor of 60% of the area of the panel the effect of the infill can be 

ignored, and  𝑅1 = 0. 

For the purpose of a finite element model it is necessary also to define an equivalent diagonal that is connected to 

the beam at a distance       𝑛  from the frame joint (Figure 6). 

 
Figure 6. Equivalent diagonal strut for full and partial infill 

      𝑛 =
𝑎

𝑐𝑜𝑠𝜃     𝑛
  (4) 

 𝑎𝑛𝜃     𝑛 =
ℎ −

𝑎
𝑐𝑜𝑠𝜃     𝑛

 
 

 (5) 

The strength of the strut is determined calculating the required loads to reach the crushing strength 𝑅    and the 

shear strength 𝑅𝑠  of the panel and evaluating the component of those loads in the direction of the equivalent diagonal. 

The minimum value thus obtained represents the load connected to the compressive strength of the equivalent strut, 

𝑅𝑠     , and it will be used to define the properties of the plastic hinge in the final element software. 

𝑅𝑠    = 𝑚𝑖𝑛 {
𝑅  , 𝑅𝑠 
𝑐𝑜𝑠𝜃𝑠    

}  (6) 

 𝑎𝑛𝜃𝑠    =
ℎ − 2      𝑛

 
  (7) 
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𝑅  = 𝑎 𝑒𝑑 𝑓′   (8) 

𝑅𝑠 = 𝐴𝑛𝑓′𝑣𝑅1𝑅2  (9) 

𝑓′  masonry compressive strength  

𝑓′𝑣 masonry shear strength 

𝐴𝑛 net area of the transversal section of the panel. 

 
To determine the position of the plastic hinges it is necessary to define another relation: 

 𝑏𝑒𝑎 =
𝑎

𝑠𝑖𝑛𝜃𝑏𝑒𝑎 
  (10) 

 𝑎𝑛𝜃     𝑛 =
ℎ

 −
𝑎

𝑠𝑖𝑛𝜃𝑏𝑒𝑎 

  (11) 

Rigid offset are added to avoid the excessive flexibility of the numerical model. 

 
Figure 7. Location of plastic hinges and rigid end offsets 

 

For the relation force-displacement of the equivalent strut Panagiotakos and Fardis’s model [54] is used with a 

multilinear curve: in compression the curve is composed by four segments, which respectively correspond to the pre-

cracking shear behaviour of the panels, to the post-cracking hardening branch after the detachment from the edges, to 

the instable state after the maximum strength, and to the ultimate state of the panel after the complete damage with a 

constant residual strength.  

 
Figure 8. Panagiotakos and Fardis’s force-displacement relation 

 
Where the initial shear stiffness of the un-cracked panel is equal to: 

 

𝐾1 =
𝐺   

ℎ
  (12) 

The cracking force is: 

𝐹𝑦 = 𝜏      (13) 

The displacement relative to the cracking load is: 

𝑆𝑦 =
𝐹𝑦

𝐾1
  (14) 

The axial stiffness of the equivalent strut is: 
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𝐾2 =
   𝑎

𝑑
  (15) 

The ultimate force is: 

𝐹 = 1.3𝐹𝑦  (16) 

The displacement relative to ultimate force is: 

𝑆 = 𝑆𝑦 +
𝐹 − 𝐹𝑦

𝐾2
  (17) 

The post-ultimate falling branch stiffness is: 

0.005𝐾1 ≤ 𝐾3 ≤ 0.1𝐾1  (18) 

The residual post cracking force is: 

𝐹 = 0.1𝐹𝑦  (19) 

The ultimate displacement relative to the residual force is: 

𝑆 = 𝑆 +
𝐹 − 𝐹 
𝐾3

  (20) 

ℎ,  ,  , 𝑑   height, length, thickness and diagonal of the infill panel 

𝑎  width of the strut 

𝜏    cracking stress as measured in a diagonal compression test of the masonry 

In the finite element software SAP2000 the infill panel are described as “frames” with a pure compressive 

behaviour and an axial plastic hinge located in the middle section of the diagonal. The force-displacement relation 

differs from the Panagiotakos and Fardis’s one just for the instable falling branch, described as a constant branch in 

order to improve the numerical stability of the program; this choice does not influence the result of pushover analyses. 

