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Abstract 

In this paper, the performance of a gas engine-driven heat pump (GEHP) was experimentally studied for space heating and 

cooling. An experimental test facility was developed for this purpose. The effect of key parameters on system performance 

was investigated under both cooling and heating modes. The results showed that as the engine speed increased from 1400 

to 2000 rpm, the cooling and heating capacities increased by 23% and 28.5%, respectively while the GEHP system Primary 

Energy Ratio (PER) decreased by 13.5% and 11.7% in the cooling and heating modes, respectively. The system PER in 

the cooling mode was found lower than that in the heating mode. This indicated that heat recovery from the engine cylinder 

and exhaust gas was very important for improving the GEHP system performance. In the heating mode, the ambient 

temperature and condenser water flow rate had a large effect on the system heating capacity and PER, and insignificant 

effect on the gas energy input. In the cooling mode, the chilled water inlet temperature showed a large effect on both 

cooling capacity and gas energy input while the chilled water flow rate had a large effect on cooling capacity and 

insignificant effect on the gas energy input. 

Keywords: Gas Engine-Driven Heat Pump; Pace Cooling; Space Heating; PER; Heat Recovery. 

 

1. Introduction 

Space cooling and heating are one of the largest energy consumptions in building sectors. Improving energy 

utilization efficiency of heating and cooling systems is one of the important ways to effectively utilize energy and reduce 

environmental pollution in this sector. Heat pump technology has been considered as a natural choice for space heating 

and cooling since it improves energy utilization efficiency and is environmentally friendly. Gas Engine-driven Heat 

Pump (GEHP) System has recently received much attention due to its high energy efficiency, especially for space 

heating [1]. 

Much research has focused on the study of the performance of GEHP systems for space heating. Zhang et al. [2] 

developed a steady-state model to investigate the performance of a GEHP system in heating mode. Results showed that 

engine waste heat provided about 1/3 of the total heating capacity. Engine speed largely affected the GEHP system 

performance while ambient temperature had little influence. Brenn et al. [3] compared the GEHP system performance 

with an electrically driven heat pump at hot water flow temperatures of 40 and 60 °C. The results showed that the GEHP 

system had almost the same efficiency and CO2 emissions as the electrically driven heat pump powered with electricity 

from the most modern natural gas-fired combined cycle power plants. Elgendy et al. [4] performed an experimental 
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study on the GEHP performance for hot water supply. The system Primary Energy Ratio (PER) decreased as the hot 

water inlet temperature decreased, and engine speed increased. Yang et al. [5] studied the performance of a GEHP 

system working as a water heater in winter using a thermal model. The system PER and COP were found to increase 

with increasing the water flow rate and decrease with increasing the rotary speed and hot water temperature. The waste 

heat was effectively used in the defrost. Zhang et al. [6] experimentally studied a GEHP system with engine heat 

recovery and reported that the GEHP system PER and COP were largely affected by the engine speed and outdoor air 

temperature. The same finding was reported by Hu et al. [7].  

Some researchers focus on the study of the GEHP system performance under cooling mode. Shin et al. [8] conducted 

dynamic modelling of a GEHP system during start-up in cooling mode. Variation of evaporator and condenser 

temperatures, shaft power consumption, engine fuel consumption and primary energy ratio of the system were evaluated. 

The comparison results showed that the proposed model could accurately predict system performance. Elgendy et al. 

[9] experimentally investigated the operating characteristics of a GEHP system used in water cooling without heat 

recovery. The effect of key parameters (e.g. evaporator water inlet temperature and flow rate, ambient air temperature, 

and engine speed) on the system performance was evaluated. A PER value of two was found for a wide range of 

operating conditions.  

Many researchers investigated the performance of GEHP systems under both cooling and heating modes. Yang et 

al. [10] experimentally investigated the operating characteristics of a GEHP system under different working conditions. 

