
 Available online at www.CivileJournal.org 

Civil Engineering Journal 

 Vol. 5, No. 9, September, 2019 

 

 

 

  

 
  

 

 

    

2041 

 

 

A Hybrid of Artificial Neural Networks and Particle Swarm Optimization 

Algorithm for Inverse Modeling of Leakage in Earth Dams 

 

SeyedMahmood VaeziNejad a*, SeyedMorteza Marandi b, Eysa Salajegheh b 
a PhD Student, Civil Engineering Department, Shahid Bahonar University of Kerman, Iran. 

b Professor, Civil Engineering Department, Shahid Bahonar University of Kerman, Iran. 

Received 27 May 2019; Accepted 24 July 2019 

Abstract 

A new intelligent hybrid method for inverse modeling (Parameter Identification) of leakage from the body and foundation 

of earth dams considering transient flow model has been presented in this paper. The main objective is to determine the 

permeability in different parts of the dams using observation data. An objective function which concurrently employs time 

series of hydraulic heads and flow rates observations has been defined to overcome the ill-posedness issue (nonuniqueness 

and instability of the identified parameters). A finite element model which considers all construction phases of an earth 

dam has been generated and then orthogonal design, back propagation artificial neural network and Particle Swarm 

Optimization algorithm has been used simultaneously to perform inverse modeling. The suggested method has been used 

for inverse modeling of seepage in Baft dam in Kerman, Iran as a case study. Permeability coefficients of different parts 

of the dam have been inspected for three distinct predefined cases and in all three cases excellent results have been attained. 

The highly fitting results confirm the applicability of the recommended procedure in the inverse modeling of real large-

scale problems to find the origin of leakage channels which not only reduces the calculation cost but also raises the 

consistency and efficacy in such problems. 
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1. Introduction 

One of the most well-known bio-inspired algorithms used in optimization problems is particle swarm optimization 

algorithm (PSO), which basically consists of a machine-learning technique loosely inspired by birds flocking in search 

of food or fish schooling [1]. This algorithm is a new, computationally efficient and popular evolutionary computation 

algorithm that has been applied in various engineering fields such as antenna design, communication networks, clustering 

and classification, combinatorial optimization and specially system identification and so on in recent years [2-5].  

The work of system identification (or inverse modeling) is significantly important and essential in many engineering 

applications, especially for system control engineering and safety analyzes. Xiang et al. [6] presented a PSO based 

algorithm to optimize the model parameters and simulate the nonlinear variations of  the piezometric levels during the 

high-impact typhoons in the modeling process and raise the fitting accuracy between real piezometric levels and modeled 

ones. They introduced a mutation factor into the traditional piezometric level statistical model which considers the 

lagging effects. The suggested method was tested on Siminghu reservoir in China during typhoon Fitow and the results 

showed a proper agreement in the results. 
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Chi et al. [7] suggested a method for back analysis of permeability coefficients in earth dams considering the steady 

state condition for seepage and tested for condition while the water level rises. The suggested method was based on the 

application of radial basis function neural networks (RBFNN) to minimize the mean squared error of measured and 

computed water heads. The PSO algorithm was used to train the RBFNN and reaching to the best structure parameters 

of it. The case study was done on the Nuozhadu dam in china and the attained results showed well applicability of the 

method.   

Gamse and Oberguggenberger (2016) [8] explained the significance of different influencing terms on a rock-fill 

embankment dam using a statistical method on long-term coordinate time series of a geodetic point. The model was 

based on a hydrostatic-season-time model which was used originally for analyzing data of concrete dams. and a multiple 

linear regression for modeling a linear relation between observed and calculated parameters. The process of inclusion 

and exclusion of parameters in each direction of a predefined coordinate system and model optimizing was discussed 

and finally the results showed the ability of the model in abnormal leakage detection although it has its limitations. 

Hydraulic conductivity (permeability) of deposits beneath the dam or in its body is one of the key factors in 

geotechnical structures design, which even influences their location. The main factors affecting the permeability of rocks 

and soils are the geometrical shape and how the gaps and available cavities are interconnected, which can be determined 

on site through field tests. When the obtained permeability does not precisely illustrate the status quo, uncertainties are 

increased, and the probability of error in the design is increased [9-12]. 

