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Abstract 

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed 

numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour 

such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process 

and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar 

and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using 

mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in 

modeling of the reinforced concrete beams with minimum reinforcement was studied.  ABAQUS program was utilized for 

Finite Element (FE) modeling and analysis of the beams. On the other hand, mesoscale modeling of concrete constituents 

was executed with the aid of ABAQUS PYTHON language and programing using excel sheets. The concrete beams under 

flexure were experimentally investigated as well as by the numerical analysis. The comparison between experimental and 

numerical results showed that the mesoscale model gives a better indication for representing the concrete models in the 

numerical approach and a more appropriate result when compared with the experimental results. 

Keywords: Extended Finite Element Method; Mesoscale Modeling; Reinforced Concrete Beams; Non-Smooth Behaviour. 

 

1. Introduction 

Concrete is the most widely used construction material because of its versatility, durability, sustainability and 

economy. Concrete is a mixture of aggregates and sand held together by a binder of cementitious paste. The paste is 

typically made up of Portland cement and water and may also contain supplementary cementing materials (SCMs), such 

as fly ash or slag cement, and chemical admixtures. To represent the mechanical behavior of this material precisely, it 

must be treated as a multiphase material, and its behavior should be like material like concrete as a result from the 

behavior of these components taken together. Many scales in modeling are used to represent the heterogynous material 

like concrete such as macro, meso and micro scale modelling. In the traditional numerical modeling, concrete was 

modelled using the macroscale, whereas, microscale modeling was used in very limited cases. The mesoscale is a scale 

that falls between the macro-and micro-scales [1]. In this paper, two reinforced concrete beams with dimension 

(350×200×2200) mm were subjected to two-point loads and analyzed numerically using the XFEM. The results of this 

analysis were compared with the experimental results of the same reinforced concrete beam with approximately the 

same composition. 

In general, meso-scale modeling can be classified into two types: (1) The continuum models, (2) The lattice models. 
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     In the first model, concrete is modeled as a continuum composite material consisting of aggregate, mortar, and the 

interface zone between the two materials [2], while in the second model, the concrete is assumed as a discrete system 

consist of a lattice element [3]. The lattice modeling method needs a huge numerical effort to obtain the concrete meso-

structure acceptable for the analysis. In this paper, the continuum mesoscale model was used to model concrete, where 

concrete is partitioned into two phases, aggregate and mortar. Mortar contains air voids that result from the pouring 

process of concrete. The interface between the aggregate and cement mortar in the numerical model was modeled as 

fully bounded and tied that make the two materials assumed fully consistent. 

On the other hand, the mesoscale modeling has two approaches:  

1. The image-based modeling, and;  

2. The parameterization modeling.  

     The first approach is built up on a set of two-dimensional pictures that are assembled together to have a three-

dimensional model, then the numerical model is conducted based on this three-dimensional model. This approach is an 

accurate method for modeling the concrete with a shortcoming that is expensive and is a time consuming method [4-6]. 

The second approach can be classified into two methods direct and indirect. The direct method modeled the aggregate 

particles with various physical properties such as size, shape and orientation, gradation and distribution of the aggregate 

particles. The aggregate particles are assumed to be floating in the cement mortar. This method is more appropriate for 

the mesoscale modeling process. The indirect method modeled the concrete randomly using a suitable finite element 

mesh, or using the lattice modeling for aggregate and mortar [7-9]. 

In this paper, the direct method for the parameterization approach was used for the modeling of concrete to study the 

non-smooth behavior of RC beams. This study aims to investigate the significance of the MSA in RC modeling using 

XFEM. In addition, the validity of this method to treat the heterogeneity nature of concrete during analysis of beams 

will be confirmed. 

2. The Extended Finite Element Method (XFEM) 

The conventional Finite Element Method (FEM) is ideally appropriate to the approximation of smooth solutions that 

depend on the approximation properties of polynomials but lacks the accuracy and convergence rate when the exact 

solution of differential equations or its gradients have singularities or discontinuities. These solutions required high 

computational cost and had numerical difficulties. 