It showed that the GEHP saved energy, and the system PER was as high as 1.42. Xu and Yang [11] investigated the 

influence of various factors, including outdoor air temperature and humidity in winter and summer on the GEHP system 

performance. Results showed that the GEHP system could save more energy than the electrically driven heat pump. The 

system PER was higher in winter than that in summer. Sanaye and Chahartaghi [12] studied thermal modelling of a 

GEHP system and evaluated the heat pump and engine performances under different operating conditions. The same 

authors further studied the economics of using GEHP systems at various climate regions of Iran for both residential and 

commercial buildings, and for both heating and cooling purposes [13]. Liu et al. [14] experimentally investigated the 

influence of various factors on the performance of a GEHP system for cooling and hot water supply. The results showed 

that the effect of the evaporator water inlet temperature and gas engine speed on the system performance was more 

significant than the ambient air temperature. Zhang et al. [15] studied the GEHP system with energy storage system 

when supplying heating and cooling to the different types of buildings. The results showed that the GEHP integrated 

with an energy storage system could be used in different types of buildings with a more stable operation characteristic, 

higher PER and more suitable performance. Wan et al. [16] optimized the operating characteristics of a novel air 

conditioning system using mathematical modelling. This system used two power sources, the gas engine and dual-use 

motor, respectively. The results showed that the gas engine could always run in an economic zone with high thermal 

efficiency above 0.25 under different working modes. 

From the above review, some experimental and theoretical investigation on the GEHP system performance has been 

conducted. However, very little literature discussed the GEHP system with heat recovery for both heating and cooling 

applications. In this paper, an experimental GEHP test rig was developed, and the performance of the GEHP system with 

heat recovery was experimentally studied for both heating and cooling applications. The effect of key parameters 

including engine speed, chilled water inlet and outlet temperature, ambient air temperature, condenser water flow rate 

on the system performance was evaluated. The research work provides useful information for theoretical study and 

GEHP system design and optimization. 

2. GEHP System Working Principle and Experimental Setup 

The GEHP system studied in this paper is the same as that reported in the literature [6]. Figure 1 shows a schematic 

diagram of a GEHP system which consists of two main circulating cycles: primary heat pump cycle and engine coolant 

cycle.  

Primary heat pump cycle: In a heating mode, the component (3) works as a condenser where the high-temperature 

refrigerant transfers energy to the condenser water. Water absorbs the thermal energy and its temperature increases. The 

hot water is introduced to the building to provide heating. The refrigerant is then cooled and condensed in the condenser. 

The liquid refrigerant flows through the receiver (5) and expands into the evaporator (7) via the electronic expansion 

valve (6). In the evaporator (7), the liquid refrigerant absorbs heat from the ambient air and then is channelled into the 

waste heat recovery exchanger (11) where it further absorbs heat from the engine coolant to recover heat from the engine 

cylinder and exhaust gas. The refrigerant enters the accumulator (12) where the liquid and gas refrigerant separates. 

Only superheated refrigerant vapour is absorbed by the compressor (2) where it is compressed and delivered to the 

condenser via the four-way valve (10) for the next cycle. During this heating mode, the heating capacity is calculated 

based on the measured condenser-water flow rate, and the water temperature difference at the condenser inlet and outlet. 

The compressor power consumption is calculated based on the refrigerant flow rate, and the refrigerant specific enthalpy 

change across the compressor. 
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In a cooling mode, the component (3) works as an evaporator where the refrigerant absorbs thermal energy from the 

chilled water and vaporizes. The chilled water is channelled to the building to provide cooling. The refrigerant vapour 

flows through the four-way valve (10) and enters the heat exchanger (11) where the waste heat is bypassed. Afterwards, 

the refrigerant vapour is absorbed by the compressor (2) and compressed. The high-temperature refrigerant flows to the 

component (7) which works as a condenser where the heat is rejected into the environment, and the refrigerant is cooled 

to a sub-cooled liquid. The liquid refrigerant bypasses the reservoir (5) and directly expands to the evaporator (3) for 

the next cycle. During this cooling mode, the cooling capacity is calculated based on the measured chilled-water flow 

rate, and the water temperature difference at the evaporator inlet and outlet. The compressor power consumption is 

calculated based on the refrigerant flow rate, and the refrigerant specific enthalpy change across the compressor. Also, 

in order to improve the energy utilization efficiency, the waste heat from the engine cylinder and exhaust gas is used to 

heat water to provide hot water for the building. 