Past experiences designate that the layers with great permeability that were not recognized through early studies cause 

the water accumulation and thus the development of unusual leakage bands [13]. Also abnormal seepage phenomena 

may occur in earth dams due to the construction defects and material aging [14]. Zhang et al. [15], investigated the 

seepage field and analyzed the main causes of the abnormal seepage field in a dam with asphaltic concrete core and 

concluded that the main cause of the abnormal leakage might be the defect in the integrity of the anti-seepage system.   

At the time of experiencing such critical phenomenon, first and foremost, the precise origin of the abnormal leakage 

should be detected and a review of the water-sealing system efficiency is necessary for the assessment of the leakage 

harmfulness and the overall stability of the dam for the decision of whether and how to treat it, because this phenomenon 

can cause seepage damage and lead to dam breakage. In this condition, the usage of inverse modeling concept to control 

dam safety by means of different instrumental readings collected continuously during its construction and operation is 

inevitable [7, 12, 14, 15]. 

The main objective of the inverse modeling is to determine the values of input parameters applied in the governing 

equation, such as permeability values, using the collected observations at different times and at different points within 

the problem domain. Typically, the monitoring points are limited in numbers, while the problem domain is continuous. 

Particularly, if the problem space is nonhomogeneous, the space size of the concerned parameters will be indefinite, 

which adds to the complexity of inverse modeling. Under the same circumstances, the use of specific methods, such as 

the division of the problem domain into sub-domains (where the parameter values remain constant), may be helpful [16-

18]. 

In general, inverse modeling methods have been classified into direct and indirect categories in previous studies [18]. 

In the direct method, given the solution values at all points of the problem space and replacing them in the governing 

equation, the problem input parameters are assumed as dependent variables, and thus, a direct equation is obtained for 

them. In practice, the solution values are not definite at all points, and the monitoring points are distributed at limited 

number of points of the entire space, the readings of which are accompanied by some errors. Also, interpolation is 

required to obtain the solutions at the remaining points, which adds some extra errors to the problem. Therefore, the best 

values for input parameters are reached by incorporating the error parameter in the governing equation as well as its 

minimization [16, 18]. 

In the indirect method, the main objective is to ascertain the values of different parameters of the problem in a way 

that a good agreement be established between the real on-site readings and the results obtained from calculations. For 

this purpose, a certain objective function is introduced (e.g. the mean squared error of measured water heads and that of 

problem analysis by assuming a set of arbitrary input parameters) [18]. Then, the objective function is minimized using 

different optimization algorithms, including gradient-based search methods, genetic algorithm, particle swarm 

algorithm, gradual simulated annealing, etc [2, 3, 17, 19-22]. The main advantage of this method is its applicability when 

the number of observation points is limited. Also, it does not require the derivation of readings. However, in most of 

cases, we are faced with a nonlinear and non- convex optimization problem [23, 24]. 

Since the on-site observations of hydraulic heads are much easier and cheaper to implement than other readings, most 

studies on inverse modeling in leakage problems have been founded based on these parameter [17, 21, 25-27],  while  

using only one parameter may lead to the instability or nonuniqueness of identified parameters which is called ill-

posedness issue [23, 24]. An improved approach for resolving such cases is the use of more than one parameter, for 

example employing piezometric hydraulic heads and flow rates simultaneously, which improves the accuracy and 
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uniqueness of the final answer. In the other hand many previous inverse modeling studies have used the steady state 

model for the flow [26-28] that eases the problem complexity significantly. Unfortunately, the use of steady state model 

in special conditions such as permeability changing due to excavation or injection, sudden changes in the upstream pool 

water level or other variations occur in the model's boundary conditions, may possibly not result in accurate answers [9]. 

Therefore, in these cases, employing the transient flow model in the inverse analysis might be helpful [19, 22, 29]. 

In this research, a novel inverse modeling method has been proposed for identification of hydraulic conductivities in 

the problem of water leakage in earth dams. A new objective function which employs the hydraulic heads and the flow 

rates readings simultaneously has been applied. To improve the reliability and consistency of the solutions a transient 

flow model has been used in the finite element model of the problem.  