     The Extended Finite Element Method (XFEM) is a numerical method, based on the FEM that is especially designed 

for treating discontinuities and singularities. Discontinuities are generally divided into strong and weak discontinuities 

[10-11]. Strong discontinuities result from displacement jumps such as cracks and holes, while weak discontinuities 

result from jumping in the strains such as bi-material problems. On the other hand, the fractured domain causes a 

singularity in the stress field at the crack tip region. XFEM is a powerful and an accurate approach used to model these 

problems [12] (see Figure 1). 

 

 

Figure 1. Weak and strong discontinuities [12] 

 

 

 Weak discontinuity 

(bimaterial interface) 

 

Strong discontinuity 

(crack interface) 
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In the FEM, the approximation displacement field takes the form: 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥) × 𝑢̅𝑖
𝑁
𝑖=1                                                                                                                                                            (1)                                                                                                       

Where: 

𝑢(𝑥): Displacement; 

𝑁𝑖(𝑥): The standard shape functions; 

𝑢̅𝑖:  The FE degree of freedom (standard D.O.F) or (standard nodal displacement); 

𝑁: The set of all nodal points. 

     The XFEM is based on the enrichment of the approximation field by adding the enrichment terms to the standard or 

regular interpolation as shown in Equation 1. 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥) × 𝑢̅𝑖 + 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑡𝑒𝑟𝑚𝑠𝑁
𝑖=1                                                                                                                 (2) 

 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥) × 𝑢̅𝑖 + ∑ 𝑁̅𝑖(𝑥) × (∑ 𝜓𝑗(𝑥) × 𝑎̅𝑖𝑗)𝑀
𝑗=1 )

𝑝
𝑘=1

𝑁
𝑖=1                                                                                           (3) 

 

           Regular interpolation        Enrichment interpolation      

Where:  

𝑎̅𝑖: Enrichment DOF;        

𝑀: The number of enrichment nodes; 

𝜓𝑗(𝑥): The enrichment function; 

𝑝: The number of enrichment functions. 

3. Enrichment Function 

The level set function can be used as an enrichment function if the discontinuity results from differences in the types 

of material properties (weak discontinuity). The level set function is the signed distance function 𝜑(𝑥) 

𝑢weak discontinuity (𝑥) = ∑ 𝑁𝑖(𝑥) × 𝑢̅𝑖 + ∑ 𝑁𝑗(𝑥) × (|𝜑(𝑥)| − |𝜑(𝑥𝑗)|) × 𝑎̅𝑗
𝑀
𝑗=1

𝑁
𝑖=1                                        (4) 

𝜑(𝑥⃗) = 𝑁⃗⃗⃗ 𝑑(𝑥⃗)                                                                                                                                                    (5)                                                                     

                 > 0 if 𝑥⃗ ∈ ΩA                                                                                              

𝜑(𝑥)        = 0 if 𝑥⃗ ∈ Γd                                                                                                                                       (6)                                       

                 < 0 if 𝑥⃗ ∈ ΩB    

 

Figure 2. The signed distance function [12] 

Where: 

𝜑(𝑥⃗): is the signed distance to the closest point on the interface (see Figure 2); 

N⃗⃗⃗: is the local unit normal at 𝑥⃗ takes the value (+ or -) that referred to outside region and inside region. Then 𝜑(𝑥⃗) can 

be written as shown in Equation 7:  

𝜑(𝑥) =  𝑑(𝑥) 𝑠𝑖𝑔𝑛 (𝑛Γd(𝑥 − 𝑥𝑐)) =  |𝑥 − 𝑥𝑐|𝑠𝑖𝑔𝑛 (𝑛Γd(𝑥 − 𝑥𝑐))                                                                (7) 

𝑠𝑖𝑔𝑛 (𝑛Γd(𝑥 − 𝑥𝑐)) = 𝑁⃗⃗⃗          
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Where:  

𝑛Γd : is the normal vector to the interface at point 𝑥𝑐 

For modeling of cracks (strong discontinuity) one of the two types of enrichment functions can be used Heaviside or 

Step function (jump function) and Asymptotic near-tip enrichment functions [12], and [13]. 