Engine coolant cycle: ethylene glycol-water is used as engine coolant to cool the engine. The coolant flows through 

the exhaust gas heat exchanger (14) where it absorbs heat from the exhaust gas and then the engine cylinder heat 

exchanger (15) where it cools engine to ensure the engine’s stable and efficient operation, and meanwhile it removes 

heat from the engine cylinder. In the heating mode, after the coolant receives the engine waste heat, it is introduced into 

the heat pump waste heat recovery exchanger (11) where it exchanges energy with the refrigerant from the evaporator 

and is cooled down for next cycle. The radiator (8) is an auxiliary heat exchanger for cooling engine coolant to prevent 

the engine coolant temperature from getting too high and hence affect the engine operation. In the cooling mode, after 

the coolant receives the waste heat, it is used to heat water to provide hot water to the buildings. In the engine coolant 

cycle, the coolant’s mass flow rate, the coolant temperatures at the inlet and outlet of the waste heat recovery exchanger 

(11), the exhaust gas heat exchanger (14) and the engine cylinder (15), are all measured. The heat recovered from the 

engine cylinder and exhaust gas is calculated based on the coolant mass flow rate and temperature differences. 

 
1. Engine, 2. Compressor, 3. Condenser, 4. Regulating valve, 5. Reservoir, 6. Throttle valve, 7. Evaporator, 8. Radiator, 9. Fan, 10. Four-way valve, 
11. Waste heat exchanger, 12. Gas-liquid separator, 13. Three-way valve, 14. Exhaust gas heat exchanger, 15. Cylinder heat exchanger, 16. Pulley, 

17. Torque meter, 18. Pressure reducing valve, 19. Gas cylinders. 

Figure 1. A schematic diagram of a GEHP system with heat recovery 

Figure 2 shows a picture of the experimental setup of the studied GEHP system. The nominal heating capacity of 

the gas engine (Japanese Nissan) is 39 kW, and nominal speed is 1800 rpm. The heat pump system consists of a sliding 

vane compressor, a condenser (plate type heat exchanger), an evaporator (fin-tube heat exchanger), an electronic 

regulating expansion valve, a four-way valve, a waste heat exchanger, and two gas-liquid separators. The environmental 

friendly non-azeotropic refrigerant R407c is used as working fluid in the system. The system is well instrumented. The 

measurement locations are marked as T, p, and M for temperature, pressure and flow rate, respectively, as indicated in 

Figure 1. The temperatures are measured using pre-calibrated PT100 temperature sensors with an accuracy ±0.1 °C 

while pressures are measured using pressure transducers, MPM480 with an accuracy ±0.2% of full scale (0 – 3.5MPa). 

The refrigerant flow rate is measured using the turbine flow meter, LWGYC-10, with an accuracy ±0.5% of full scale 

(0.2 – 1.2 m3/hr), while the flow rate of the engine coolant is measured using the electromagnetic flowmeter, ZHLD-25 
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(with an accuracy ±0.5% of full scale, 0.3 – 12 m3/hr). The condenser/evaporator water flow rates are measured using 

the water flow meter, LDBE-40S (with an accuracy ±0.5% of full scale, 0.3 – 12 m3/hr). A mass flow meter DMF-1-1 

with an accuracy ±0.2% of full scale (0 – 15 kg/hr) is used to measure the natural gas flow rate. The power consumption 

is measured using a torque tachometer (JN338) with an accuracy of 0.5 level (0 – 700 Nm). All the measured data are 

recorded in a data acquisition system over time. Table 1 lists the detailed information of the used measurement devices 

and their accuracies.  