Moreover the proposed method takes advantage of the orthogonal design, artificial neural networks and particle 

swarm optimization algorithm to decrease the calculation efforts and makes the inverse modeling of large scaled 

problems obtainable. The suggested method has been applied for the inverse modeling of leakage in the Baft dam located 

at southeast of Iran to identify the hydraulic conductivities in different parts of the dam for three different cases. The 

results show that the identified permeability coefficients are reasonable and properly fit the real ones, thus the proposed 

method provides a new mean s of accurately detecting the overall seepage behavior of earth dams while servicing. 

2. Explanation of the Objective Function 

If the number of permeability amounts to be governed is m, then the vector 𝐾 = [𝑘1, 𝑘2, . . . , 𝑘𝑚]𝑇in which ki is the 

permeability value in the element i is presented. Furthermore, if the number of piezometers fitted in the dam be M, then 

the vector 𝜙𝑖
𝑚 = [𝜙𝑖1

𝑚, 𝜙𝑖2
𝑚, 𝜙𝑖3

𝑚, . . . ]𝑇,in which (i = 1,2, ... , M), is used to designate the hydraulic head time series in the 

piezometer i such that the 𝜙𝑖𝑡
𝑚 is the value of hydraulic head in piezometer i at time t. Correspondingly, for N number of 

flowmeter, the vector𝑄𝑗
𝑚 = [𝑄𝑗1

𝑚 , 𝑄𝑗2
𝑚 , 𝑄𝑗3

𝑚 , . . . ]
𝑇
, in which (j = 1, 2, ..., N) is employed to indicate the flow rate time series 

in the flow meter j. In this vector, 𝑄𝑗𝑡
𝑚is the flow rate measured in the flowmeter j at time t. thereupon, the objective 

function is defined as: 

(1) min f = (∑
‖ϕi(K) − ϕi

m‖2
2
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2

M
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2
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2

2
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2

 

(2) Klow ≤ K ≤ Kup 

In these equations, the symbol ‖ .‖2is using for the Euclidean norm of a vector, and φi(K) and Qj(K) are respectively 

time series related to hydraulic heads in the piezometer i and flow rates ofjin the flowmeter, which outcomes from the 

analysis of the model with the assumption of permeability vector K. The weight parameter, w, is used to get a balance 

between the relative errors resulting from the error in the readings of the hydraulic heads and flow rates. K low and Kup 

are the minimum and maximum of the possible permeability respectively, which could be determined through the 

hydrogeological characteristics of the area through field experiments. 

Performing an inverse analysis in the case of large-scale geotechnical-hydrological problem does not appear to be 

straightforward; therefore, the present study proposed a new hybrid procedure which has benefited from orthogonal 

design (OD), finite element analysis (FE), artificial neural networks (ANN) and PSO algorithms. The following 

subsections briefly describe each of the method components.    

2.1. Orthogonal Design Selection Method 

The orthogonal design (OD) selection method is a very useful statistical method in which orthogonal arrays are used 

to design multi-factor experiments [30]. In the present study, this method have been used in the selection of different 

permeability compositions, 𝕂 = {K1, K2, K3, … }, in such a way that not only the number of states reduce to the extent 

possible but also the determined compositions cover all the possible states perfectly. Each permeability composition has 

been used as input parameters of the leakage problem. As a result of using orthogonal design selection method, the 

number of necessary direct analyses and consequently the computational cost in the inverse modeling problem will 

reduce severely. For example, if the number of elements of the inverse problem be 6 and the number of different states 

of permeability for each element be 7, a full inverse analysis, using all possible responses, needs to perform finite element 

analysis of the problem 76(117649) times while the application of the orthogonal design method reduces the number of 

analysis to 49. 

2.2. Finite Element Analysis 

The finite element model of the problem is fully implemented in the ABAQUS software considering all construction 

and operation steps of the dam. This model perfectly considers non-linear effects related to the location of the lake water 
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level and its temporal changes, both at construction time and at the time of impounding and operation. In addition, it 

obtains the total heads and flow rates time series at all points in the body and foundation of the dam including the 

locations of instruments, namely the vectors ϕi(K)(i = 1, 2, … , M) and Qj(K)(i = 1, 2, … , N) in Equation 1. 

Thereafter for each combination Ki in the space  𝕂, which is determined by the orthogonal design method, the 

simulated problem has been performed once and the obtained results has been used to train an artificial neural network, 

by which the time series of response values can be obtained at each point for any desired permeability state. 