𝑢𝑐𝑟𝑎𝑐𝑘(𝑥) = ∑ 𝑁𝑖(𝑥) × 𝑢̅𝑖𝑖∈𝑁 + ∑ 𝑁𝑖(𝑥) ∑ 𝑁𝑗(𝑥) × (𝐻(𝑥) − 𝐻(𝑥𝑗)) × 𝑑̅𝑗
𝑀
𝑗=1𝑗∈𝑁𝑑𝑖𝑠 +  

                                          ∑ 𝑁𝑘(𝑥) × ∑ (𝐵𝑎(𝑥) − 𝐵𝑎(𝑥𝑘)) × 𝑏̅𝑎𝑘
4
𝑎=1𝑘∈𝑁𝑡𝑖𝑝                                                                   (8)                                                              

Where: 

𝑁𝑑𝑖𝑠: The set of enriched nodes whose support is bisected by the crack; 

𝑁𝑡𝑖𝑝: The set of nodes which contain the crack tip in the support of their shape functions enriched by the asymptotic 

functions; 

𝑢̅𝑖: The unknown standard nodal DOF at 𝐼𝑡ℎ node; 

𝑑̅𝑗: The unknown enriched nodal DOF associated with the Heaviside enrichment function at node J; 

𝑏̅𝑎𝑘: The additional enriched nodal DOF associated with the asymptotic functions at node 𝐾. 

     When a crack cut some elements it split the domain into two parts. This splitting of the domain causes a displacement 

jump. The Heaviside function 𝐻(𝑥) is used to model the crack discontinuity in the XFE formulation. There are two 

ways proposed to define the Heaviside function to represent the crack. The first way is named as Heaviside step function 

as shown in Equation 9, and the second way is generally referred to as the Heaviside sign function with the mathematical 

formulation as shown in Equation 10. 

                       0  if    𝜑(𝑥) <  0 

                       1 if    𝜑(𝑥) >  0                         

                      −1  if   𝜑(𝑥) <  0 

                         1  if    𝜑(𝑥) >  0 

Where: 

𝜑(𝑥): The signed distance function; 

𝜑(𝑥) =  𝑑(𝑥) 𝑁⃗⃗⃗  =  |𝑥 − 𝑥𝑐| 𝑁⃗⃗⃗                                                                                                                                               (11) 

𝑥  : The point under query; 

𝑥𝑐: The nearest point to the crack segment Γd; 

N⃗⃗⃗ : The unit normal vector at 𝑥𝑐. 

4. Experimental Investigation 

Two reinforced concrete beams were studied in this study. Rounded coarse aggregate with maximum size of 25 mm 

was used in both of these beams. The only difference between the beams is concentrated in their compressive strengths, 

that is, 17 and 26 MPa. Two-point loading system for a RC concrete beams with minimum reinforcement ratio (see 

Figure 3) was produced for the experimental study using the concrete mixes illustrated in Table 1. The dimensions, 

boundary conditions, and loading system are illustrated in Figure 4. 

 

 

 

 

 

 

 

Figure 3. Section in the beam model  
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 Figure 4. Reinforced concrete beam model 

 

Table 1. Concrete mix proportions for the concrete beam specimens 

 
Beam Code No. 

17-M 25-R 34-M 25-R 

Cement kg/m3 257 399 

Coarse Aggregate kg/m3 1249 1249 

Fine Aggregate kg/m3 610 490 

Mixing Water  kg/m3 193 193 

Air Voids Content % 1.5 1.5 

Density of Coarse Aggregate 1720 1720 

The coding of the RC beams used in this study is illustrated below: 

Coding example: a-M b-c (see Table 2) 

Where: (a) denotes the compressive strength of concrete; (b) denotes the maximum size of coarse aggregate; (c) denotes 

the type of the coarse aggregate used (crushed, or rounded). 

Table 2. Beams code numbers 

Maximum size of the coarse aggregate Compressive Strength, MPa Beam Code No. 