 

Figure 2. A picture of the studied GEHP Experimental setup  

Table 1. Specification of the measurement devices used in the experimental study 

Type Model Measurement range Accuracy 

Temperature sensors PT100 -200~650 °C ±0.1 °C 

Pressure transducers MPM480 0~3.5 MPa ±0.2% of full scale 

Electromagnetic flow meter LDBE-40S-H2F120-30 0.3-12 m3/hr ±0.5% of full scale 

Turbine flow meter LWGYC-10 
0.2~1.2 m3/hr ±0.5% of full scale 

0.2~1.5 m3/hr ±0.5% of full scale 

Electromagnetic flow meter ZHLD-25 0.3-12 m3/hr ±0.5% of full scale 

Gas mass flow meter DMF-1-1 0-15 kg/hr ±0.2% of full scale 

Torque tachometer JN338 0~700 N·m 0.5 level 



Civil Engineering Journal         Vol. 5, No. 10, October, 2019 

2286 

 

 

3. Performance Calculation 

The performance of the GEHP system can be calculated from measured data for R407c operating pressures and 

temperatures, as well as ethylene glycol-water and condenser water temperatures. The heating capacity 𝑄̇ℎ and cooling 

capacity 𝑄̇𝑐 are calculated based on the condenser or evaporator water flow circuit using Equations 1 and 2, respectively:   

For heating mode:    𝑄̇ℎ = 𝑚̇𝑤𝑐 ⋅ 𝑐𝑝−𝑤 ⋅ (𝑇𝑤𝑐−𝑜𝑢𝑡 − 𝑇𝑤𝑐−𝑖𝑛)                                                                          (1) 

For cooling mode:   𝑄̇𝑐 = 𝑚̇𝑤𝑒 ⋅ 𝑐𝑝−𝑤 ⋅ (𝑇𝑤𝑒−𝑜𝑢𝑡 − 𝑇𝑤𝑒−𝑖𝑛)                                                                           (2) 

Where 𝑚̇𝑤𝑐 , 𝑚̇𝑤𝑒is condenser and evaporator water flow rate, respectively. cp-w is specific heat of condenser and 

evaporator water at constant pressure. Twc-out and Twc-in are water temperature at the condenser inlet and outlet, 

respectively. Twe-out and Twe-in are water temperature at the evaporator inlet and outlet, respectively. 

The heat recovered from the engine cylinder and exhaust gas 𝑄̇𝑒𝑥ℎ  is calculated based on the ethylene glycol-water 

flowing circuit using Equations 3 and 4, respectively: 

For heating mode:   𝑄̇𝑒𝑥ℎ = 𝑚̇𝑔𝑤,𝑒𝑥ℎ ⋅ 𝑐𝑝,𝑔𝑤 ⋅ (𝑇𝑔𝑤,𝑒𝑥ℎ,3 − 𝑇𝑔𝑤,𝑒𝑥ℎ,4)                                                            (3) 

For cooling mode:    𝑄̇𝑒𝑥ℎ = 𝑚̇𝑔𝑤,𝑒𝑥ℎ ⋅ 𝑐𝑝,𝑔𝑤 ⋅ (𝑇𝑔𝑤,7 − 𝑇𝑔𝑤,5)                                                                       (4) 

Where 𝑚̇𝑔𝑤,𝑒𝑥ℎ  is ethylene glycol-water flow rate, cp,gw is specific heat of ethylene glycol-water at constant 

pressure, and 𝑇𝑔𝑤,𝑒𝑥ℎ,3, 𝑇𝑔𝑤,𝑒𝑥ℎ,4, 𝑇𝑔𝑤,5, 𝑇𝑔𝑤,,7 is ethylene glycol-water temperature at the measurement points 3, 4, 5 and 

7 as indicated in Figure 1. 