2.3. Back Propagation Neural Network (BPNN) 

Currently artificial neural networks are recognized as an effective way of estimating and predicting the response in 

non-linear multi-parameter problems. These networks, which are based on the training through educational data, are 

widely used in solving hydrological problems [17, 26, 31].  

Among various types of artificial neural networks, back propagation neural networks can be referred to which had 

the highest application in the past [32]. 

In the present study, a back-propagation neural network has been employed as an implicit mapping between the input 

parameters space and the space of responses at observation points. Figure 1 illustrates the general schema of a back-

propagation neural network in which there is an input layer, two hidden layers and an output layer. The number of 

neurons in the input layer (I) is determined by the number of input parameters, which are herein the size of K (m). The 

number of output layer neurons (O) also depends on the number of reading points (M + N). The number of neurons in 

the intermediate hidden layers (HI, HII) that determine the main structure of the neural network and will have the most 

significant effect on the training method and overall performance of the network is determined through minimizing a 

predefined error function on the training data by trial and errors. 

In order to achieve the input data set of training data, different permeability combinations, which are determined by 

the orthogonal design method, are used. The output data set of the training data is provided using information of the 

finite element analysis at observation points. 

As shown in Figure 1, in the network training, the data are first released forward (solid lines), then the error values 

are calculated and returned backward, and therefore the weight values at the connection points are corrected and updated 

(dotted lines). Here, the sigmoid transfer function is used as the transfer function, and thus all the training data are 

mapped linearly to the interval (0.1-0.9) before being placed in the input layer [33]. After that the Levenberg-Marquardt 

learning algorithm is used in the back propagation network for the training [34]. 

2.4. PSO Algorithm 

Particle Swarm Optimization was first introduced by Dr. Russell C. Eberhart 1 and Dr. James Kennedy 2 in 1995. As 

described by Eberhart and Kennedy, the PSO algorithm is an adaptive algorithm based on a social-psychological 

metaphor; a population of individuals (referred to as particles) adapts by returning stochastically toward previously 

successful regions. Particle Swarm has two primary operators: Velocity update and Position update. During each 

generation each particle is accelerated toward the particles previous best position and the global best position. At each 

step a new velocity value for each particle is calculated based on its current velocity, the distance from its previous best 

position, and the distance from the global best position. The new velocity value is then used to calculate the next position 

of the particle in the search space. This process is then iterated a set number of times or until a minimum error is achieved. 

PSO algorithm, which has been used greatly in the past as an optimization method, has been used widely to solve 

many hydrological problems related to groundwater or surface water [20-22, 35]. Here the PSO algorithm is used to find 

the best permeability combination through which the objective function introduced in Equation 1 is absolutely 

minimized, and as a result, the best compatibility is achieved between the readings of instruments and the responses 

obtained from the neural network. To do this, a primitive population is first created randomly, each member of the 

population being a state of permeability combinations in different elements, and then the operators of the PSO algorithm 

are performed sequentially. 

3. Introducing the Characteristics of Baft Earth Dam 

3.1. Specifications of Baft Dam Site 

The Baft earth dam with clayey core is constructed on the Baft River, one of the branches of the Dahouj River, 160 

km off the southwest of Kerman city in Kerman province to supply drinking water for Baft and Bezenjan and to control 

the floods of the river. Figure 2 illustrates an image of the overall view of the dam and its geographical location. 

The dam catchment area is 259 km2 and the volume of the reservoir lake at normal level of 2352.75 m from the sea 

level is 40 million m3.The dam crest length is 1160 m and its width is 10 m. the dam height is 65 m from the base, and 
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its base width is 227 m in the largest cross-section. It is located at latitude 29°15´30˝N and at longitude 56°37´50˝E in 

the Jazmurian watershed. General plan of the dam and its position are displayed in Figure 3. 

 

Figure 1. General schema of a two hidden-layer artificial neural network 

 

Figure2. General view of the dam and its location 

As shown in Figure 3, the river direction in the dam body is north-south and the axis of the dam is located ahead of 

the strait of the river, in a section with a direction of 195 degrees. The main composition of the dam site includes five 

different parts; the characteristics of them from the right hand side to the left hand side are as follows: 

A. The Right hand side bearing on limestone outcropping with a slope of 30 degrees and level of 2,440 meters above 

the sea level. 