25 
17 17-M 25-R 

34 34-M 25-R 

Five Electric strain gauges were fixed on each RC beam specimen, the first strain gauge was fixed in the middle of 

the front face at the tension zone. The second one was placed at the middle of the center line of the bottom face. These 

two strain gauges were used to measure the tensile strain at mid-span caused by applied bending moment (see Figure 

5). The other three strain gauges were placed in the shear zone at the midpoint of the distance between the top and 

bottom faces. These strain gauges were fixed so that their ends met at one point (see Figure 6). The purpose of this 

arrangement is to create a strain rosette by which the shear strain can be measured. Two dial gauges of accuracy 0.002 

mm were used for deflection measurement. The first one was placed at the mid-span of the bottom face of the specimens 

for the maximum deflection measurement. The second one was used to measure the lateral buckling (note: the beams 

were designed without lateral buckling but this dial gauge was placed for checking; see Figure 7). Then the beams are 

placed in the frame structure for load application (see Figure 8). 

 
Figure 5. Strain gauge distribution  

2200 mm 

2400 mm 

350 mm 
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Figure 6. Strain gauges attachment rosette 

 

Figure 7. Dial gauges placed for deflection measurement 

 

Figure 8. Testing setup 

5. Finite Element Modelling Using ABAQUS Software Program 

ABAQUS program was used for the modeling and analysis of the RC beam specimens. The mesoscale finite element 

modeling for RC beams have round coarse aggregate with maximum size 25 as explained in Figure 9. Concrete is one 

kind of heterogeneous composite material consisting of coarse aggregates, cement mortar, mortar-aggregate interface, 

and pores at the meso-level [14, 15]. In this study, the concrete is represented as a two-phasic material (aggregate, and 

cement mortar). The interface between two consisting materials was assumed fully bonded interface. Perfect bonding 

between the concrete and steel bar will be assumed [16]. 

     Air voids were assumed to be space voids in the concrete model without any material properties. Concrete is 

considered as a linear elastic material, i.e., the stress-strain curve of the concrete is approximately a linear function. The 

mesoscale materials properties were selected according to Bazant (2014) [19]. The damage evaluation was considered 

according to the input of the fracture energy (see Table 3). As it can be seen in Table 3, the crack is assumed to propagate 

through cement mortar only [9]. 
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Figure 9. Mesoscale finite element modeling for round coarse aggregate with maximum size 25 

Table 3. Materials properties input in ABAQUS program 

Material Modulus of Elasticity, MPa Poisson's Ratio Fracture Energy N-mm/mm2 

Aggregate 75000 0.2 - 

Mortar 25000 0.2 0.06 

Steel 200000 0.3 - 

At the beginning, programming in ABAQUS program using PYTHON language was employed for beam modeling. 

The model is defined as a sketch and takes a name and dimension where this sketch was defined as a rectangular having 

the same dimension of the beams in 2D to facilitate the process of inserting aggregate in it. In the case of rounded 

aggregate, it is needed to make excel sheets for each gradient of the aggregate of the same maximum size. For rounded 

coarse aggregate with maximum size 25 mm it was needed to make 6 excel sheets; one for each gradient and the last 

one for air voids. The rounded aggregate and air voids will be assumed to be of elliptical shape. This representation has 

a good accuracy because the rounded aggregate particles are actually not circles.  

In the middle span of the RC beams, a notch as high as 4 mm was created. This notch is modeled as a wire part and 

makes it as the initial crack, and allows for crack growth through the cement mortar. The element type used for the 

numerical models was a two-dimensional quadrilateral four-noded element of size approximately equal to 1.5 mm side 

length. In the present study, one should avoid using the triangle element because this element provides results with less 

accuracy than that of a quadrilateral element as recommended in Huynh et al. (2019) studies [18]. 

Figures 10 and 11 represent flowcharts to calculate the course aggregate required for each gradient and modeling 

stage before analyzing it in ABAQUS program, respectively.  