 
Figure 9. Force-displacement relation modelled in SAP2000 

𝑆 = 20 𝑆   (21) 

The software SAP2000 assumes for the “hinges properties” a rigid plastic behaviour with the definition by the user 

of the only the plastic range; the elastic response is indeed evaluated automatically in relation to the mechanical 

properties of the material and the geometrical characteristics of the elements. To assign the initial stiffness to the strut 

is then necessary to increment the section of the strut of the parameter 𝐾1 𝐾2. 

The building taken as case study is part of a social housing complex built in 1957 in Brescia (Italy) in the district of 

San Bartolomeo, in the northern part of the city. 

The area, which at the time of construction was located in the urban periphery, is now part of the North District of 

Brescia and it is included in an area of low seismic hazard, with the possibility of moderate quakes. 

The building is almost symmetrical in both directions, with plan dimensions of 10 meters per 40 meters and four 

floors, 3.1 meters high over a ground floor of 1 meter for a total elevation of 13.4 meters. The concrete frame counts 

irregular spans and a number of different sections for the columns (Figure 10).  

In Table 1, the main characteristics of the building are listed, namely geometrical features of the structural elements 

and mechanical proprieties of the structural materials. 
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Figure 10. A building type A in the district of San Bartolomeo 

© M. Bertoni, M. Bettini, R. Prandelli corso e Laboratorio di Architettura e Composizione 2 (Unibs) 
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Materials properties  

Masonry bricks “Trieste” type 

Mass per unit value, 1.2 𝐾  𝑚3 

Modulus of elasticity, E  5225000 𝐾  𝑚2 

Shear modulus, G 2090000 𝐾  𝑚2 

Poisson’s ratio, 0.2 

Specified compressive strenght, f’m 4000 𝐾  𝑚2 

Concrete 

Mass per unit value, 2.55 𝐾  𝑚3 

Modulus of elasticity, E  31476000 𝐾  𝑚2 

Shear modulus, G 13115000 𝐾  𝑚2 

Poisson’s ratio, 0.2 

Specified compressive strenght, f’c 25000 𝐾  𝑚2 

Rebar Aq50 

Mass per unit value, 7.85 𝐾  𝑚3 

Modulus of elasticity, E  199900000 𝐾  𝑚2 

Shear modulus, G 76903069 𝐾  𝑚2 

Poisson’s ratio, 0.3 

Minimum yield stress, Fy 270000 𝐾  𝑚2 

Table 1. Geometrical and mechanical characteristics of structural elements 
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Manimum tensile stress, Fu 500000 𝐾  𝑚2 

Trusses  

Truss type A Truss type B 

 
Stirrups Ø5/25 cm ( Ø5/15 at the joint between truss and column). 

 
Stirrups Ø5/50-60 cm. 