The compressor power consumption, Wcomp is calculated by using Equations 5, 6, 7, as follows:  

𝑊𝑐𝑜𝑚𝑝 = 𝑚̇𝑟𝑒𝑓 ⋅ (ℎ𝑟𝑒𝑓,𝑜𝑢𝑡 − ℎ𝑟𝑒𝑓,𝑖𝑛)/𝜂𝑐𝑜𝑚𝑝                                                                                                (5) 

ℎ𝑟𝑒𝑓,𝑜𝑢𝑡 = 𝑓(𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡)                                                                                                                (6) 

ℎ𝑟𝑒𝑓,𝑖𝑛 = 𝑓(𝑃𝑐𝑜𝑚𝑝,𝑖𝑛, 𝑇𝑐𝑜𝑚𝑝,𝑖𝑛)                                                                                                                      (7) 

Where 𝑚̇𝑟𝑒𝑓 is refrigerant flow rate, href,in and href,out are refrigerant specific enthalpy at the compressor inlet and outlet, 

respectively. The specific enthalpy is obtained from the NIST database according to the temperatures and pressures. 

Pcomp,in, Pcomp,out, Tcomp,in and Tcomp,out are the pressures and temperatures at the compressor inlet and outlet, respectively. 

𝜂𝑐𝑜𝑚𝑝  is the compressor mechanical efficiency and is set at 0.96 for this study according to the manufacturer’s product 

specification. 

The total energy consumption   𝐸̇𝑛𝑔 is calculated based on the natural gas flow rate 𝑚̇𝑛𝑔and low heating value, LHV 

using Equation 8: 

𝐸̇𝑛𝑔 = 𝑚̇𝑛𝑔 ⋅ 𝐿𝐻𝑉                                                                                                                                           (8) 

The COP of the heat pump and the PER of the GEHP system are calculated by Equations 9 and 10: 

For heating: 𝑃 =
𝑄̇ℎ

𝑊𝑐𝑜𝑚𝑝
 ,     𝑃𝐸𝑅 =

𝑄̇ℎ

𝐸̇𝑛𝑔
                                                                                                       (9) 

For cooling: 𝑃 =
𝑄̇𝑐

𝑊𝑐𝑜𝑚𝑝
 ,     𝑃𝐸𝑅 =

𝑄̇𝑐

𝐸̇𝑛𝑔
                                                                                                     (10) 

In the cooling mode, if the waste heat is used to provide hot water or other heating purposes for the building, the 

total system PERtotal is calculated by Equation 11: 

𝑃𝐸𝑅 =
𝑄̇𝑐+𝑄𝑒𝑥ℎ

𝐸̇𝑛𝑔
                                                                                                                                             (11) 

In the experimental study, error analysis is always very important. The accuracy of the sensors has been presented 

in Table 1. The measurement errors for heating capacity, cooling capacity, COP and PER caused by the accuracy of the 

sensors can be calculated from error propagation using the Kline and McClintock method [17] as expressed by Equation 

12: 

𝑤𝑅 = [(
𝜕𝑅

𝜕𝑥1
𝑤1)

2
+ (

𝜕𝑅

𝜕𝑥2
𝑤2)

2
+⋅⋅⋅ + (

𝜕𝑅

𝜕𝑥𝑛
𝑤𝑛)

2
]

1/2

                                                                                  (12) 

Where wR is the resultant uncertainty, w1, w2, …, wn are the uncertainties of the independent variables. R is a given 
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function of the independent variables x1, x2, …, xn. Using this equation, the uncertainties for the heating capacity, cooling 

capacity, recovered heat capacity, COP and PER are ±3.5%, ±3.5%, ±7.5%, ±4.2%, and ±4.5%, respectively. 

4. Results and Discussion 

The performance of the GEHP system was studied for both cooling and heating operating modes under different 

operating conditions. Figure 3 shows the experimental flow chart. In order to minimize the measurement error, the 

experiments were repeated at least three times at each operating condition. Table 2 listed the GEHP experimental 

operating conditions in this study. 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental flow chart 