 

 

  

 

 

 

 

 

 

 

 

  
      

  

 

 

 

 

 

 
 

Figure 10. Flowchart to calculate the coarse aggregate required for each gradient 

Start  
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The coarse aggregate gradation 
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x, y: Centre coordinates (x,y); 
a: The major radius; 

b: The minor radius; 

𝑃1 𝑎𝑛𝑑 𝑃2: Point at the circumference of the ellipse; 

𝜃: The orientation of particle; 

𝑃1̅𝑎𝑛𝑑 𝑃2
̅̅̅: The points 𝑃1 𝑎𝑛𝑑 𝑃2 after rotated about the center. 
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Figure 11. Flowchart of processing modelling at ABAQUS program to start analysis 

 

Figure 12. Rotating the ellipse about the centre 

6. Results and Discussion 

     Reinforced concrete beam subjected to a two-point loading was numerically analyzed using a two-dimensional plane 

stress model to study the non-smooth behavior such as discontinuities and singularities. The effectiveness of the 

Y
es

  

v 
Save this sketch as 

(Mortar with Air Voids) v 

Export this sketch in new 

folder1 (Mortar with Air 

Voids) 

Open New file  

In ABAQUS program 

Import the 3 sketches 
(Mortar without Voids 

Aggregate and Mortar 

without Voids) 
 

Start to analysis in the 
ABAQUS program 

 

No The Air voids 

Overlap? 

Intersect? 

Import sketch 
(Mortar without 

Voids) 

 

Open New file  

Without save 

Download the air voids 

from the excel sheets 

Aggregate 

Air voids 

distribution in to 
the sketch 

 

Save this sketch as 

Aggregate 

Export sketches in new 

folder 1 (Mortar without 

Voids and Aggregate)  
 

Save this sketch as 

(Mortar without Voids) 

Yes  

Make a rectangular 

sketch using the 

PYTHON language 
having the same RC 

beam dimension 

Download the aggregate 

for each gradient from 

the EXCEL sheets 
Aggregate 

distribution 

The aggregate 

Overlap? 
Intersect? 

N
o
 

Delete the 

rectangular outline 



Civil Engineering Journal         Vol. 5, No. 10, October, 2019 

2255 

 

 

mesoscale appears in concrete modeling to take its non-homogeneity into account. The numerical analysis was done 

using the ABAQUS program. In addition, an experimental program was used to detect the reliability of the numerical 

results of XFEM. Table 4 explains the experimental and numerical maximum applied load for RC beams. 

Table 4. The maximum applied load. 

Beam Code No. Experimental work (kN)  Numerical analysis (kN) 

17-M 25-R 88.7 100 

34-M 25-R 112 130 

     From Table (4), it can be noted that the beam 34-M 25-R is stronger than the other one. Also, it can be seen that when 

increasing the concrete compressive strength the maximum applied load (ultimate load) in numerical analysis is 

approaching from the ultimate experimental applied load. 

Note: the percentage of convergence measured at serviceable load (70% for ultimate load). 

     Performed Figure 13 and Figure 14. The load deflection curve at the mid-span of the beam constructed using 

aggregate with a maximum size of 25 mm and different compressive strengths 17 MPa and 34 Mpa, respectively, was 

performed. 

 

 Figure 13. Load – deflection curves for reinforced concrete beam (17-M 25-R)  

 

Figure 14. Load – deflection curves for reinforced concrete beam (34-M 25-R) 
 

      As can be seen in the above figures, the maximum deflection value obtained for RC beam 34-M 25-R ranged between 

6 and 7mm for experimental and numerical results, while the minimum deflection obtained was for RC beam 34-M 25-