Columns 
Column type 1 Section (cm) Reinforcement 

Floor 1 27x25 2Ø12+2Ø14 

Floor 2 25x25 3Ø12+1Ø14 

Floor 3 25x25 2Ø12+2Ø10 

Floor 4 20x20 4Ø10 

Stirrups   Ø5/15 cm 

Column type 2 Section (cm) Reinforcement 

Floor 1 25x25 4Ø10 

Floor 2 25x25 4Ø10 

Floor 3 

Floor 4 

25x25 

20x20 

2Ø10+2Ø18 

4Ø8 

Stirrups   Ø5/15 cm 

Column type 2’ Section (cm) Reinforcement 

Floor 1 25x25 2Ø12+2Ø10 

Floor 2 25x25 4Ø10 

Floor 3 25x25 4Ø10 

Floor 4 20x20 2Ø10+2Ø8 

Stirrups   Ø5/15 cm 

Column type 2’’ Section (cm) Reinforcement 

Floor 1 25x25 4Ø10 

Floor 2 25x25 4Ø10 

Floor 3 25x25 2Ø10+2Ø8 

Floor 4 20x20 4Ø8 

Stirrups   Ø5/15 cm 

Column type 3 Section (cm) Reinforcement 

Floor 1 18x18 2Ø12+2Ø10 

Floor 2 18x18 4Ø10 

Floor 3 18x18 4Ø10 

Floor 4 18x18 4Ø10 

Stirrups   Ø5/20 cm 

Panels 

 H (cm) h (cm) l (cm) t (cm)  H (cm) h (cm) l (cm) t (cm) 

Panel 1     Panel 10     

Floor 1 310 293 75 27 Floor 1 310 293 435 27 

Floor 2 310 293 82 27 Floor 2 310 293 438,5 27 

Floor 3 310 293 82 27 Floor 3 310 293 438,5 27 

Floor 4 310 293 82 27 Floor 4 310 293 438,5 27 

Panel 2     Panel 11     

Floor 1 310 293 271,5 27 Floor 1 310 293 583 27 

Floor 2 310 293 271,5 27 Floor 2 310 293 583 27 

Floor 3 310 293 271,5 27 Floor 3 310 293 583 27 

Floor 4 310 293 271,5 27 Floor 4 310 293 583 27 

Panel 3     Panel 12     

Floor 1 310 293 277 27 Floor 1 310 293 301,5 27 

Floor 2 310 293 277 27 Floor 2 310 293 301,5 27 

Floor 3 310 293 277 27 Floor 3 310 293 301,5 27 

Floor 4 310 293 277 27 Floor 4 310 293 301,5 27 

Panel 4     Panel 13     

Floor 1 310 293 202 27 Floor 1 310 293 198,5 27 

Floor 2 310 293 202 27 Floor 2 310 293 198,5 27 

Floor 3 310 293 202 27 Floor 3 310 293 198,5 27 

Floor 4 310 293 202 27 Floor 4 310 293 198,5 27 

Panel 5     Panel 14     

Floor 1 310 293 305 27 Floor 1 310 293 286 27 

Floor 2 310 293 305 27 Floor 2 310 293 286 27 

Floor 3 310 293 305 27 Floor 3 310 293 286 27 

Floor 4 310 293 305 27 Floor 4 310 293 286 27 

Panel 6     Panel 15     

Floor 1 310 293 286 27 Floor 1 310 293 280,5 27 

Floor 2 310 293 286 27 Floor 2 310 293 280,5 27 

Floor 3 310 293 286 27 Floor 3 310 293 280,5 27 

Floor 4 310 293 286 27 Floor 4 310 293 280,5 27 



Civil Engineering Journal         Vol. 2, No. 6, June, 2016 

237 

 

Panel 7     Panel 16     

Floor 1 310 293 497 27 Floor 1 310 293 464 27 

Floor 2 310 293 497 27 Floor 2 310 293 465 27 

Floor 3 310 293 497 27 Floor 3 310 293 465 27 

Floor 4 310 293 497 27 Floor 4 310 293 465 27 

Panel 8     Panel 17     

Floor 1 310 293 465 27 Floor 1 310 293 365 27 

Floor 2 310 293 472 27 Floor 2 310 293 368,5 27 

Floor 3 310 293 472 27 Floor 3 310 293 368,5 27 

Floor 4 310 293 472 27 Floor 4 310 293 368,5 27 

Panel 9     Panel 18     

Floor 1 310 293 182 27 Floor 1 310 293 335 27 

Floor 2 310 293 182 27 Floor 2 310 293 338,5 27 

Floor 3 310 293 182 27 Floor 3 310 293 338,5 27 

Floor 4 310 293 182 27 Floor 4 310 293 338,5 27 

At first, the seismic behaviour of the existing building was evaluated through nonlinear analyses and consequently 

a “building exoskeleton” with SMADs at the different floor levels was added. 