Table 2. Experimental operating conditions 

Operating mode Operating condition Operating parameter Experimental data 

Cooling mode 

Variable engine speeds 

Engine speed 1400, 1600, 1800, 2000 rpm 

Ambient temperature 28 °C, 32 °C 

Chilled water flow rate 6 m3/hr 

Chilled water inlet temperature 12 °C 

Variable chilled water 
flow rate 

Engine speed 1800 rpm 

Ambient temperature 32 °C 

Chilled water flow rate 4, 4.8, 6 m3/hr 

Chilled water inlet temperature 12, 16 °C 

Heating mode 

Variable engine speeds 

Engine speed 1400, 1600, 1800, 2000 rpm 

Ambient temperature 3 °C 

Condenser water flow rate 8.53 m3/hr 

Condenser water inlet temperature 40 °C 

Variable condenser 

water flow rate 

Engine speed 1800 rpm 

Ambient temperature 3 °C 

Condenser water flow rate 7.58, 8.53, 9.47 m3/hr 

Condenser water inlet temperature 40 °C 

Variable Ambient 

temperature 

Engine speed 1800 rpm 

Ambient temperature 2.7 – 12.2 °C 

Condenser water flow rate 8.53 m3/hr 

Condenser water inlet temperature 40 °C 

General parameters for 
both heating and 

cooling mode 

All conditions 

Evaporation pressure 0.36 – 0.44 MPa 

Condensing pressure 2.04 – 2.13 MPa 

Air-cooled heat exchanger fan flow rate 18000 m3/hr 

Engine coolant flow rate 2.95 m3/hr 

Waste heat exchanger water flow rate 0.75 m3/hr 

Waste heat exchanger water inlet temperature 72 °C 

Gas exhaust temperature 175 – 185 °C 

Engine water inlet temperature 67.7 – 69 °C 

Exhaust gas heat exchanger water inlet temperature 65.2 – 67.5 °C 
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4.1. Performance Analysis in Cooling Mode 

Figure 4 shows the variation of the cooling capacity and gas energy under different engine speeds and ambient 

temperatures. The chilled water inlet temperature and flow rate are maintained at 12 °C and 6 m3/hr, respectively. As 

the engine speed increases from 1400 to 2000 rpm, the gas energy, and cooling capacity is increased by 43% and 23%, 

respectively. This is because an increase in engine speed increases the gas flow rate. Meanwhile, it also increases the 

compressor rotational speed which increases the refrigerant flow rate and cooling capacity. As the ambient temperature 

increases from 28 to 32 °C, both cooling capacity and gas energy decreases. For gas energy, it is due to the gas density 

which reduces with increasing the ambient temperature. Hence the gas mass flow rate decreases leading to a decrease 

in gas energy. For the cooling capacity, the increase in ambient temperature causes a rise in the condenser pressure and 

temperature due to the air-cooling. Therefore, the compressor power consumption increases and the cooling capacity 

decreases in the refrigeration system. 

 

Figure 4. Cooling capacity and gas energy under ambient temperatures of 28 and 32 °C 

Furthermore, the increase of gas energy is much higher than the cooling capacity as the engine speed increases. This 

explains the decrease in system PER as shown in Figure 5. As the engine speed increased from 1400 to 2000 rpm, the 

GEHP system PER decreased by 13.5%. Figure 5 also showed that the refrigeration system COP decreased with engine 

speed. This was because the increase in compressor power consumption is higher than the cooling capacity. Moreover, 

it was shown that the system PER was less than 1 for the cooling mode in all studied conditions. This indicated that 

much energy was lost from the engine. As shown in Table 2, the gas exhaust temperature is about 175 – 185 °C and 

engine water inlet temperature is between 67.7 to 69 °C. Such a high temperature could be recovered to provide hot 

water for buildings. 

 

Figure 5. Refrigeration system COP and GEHP system PER under ambient temperatures of 28 and 32 °C 
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Figure 6 shows the potential recovered thermal energy and system total PER when the recovered thermal energy is 

considered. The total potential recovered thermal energy ranged between 18 kW at the engine speed of 1400 rpm and 

26 kW at the engine speed of 2000 rpm. The system PER increased from between 0.96 and 0.83 to between 1.5 and 1.36 

when the waste heat was recovered. This demonstrated that it was important to recover the waste thermal energy from 

the exhaust gas and engine cylinder to improve energy utilization efficiency even the GEHP is running under cooling 

mode. 