R which ranged between 4 and 5 mm) in experimental and numerical results. 
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     The fracture energy of the concrete beam can be calculated by computing the area under the curve of applied load 

and the deflection (area under load-deflection curve) [19]. From the above figures the larger deflection obtained will, 

gives a larger fracture energy for the RC beam under the applied load. Fractures in material mean, energy required to 

create a new surface. From the above it is indicated that the fracture energy increased when the compressive strength of 

the concrete is increased [20]. This is due to the increase in the compressive strength mean increasing in hardness which 

in turn need a larger fracture energy to create crack and then allow to propagation. In additional to the fracture toughness 

increases with a decrease in water-to-cement ratio [21)]. From the above the RC beam 34-M 25-R has the largest fracture 

energy  

     From Figure 13, when the compressive strength is equal to 17 MPa, the percentage of convergence between the 

experimental and the numerical mesoscale modeling is equal to 94%, while the percentage decreases to become 81% 

when the experimental results are compared  with the macroscale model result. Furthermore, from Figure 14, when 

using compressive strength equal to 34 MPa, it will be observed that the percentage of convergence increased between 

the experimental and the numerical macroscale modeling where it will become equal to 96%, while the percentage of 

convergence between the experimental and the numerical mesoscale modeling decreases to become 78%. 

    The relations between the applied load and measured tensile strain at mid-span for beams with compressive strengths 

of 17 MPa and 34 MPa, are shown in Figures 15 and 16, respectively, while Figure 17 explains the effect of the 

compressive strength on the increase of the results. 

 

 

Figure 15. Load –tensile strain curves for reinforced concrete beam (17-M 25-R) 

 

 

Figure 16. Load–tensile strain curves for reinforced concrete beam (34-M 25-R) 

From the curves of the mesoscale figure, it can be seen that the finite element analysis gives more accurate results 

comparing with the experimental result. Where the percentage of convergence is equal to 93% and 94% for compressive 

strengths 17 and 34 MPa, respectively, while a divergence in the results of experimental and macroscale can be seen 
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where the percentage up to 64% for a beam have compressive strength 17 MPa and 41% for the other beam. This 

indicates that the mesoscale analysis has a convergent behavior to the experiment in the tensile strain measurement. This 

convergence explains the effectiveness of the mesoscale model for modeling a reinforced concrete beam. 

 From Figures 15 and 16, tortuous in the curves of the macroscale was seen which may be attributed to the 

approximation in the concrete modeling when it is assumed as one of the materials that allow propagation of a crack 

through the concrete with the load increasing. 

 

Figure 17. Load – tensile strain curves for RC beams 

     From the above figure it can be noted that the maximum strain value occurs in the RC beam 34 M 25-R at the ultimate 

load. When the compressive strength is decreased, the strain value is increased at the same load for experimental and 

numerical meso and macroscale models. Mesoscale numerical strain result exhibited a good agreement when compared 

with the same experimental RC beams. 

     The load-shear strain curves for the numerical (meso and macroscale) and experimental data are shown in Figures 

18 and 19. 

 

Figure 18. Load – shear strain curves for reinforced concrete beam (17-M 25-R) 
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Figure 19. Load – shear strain curves -for reinforced concrete beam (34-M 25-R) 

     As shown in these figures, all the numerically predicted shear strains change linearly with the increasing of the 

applied load, while the experimental does not. The maximum values for the shear strain was between 0.0002 mm/mm 

and 0.00029 mm/mm. Generally, macroscale XFEM modeling gets a percentage of convergence between 91 and 98% 

if compared with mesoscale at the same load. The percentage of convergence between the experimental and mesoscale 

numerical analysis reach to 73 and 75% for beams with compressive strength of 17 MPa and 34 MPa, respectively, 

while this percentage reached up to 78 and 76% if compared with the macroscale numerical analysis. Consequently, the 

mesoscale numerical modelling was more appropriate to represent the non-homogeneity of the concrete. 

7. Conclusions 

 The XFEM is a powerful method based on the FE method to treatment discontinuity in the reinforced concrete 

under flexural result from the cracking phenomenon. 

 Mesoscale model was found to be a good process for representing the non-homogeneity of the concrete which it 

neglected in the macroscale modeling of concrete members. In addition, it shows the importance of the non-

homogeneity concrete properties on the behavior of RC beams.  

 The crack propagation path of the concrete is affected by the tensile strength of the mortar and location of 

aggregate particle where the crack passes through the cement mortar only. 

 The analysis of the tensile strain behavior in the mesoscale model gave 93 and 96% convergence with the 

experimental data, while in the macroscale analysis, the tensile strength has a divergent behavior with the 

experimental data. 
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