The pushover analysis showed the capacity of the buildings at the different performance levels defined by the 

Italian code and the FEMA 356, applying horizontal loads for two orthogonal directions, for two load distributions, for 

positive or negative eccentricity, with eight combinations in total. The model required introduction of different groups 

of hinges in relation to the collapse modes for the columns combined compressive and bending failure and shear 

failure for the beams, and bending failure and shear failure for the panel, described with axial hinges. 

The time history analysis assessed the interstory drift of a control point in relation to the Italian code using seven 

spectrum compatible accelerograms generated for the city of Brescia with the software SIMQKE for three of the four 

performance levels, namely operational (O), immediate occupancy (IO) and life safety (LS).   

Pushover analyses underlined the necessity of an intervention (Figure 11, 12 and 13) that was realized verifying 

three types of SMADs with different level of initial precompression.  

 

 

Figure 11. Results of a push over analysis 

 

 

Figure 12. Pushover analysis applied on the existing building. On the left step 0, on the right last step 
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Figure 13. Pushover analysis applied on the building equipped with the “adaptive exoskeleton”, SMAD type 05_10. On the 

left step 0, on the right last step 

 

The time history analyses verified the interstory drift in relation to the limits imposed by the regulations integrated 

to achieve a clearer interpretation of the in-plane behaviour of the single panels, with the introduction of different 

performance limits and their relative definitions [55]:  

 Operational level is verified when no panel reaches an interstory drift of 0.2%;  

 Immediate occupancy level is verified when no panel reaches an interstory drift of 0.3%; 

 Life safety level is verified when no panel reaches an interstory drift of 1%. 

To evaluate the necessity of the procedure the limits were at first verified for the interstory drifts of the control 

points, coincident with the centre of masses of each floor, as in figure 14. In figure 15 the behaviour of the single 

panels before and after the intervention with the three typologies of SMADs are evaluated. 

 

Figure 14. Time history analyses for the control point. 

 

 

Figure 15. Time history analyses for the in-plane behaviour of the panels. 
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3.4. Economic Feasibility 

Shape memory alloys showed a good potential for seismic dissipation in civil structures but the high cost per unit 

weight requires some considerations, in order to assess their practical feasibility and economic convenience [56].  

Some researchers argue that the size of civil constructions and the high loads they are subjected to would require a 

large amount of material in comparison with other fields where SMA are already widely used such as automotive 

engineering and medical applications. Nevertheless, other studies demonstrated that also small amount of shape 

memory alloys, strategically located within a structure, can achieve considerable effects in the regulation of seismic 

behavior of civil constructions [57]. Additionally the price of shape memory alloys decreased considerably in the last 

decades: less than US$111 per kilogram today against the US$1100 per kilogram of the 1996 [58]. Despite that the 

price is still considerably higher than for traditional dissipation technologies. 

The high cost of SMA sections is strongly connected with the complex production process [59; 60], requiring the 

improvement of the manufacturing techniques. At the same time a decrease in cost could be also achieved thanks to an 

increased demand for the material [61] so the promotion of a wide spread campaign of seismic retrofit based on 

SMADs could have some influence in economic convenience of the new technology. 

Additionally to the previous considerations, Bruno and Valente [62] and Dolce and Marnetto [63] evaluated the 

costs of the SMADs in a full-scale construction in comparison with other already widely applied technologies. The 

study calculated the cost of SMA to be around 0.7% of the overall cost of the construction, while the cost of the entire 

seismic device is around 3.5%. These values are comparable with the other technologies and, in particular, in a steel 

bracing system for framed structures the cost of SMA resulted irrelevant with respect to the cost of the full device.  

Moreover, SMA-based devices do not require additional expenses in terms of maintenance or replacement: they 

have high corrosion resistance and fatigue resistance, being able to recover their initial shape also after many loading 

cycle because of their superelasticy not undergoing plastic, unrecoverable deformations, and therefore not requiring 

replacements after a seismic event. 