B. The smooth right-hand slope of 210 meters in length, including surface dirt and weathered deposits with a thickness 

of  3 meters; in this part, the dam body after excavating the surface layers is placed on the lower blend. 

C. The middle part including flood deposits with a thickness of approximately 10 m, the width of the river in this part 

is 4 meters and the floor of the river is at a distance of 2,295 meters from the sea level. 
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D. The limestone section that is thin at first and then its thickness increases, with a length of 335 m below the dam 

body. 

E. The left arm is made up of alluvial deposits with a thickness of 2 to 6 meters. The lowest point of that is 25 meters 

below the dam crest and its length is 380 meters. 

Generally, the bottom composition of the dam axis is made of alluvial deposits. These rocks are tremendously strong 

and hard with a compressive strength above 150MP provided that they are not altered and weathered. However, these 

rocks are altered and weathered in the area beneath the dam. The permeability of these rocks is substantially low or they 

are even impermeable, and thus, they are very useful for the dam reservoir and foundation. Generally, for seepage sealing 

of the zone beneath the dam, alluvial deposits should be removed and weathered layers must be reinforced. Figure 4 

depicts the typical cross-section of dam body along with different parts. 

As it can be seen in the Figure 4, the clay core is in the central part and the fine-grained and coarse-grained filters 

surrounded it on the sides, followed by the shell layers. To protect the shell, the rock fill layer has been applied over it 

with a riprap layer on its upstream part. Moreover, there is a plastic concrete grout curtain in the weathered layer beneath 

the dam. Figure 5 shows the longitudinal profile of the dam embankment and indicates how the sealing curtain is applied 

along the dam. Table 1 summarizes the specifications of the different parts of the dam used in its modeling. All 

specifications are derived from the results of the preliminary studies and design reports. The construction operation 

began after the completion of the preliminary studies in August 2003 and ended in September 2010. Dam impounding 

began in December 2008, and until May 2009, the level of water in the reservoir has risen to the level of 2318.97 meters. 

However, since June 2009, a portion of this water has been released for agricultural usages and until October 2009 the 

level of the reservoir water has descend to 2314.68 meters. Repeatedly, by the start of the wet season in 2009, the level 

of water began to increase and eventually the water level in 2013 reached the level of 2352.75. 

3.2. Characteristics of the Instrumentation and Measurement Systems  

Continuous performance inspection of the dams, especially earthen dams, is important not only for recognizing the 

behavior of different parts of the dam, but also from the safety point of view and eliminating of possible defects that 

may lead to dam failure. Figure 6 displays different sections of the instrument implementations in the Baft dam where 

the modeling section of this study is shown as section G-G. Measurement tools include different kinds of piezometers, 

pressure gauges, seismometers, inclinometers, accelerometers, flowmeters, etc. The exact location and alignment of 

their installation in section G-G are shown in Figure 7. 

Figure 3. General plan of the dam body 
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Figure 4. General section of  Baft earth dam 

 

Figure 5. Longitudinal profile of the Baft earth dam 

Table1.Specifications of different parts of the dam body 

Friction 

Angle (degree) 

cohesion

 (𝐤𝐍 𝐦𝟑⁄ ) 

Permeability 

in y direction 

(𝐦 𝐬⁄ ) 

Permeability in 

x direction 

(𝐦 𝐬⁄ ) 

Yong's modulus 

(𝐌𝐍 𝐦𝟐⁄ ) 

Density

(𝐤𝐠 𝐦𝟑⁄ ) 
 

21 250 1 × 10−7 1 × 10−7 500 2300 Foundation 

18 80 6 × 10−9 3 × 10−8 10.75 1900 Core 

37 7 1 × 10−5 1 × 10−5 37 1900 Filters 

45 3 1 × 10−3 1 × 10−3 10 1900 Shell 
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Figure 6. plan of dam body sections 

 

Figure 7. Instrumentation in section G-G 

4. Inverse Modeling of Leakage in the Baft Earth Dam 

4.1. Computational Model Structure 

As previously mentioned, a finite element model was made for the seepage inverse modeling in the G-G section of 

the Baft dam whose location is shown in Figure 6. The constructed model consisted of 1336 6-node triangular elements 

and 2781 nodes. All stages of the dam construction including its needed excavation step, 21 steps of its embanking, 

impounding stage, consolidation and servicing stage have been modeled with regard to the actual time intervals based 

on the dam's factual reports. Figure 8 shows the model in the ABAQUS software at two different stages, one at the time 