 

Figure 6. Variation of potential recovered energy and system total PER under ambient temperatures of 28 and 32 °C 

Figures 7 to 9 show the effect of the chilled water flow rate on the performance of the GEHP system. The engine 

speed and ambient temperature are maintained at 1800 rpm and 32 °C, respectively. As shown in Figure 7, as the chilled 

water flow rate increases, the cooling capacity increases remarkably while the gas energy does not show a significant 

change. This can be explained from the conventional vapour compression refrigeration system. As the chilled water 

flow rate increases, the average chilled water temperature between the evaporator inlet and outlet increases. This leads 

to a rise in the refrigerant evaporation temperature which increases the cooling capacity. However, this effect on the 

engine is very small so that the gas energy does not change significantly. Furthermore, due to an increase in refrigerant 

evaporation temperature, the refrigeration pressure difference across the compressor reduces and hence, the compressor 

power consumption decreases. These two factors increase both the refrigeration system COP and the GEHP system PER 

as shown in Figure 8.  

 

Figure 7. Variation of cooling capacity and gas energy under chilled water inlet temperatures of 12 and 16 °C 
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Figure 8. Variation of refrigeration system COP and system PER under chilled water inlet temperatures of 12 and 16 °C 

Figures 7 and 8 also shows that the cooling capacity and gas energy increase as the chilled water inlet temperature 

increases from 12 to 16 °C. This can also be explained from the conventional vapour compression refrigeration system. 

As the chilled water inlet temperature increases, the refrigeration evaporation temperature increases, which increases 

the cooling capacity and reduces the compressor power consumption per unit refrigerant. Therefore, both cooling 

capacity and COP of the refrigeration system increases. Due to the increase in cooling capacity, the refrigerant mass 

flow rate in the system also increases, which requires high compression power for the whole cycle. The increase in total 

compression power consumption requires more power input from the gas engine. However, due to high refrigeration 

system performance, the increase in gas energy is much smaller than the increase in the cooling capacity. Therefore, the 

GEHP system PER increases.  

Figure 9 shows the potential available thermal energy for providing hot water to the building and potential system 

total PER. As the chilled water flow rate increases, the refrigeration system is more efficient, and more gas energy is 

utilized. Therefore, the engine system performance also increases and hence, the potential available thermal energy 

reduces. However, due to an increase in cooling capacity as shown in Figure 7, the overall system total PER increases.   

 

Figure 9. Variation of the recovered heat and system total PER under chilled water inlet temperatures of 12 and 16 °C 
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4.2. Performance Analysis in Heating Mode 

Figure 10 shows the variation of the heating capacity, gas energy and utilization of waste heat under different engine 

speeds. The ambient temperature is 3 °C. The condenser water inlet temperature and the flow rate are maintained at 40 

°C and 8.53 m3/hr, respectively. As the engine speed increases from 1400 to 2000 rpm, the heating capacity, gas energy 

and recovered waste heat are increased by 28.5%, 45.7%, and 62.5%, respectively. This increasing trend is consistent 

with the finding in the literature [10]. This is mainly due to the gas mass flow rate. With increasing the engine speed, 

the gas mass flow increases in the engine, which increases the gas energy input. Meanwhile, a rise in engine speed 

directly increases the compressor speed in the heat pump, which increases the refrigerant mass flow rate. Therefore, the 

heating capacity increases. On the other hand, the energy absorbed in the evaporator and waste heat exchanger by the 

refrigerant increases, which in-turn recovers more thermal energy.  

 

Figure 10. Variation of the cooling capacity, gas energy and recovered waste heat under different engine speeds 

Figure 11 shows the variation of the heat pump COP and the GEHP system PER. Both COP and PER were found to 

decrease with increasing the engine speed. This trend is also consistent with the finding in the literature [10]. This is 

mainly due to the operating characteristics of the heat pump. As the compressor speed increases, the refrigerant mass 

flow increases, which lowers the evaporation pressure and increases the condensation pressure. Therefore, the 

compressor power consumption increasing rate is higher than the increasing rate of the heating capacity. Hence, the heat 

pump COP drops. As shown in Figure 10, the increasing rate of heating capacity is smaller than the increasing rate of 

gas energy, which leads to a decrease in the GEHP system PER. 