From the previous considerations, it appears that the use of SMA-based passive control systems can provide good 

overall performance, under some aspects better of the current technologies, while at the same time involving 

reasonable costs.   

3.5. Energy Retrofit 

At least one third of the housing stock is represented by building dated after the Second World War, characterized 

by a mix of construction techniques and typologies. All these buildings have instead in common the poor energy 

performances, due to the lacking or inefficient insulation [64]. 

The performance upgrading should ideally realized using minimum non-renewable energy, while providing 

comfort and efficiency at lower operating costs [65]. 

These interventions, other than allowing energy savings are economically and socially relevant in the long-term. 

Anyway, every building is different in terms of condition, location, materials, characteristics, etc. creating a complex 

scenario to interpret and evaluate so the first step is to recognize in a common building, which is the most influential 

elements in terms of seismic performances. 

The envelope is indeed the liminal space between inside and outside, thus regulating the relationship between the 

building and the environment and it has therefore a leading role in defining new characteristics, performances but also 

the appearance of a construction [66]. 

The energy consumption for heating and cooling of buildings is directly related to heat losses through building 

envelope components, ventilation and air infiltration and inversely related to heat gains in the building through solar 

radiation, all parameters that depend on the design quality of the envelope of the building [67]. 

The “adaptive exoskeleton” is an effective intervention to strongly modify the energy performances of the building 

because it acts as a second shell, going far beyond the simple provision of an additional insulation layer. It can contain 

new service demands and technological innovations, benefiting from the use of renewable energy sources. 

On the other hand, high reduction potential of heat loss is strongly dependent on the realization of an integral 

“adaptive exoskeleton” to avoid thermal bridging and bypass. In this sense, the design approach is still strongly 

connected with the urban conditions and the proximity with other constructions showing some limits. 

Nevertheless, the possibility of customization of the different components and in general the construction process 

open a wide field of application in different climatic and geographic conditions, maintaining its attractiveness for 

future implementation of the idea (Figure 16). 
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Figure 16. Reduction potential of heat loss for traditional retrofit on the left and with the exoskeleton on the right 

4. Conclusions 

This paper presents an innovative design, aiming at a biomimicry approach, for the integrate retrofit of social 

housing heritage.  

The study of the state of the art revealed the existence of a number of interventions for social housing buildings 

focusing on the improvement of the energy performances and of the architectural quality of constructions. On the 

other hand, few studies experimented the possibility to merge these applications with seismic retrofit practices, 

missing the chance to achieve a full-integrated and multi-purpose intervention with significant economic convenience. 

The presented proposal wants to fill this gap exploiting simple but effective structural design and the potentiality of 

the new smart materials for the passive dissipation of seismic loads. The apparent simplicity of the scheme aims at 

widespread applications, on national and regional levels, at the same time being able to provide variety and 

diversification in order to adapt to the different geographical, territorial and site contexts. 

When the exoskeleton can develop in three-dimensions, new spaces and connections can be located, allowing the 

building to adapt progressively to the changing needs of the inhabitants. 

The provision of the different functions and services can be cost oriented and the construction process can be 

industrialized, to provide and effective and economic solution at the same time giving the right amount of vibrancy 

and variety to the residential housing stock. 

A multi-purpose scheme of intervention is necessary and it has as the focal point the realization of a seismic retrofit 

plan in order to reduce the vulnerability of the building stock. 

The optimization of the design and of the location of the devices is a fundamental part of the retrofit design. In the 

presented study the devices are distributed on every floor level with a symmetrical pattern in both directions and the 

SMADs present full re-centring and good energy dissipation capabilities. These characteristics are achieved with two 

groups of Nitinol wire loops, which are mounted on two concentric tubes for a pure tensile behavior [68]. 

By changing the number of the loops, the lengths and the applied pre-tension of the two groups of SMA elements, 

different performance and dissipation levels could be reached, achieving a better optimization of the structural design. 

Although some limit in application the design proposal appears promising for future applications and 

developments, concerning principally a careful design of the energy performances of upgraded buildings realized with 

this technique. 
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