SP-F2SP-F1 ,

IC-H1

VWP-H1

EPC-H1

SC-H1

VWP-H6

EPC-H6

SC-H6




EPC-G112296.00

VWP-G12

2286.00

SC-G1
EPC-G1
VWP-G1

2345.03

IC-G1

SP-G1

SP-G2

SP-G3

SP-G4

SC-G2
EPC-G2
VWP-G22345.17

VWP-G3
EPC-G3
SC-G3

2330.10

SC-G4
EPC-G4
VWP-G4

2330.12
VWP-G5
EPC-G5
SC-G5

2330.14

SC-G6
EPC-G6
VWP-G6

2316.00 2316.12

VWP-G7
EPC-G7
SC-G7

2316.16

SC-G8
EPC-G8
VWP-G8

2304.40

VWP-G11
EPC-G11
SC-G11 SC-G10

EPC-G10
VWP-G10

2300.16
VWP-G9
EPC-G9
SC-G9

2300.11

2286.00
VWP-G13

VWP-G14
2276.00

VWP-G15

2289.00

2292.70

2203.25





Civil Engineering Journal         Vol. 5, No. 9, September, 2019 

2049 

 

 

of body embanking and the other at the start of impounding stage. The variation of water level in the dam reservoir lake 

is shown in Figure 9, the impounding time intervals are actually considered in the modeling after the completion of the 

construction process for the aim of reality. A porous- elastic model has been used for modeling of materials behavior 

which has used the Mohr-Coulomb plasticity model for failure criteria in accordance with the dam designing manual.  

After completion of the modeling and in order to validate the results the stability of the dam has been controlled and 

then the pore water pressures obtained in some particular points were compared with actual values of the piezometers 

readings. Figure 10 shows such comparison for the three vibrating wire piezometers G8, G10, and G12, whose exact 

positions are displayed in Figure 7. The reliable compatibility between the results obtained from the finite elements 

model and the actual results in different parts of the dam, whether in its body or in its foundation, indicates the suitability 

of the model for the use in reverse analysis. 

4.2. Defining the Variables Space 

The first step in the inverse modeling process is to determine inconsistent specifications of the model which can 

affect the leakage problem. Behavior controls and analyzes carried out during construction, impounding and operation 

of the Baft earth dam are all indicative of its proper performance and its accurate design. However, in order to evaluate 

the applicability of the proposed method in the inverse modeling, the permeability coefficients in a group of elements 

has been conceptually changed and then by assuming that the amount and exact location of these elements are unknown, 

based on the results of finite elements model (here hydraulic heads in a definite number of nodes and total flow discharge 

rates) the amount and location of the damaged elements has been searched. The general flowchart of the proposed 

method used in this study is as displayed in Figure 11. 

For a better assessment, regarding the data from preliminary tests and studies that were available in its design reports, 

for each part of the dam a range for permeability value changes has been defined. Also some different compositions 

have been defined for the dam leakage analysis through orthogonal design method. Table 2 displays upper and lower 

limits of permeability changes in different parts of the dam model. 

As shown in Table 2, in view of the fact that permeability in the clayey core is very small, the amount of permeability 

in both directions of it has been considered equal. In addition, with regard to the permeability variation intervals in 

different parts of the dam, seven permeability levels have been considered for each part as shown in Table 3. These 

permeability levels have been applied in the creation of an orthogonal design table L49 (76). Consequently, a set of 49 

different permeability combinations have been made to be run in the finite elements model. In favor of increasing the 

efficiency and accuracy of the model the foundation part has been divided into three layers as shown in Table 3. 

 

a. Dam section during construction 

 

b. Dam sections during impunding 

Figure 8. Dam sections during modeling 
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Figure 9. Changes in the dam reservoir water level 
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Figure 10. Comparison of water pressure from actual readings and finite elements modeling 

Table 2. Permeability change interval in different parts of the dam body 

Shell Filters Core Foundation Region 

1 × 10−2 1 × 10−4 5 × 10−8 5 × 10−7 Upper limit (m s⁄ ) 

5 × 10−4 5 × 10−6 1 × 10−9 1 × 10−8 Lower limit(m s)⁄  

4.3. Defining the Objective Function 

Regarding the Equation 1 it is clear that the time series related to the measurement of hydraulic heads and the flow 

discharge rates are required to create the objective function. Therefore, hydraulic head time series of the points in the 

finite elements model corresponding to the actual location of four piezometers G7, G8, G10 and G12, as shown in Figure 

7, have been used as well as the total flow discharge rate time series of the model. 

In this way, initially, a special permeability combination has been selected as the target combination of the problem 

and the hydraulic head time series in the mentioned piezometers and flow discharge rates associated with this particular 

state have been obtained. Table 4 shows the permeability coefficients in three target combinations in the present study. 
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Therefore, the purpose of inverse analysis is to identify these specified permeability combinations according to the 

values of hydraulic heads in the location of G7, G8, G10, and G12 piezometers and the flow discharge rates of the dam. 

In other words, it is assumed that the time series of the responses are obtained from the readings of the piezometers and 

flowmeters over the time, and just by having them the permeability coefficients in different parts of the dam are aimed 

to be identified and compared with the values considered in the design. Therefore, having the responses values, through 

each finite elements analysis the time series of the hydraulic heads and the total flow discharge rates and consequently 

the value of the objective function (the value of f in Equation 1) could be obtained for each combination. Obviously, in 

the ideal case, the value of the objective function would be zero. 

Table 3. Factors and levels used in orthogonal design selection (in terms of m/s) 

Shell Filters Core 
Foundation below 

20 meter depth 

Foundation in depth 

between 10 and 20 meters 

Foundation beneath the 

dam to 10 meters depth 
Level 

5 × 10−4 5 × 10−6 1 × 10−9 1 × 10−8 1 × 10−8 1 × 10−8 1 

1 × 10−3 1 × 10−5 2 × 10−9 2 × 10−8 2 × 10−8 2 × 10−8 2 

2 × 10−3 2 × 10−5 4 × 10−9 4 × 10−8 4 × 10−8 4 × 10−8 3 

4 × 10−3 4 × 10−5 8 × 10−9 8 × 10−8 8 × 10−8 8 × 10−8 4 

6 × 10−3 6 × 10−5 1.6 × 10−8 1.6 × 10−7 1.6 × 10−7 1.6 × 10−7 5 

8 × 10−3 8 × 10−5 3.2 × 10−8 3.2 × 10−7 3.2 × 10−7 3.2 × 10−7 6 

1 × 10−2 1 × 10−4 5 × 10−8 5 × 10−7 5 × 10−7 5 × 10−7 7 

Table 4. Intended permeability values (m/s) 

Shell Filters Core 
Foundation below 

20 meter depth 

Foundation in depth 

between 10 and 20 meters 

Foundation beneath the 

dam to 10 meters depth 
Region 

5 × 10−3 2 × 10−5 6 × 10−8 5 × 10−8 2 × 10−7 5 × 10−8 Case 1 

1 × 10−4 8 × 10−5 4 × 10−8 1 × 10−7 1 × 10−8 3 × 10−8 Case 2 

1 × 10−2 5 × 10−5 5 × 10−8 5 × 10−7 1 × 10−8 5 × 10−7 Case 3 

4.4. Inverse Analysis  

In order to perform the inverse analysis, the value of the objective function must be minimized. Thus, first, an artificial 

neural network has been constructed that has been used to give the values of the hydraulic heads, as well as the total 

flow discharge rate for any arbitrary combination at any time. In order to train the mentioned neural network, the answers 

obtained from 49 times of finite elements analysis of the dam model with different permeability combinations, derived 

from orthogonal design, have been used. The total number of available data was 7058 related to different times, of which 

10% has been used for testing, 5% for validation, and the remainder for the training of the network. To determine the 

number of layers and the number of neurons in each layer, a large number of neural networks have been constructed, 

trained, tested and validated. Consequently, a back propagation neural network with a 4 internal layers of respectively 

8, 35, 15, 5 neurons, had shown the best performance. Figure 12 shows the performance of this neural network during 

its raining, testing, and validating. As shown in this figure, the mean squared error of differences between actual results 

and the results obtained from the neural network is used to evaluate its performance. 

Finally, the PSO algorithm has been used to minimize the objective function, where after so many times of trial and 

error the initial population of 100 individuals with 1000 steps, has shown the best end results. Figure 13 shows its 

performance in different steps and the final answers which have been obtained after 1000 generations are displayed in 

Table 6. 
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Figure 11. General flowchart of the proposed method 
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Table 6. Identified Permeability coefficients from inverse modeling (m/s) 

Shell Filters Core 
Foundation 

below 20 m depth 

Foundation in depth 

between 10 and 20 m 

Foundation beneath the 

dam to 10 m depth 
Region 

5.0000 × 10−3 2.0000 × 10−5 6.0000 × 10−8 5.0000 × 10−8 2.0000 × 10−7 5.0000 × 10−8 Case 1 

1.0021 × 10−4 8.0003 × 10−5 4.0000 × 10−8 9.9999 × 10−8 9.9969 × 10−9 3.0000 × 10−8 Case 2 

1.0000 × 10−2 5.0009 × 10−5 5.0000 × 10−8 4.9999 × 10−7 9.9896 × 10−9 5.0000 × 10−7 Case 3 
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Figure 12. Performance of artificial neural network during training, testing and validation 

5. Results and Discussions 

In this research, an inverse analysis method was proposed to find the flow characteristics of a dam (especially the 

permeability of its different parts), taking into account the transient flow state and using the time series of hydraulic 

head changes and flow rate in the construction of the objective function. To investigate the efficiency of the proposed 

method in solving real large scaled problems, the inverse analysis method was used to estimate permeability coefficients 

in different parts of the Baft earth dam for three different permeability combinations.  

As shown in Tables 4 and 6, in the case 1 the values of permeability coefficients obtained from the proposed method 

absolutely matched the target ones. In case 2 and 3 a small differences between target values and identified ones which 

are completely negligible, are seen. Also it is clear that the obtained results are not dependent on the amount of 

permeability values because in all parts of the dam whether in the core or foundation regions with very low permeability 

values or in the filters and shell regions with relatively greater hydraulic conductivities, identified values are completely 

reliable. 

For a clearer understanding, Figure 14 provides bar charts to compare the target permeability values and the identified 

values from the proposed inverse analysis method for the three cases. The highest incompatibilities occurred in the 

foundation region in depth between 10 and 20 meters. 

 Application of a back propagation neural network substantially reduced the time needed for back analyses although 

it adds some errors to the answers. Because of facing with a large scale problem each time of ABAQUS modeling for 

an arbitrary composition takes at least 20 minutes. It means using direct PSO algorithm on the model was not applicable 

(100 individuals in each step) while using the neural network model made it possible. Acceptable performance of the 

applied neural network is clear from Figure 12. 

As shown in Figure 13, in all three cases the global best values showed a smoothly reduction during iterations 

although the convergence speed in case one is much greater. 
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Figure 13. PSO algorithm performance 
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Figure 14. Comparison of identified and actual permeability coefficients 

6. Conclusion 

The proposed method is based on the use of finite element analysis and combination of the orthogonal designs, 

artificial neural networks and PSO optimization algorithms that significantly reduce the volume of computations and 

increase the speed of solving large-scale real-world problems in engineering. 

Using proposed objective function led to a meaningful increase in the stability and accuracy of the inverse problem 

results. In addition the problem of ill-posedness has been fixed because the instability of the inverse solution stems from 

the fact that small errors in heads will cause serious errors in the identified permeability values. Furthermore, the 

anisotropic state could be considered in the same way if necessary. 

The obtained results indicate the applicability of using the proposed method in locating unconventional leakage in 

geo-hydraulic problems and assessing the weakness of sealing system. Certainly, in order to improve accuracy and to 

find the location of the fault more precisely, it is possible to increase the number of divisions in modeling and have more 

accurate evaluation for the treatment operations.  

Although the present research shows the ability of the proposed method to perform an inverse analysis, some 

imperfections such as ignoring the variability nature of parameters, the effect of embankments and excavations on the 

permeability of the bed layers, as well as the effect of climate change on effective parameters should be referred to, 

which are not considered in modeling to simplify the problem, and which can be used to conduct more accurate studies 

in future. 
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