 

Figure 11. Variation of the heat pump COP and GEHP system PER under different engine speeds 
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Another interesting finding is that the GEHP system PER in the heating mode (e.g. between 1.25 and 1.4 in Figure 

11) is much higher than that in the cooling mode (e.g. 0.7 - 0.9 in Figure 5) without heat recovery. This is consistent 

with the finding reported in the literature [11]. This is mainly because the waste heat from the exhaust gas and engine 

cylinder is effectively recovered in the heating mode. As presented in Figures 6 and 9, if the waste heat from the engine 

cylinder and exhaust gas could be used to provide hot water or for other heating purposes, the system PER increased 

from between 0.7 and 0.9 to between 1.25 and 1.45 in the cooling mode. This PER in the cooling mode with heat 

recovery is similar to the GEHP system PER in the heating mode, which indicated that waste heat recovery is very 

important in the GEHP system for both cooling and heating modes.     

Figures 12 and 13 show the effect of ambient temperature on the GEHP system performance. The engine speed is 

1800 rpm. The condenser water flow rate and inlet temperature are 8.53 m3/hr and 40 °C, respectively. As shown in 

Figure 12, as the ambient temperature increases from 2.7 to 12.2 °C, the heating capacity increases by 27% while the 

gas energy and waste heat recovery only increase by 7.7% and 8%, respectively. This is consistent with the finding in 

the literature [2]. This is because the increase in ambient temperature increases the refrigeration evaporation temperature, 

pressure and mass flow rate in the evaporator. The rise in the refrigerant mass flow rate increases the heating capacity 

and compressor power consumption. Meanwhile, the increase in refrigeration pressure reduces the compression power 

consumption, which offsets an increase in compressor power consumption caused by an increase in the refrigerant mass 

flow rate. Therefore, the increase in compressor power consumption is much smaller than heating capacity. This small 

increase in compressor power consumption leads to a gentle increment of gas energy as shown in Figure 12. Due to 

these reasons, the heat pump COP shows a much larger increment than the GEHP system PER in Figure 13. As the 

ambient temperature increases from 2.7 to 12.2 °C, the heat pump COP is increased by 23% while the GEHP system 

PER is increased by 17%.    

 
Figure 12. Effect of ambient temperature on heating capacity, gas energy and recovered waste heat 

 
Figure 13. Effect of ambient temperature on the heat pump COP and GEHP system PER 
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Figures 14 and 15 show the effect of condenser water flow rate on the performance of the GEHP system. The engine 

speed is 1800 rpm. The ambient temperature and the condenser water inlet temperature are maintained at 3 °C and 40 

°C, respectively. As shown in Figure 14, as the condenser water flow rate increases from 7.58 to 9.47 m3/hr, the heating 

capacity, gas energy and recovered waste heat are increased by 6.6%, 1.3, and 0.9%, respectively. This indicates that 

the condenser water flow rate has small effects on the GEHP system performance. As the condenser water flow rate 

increases, the condensation temperature, and pressure drop. The refrigerant specific enthalpy difference across the 

condenser increases and hence the heating capacity increases. The drop of the refrigeration pressure also leads to a 

reduction of the compressor power consumption which offsets by an increase in the compressor power consumption 

caused by the refrigerant mass flow rate. The change in compressor power input also causes an increase in gas energy. 

Therefore, both heat pump COP and GEHP system PER increase gently as shown in Figure 15. 

 
Figure 14. Effect of the condenser water flow rate on the heating capacity, gas energy and recovered waste heat 

 
Figure 15. Effect of the condenser water flow rate on the heat pump COP and GEHP system PER 
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the energy utilization efficiency in both cooling and heating modes. 

 The engine speed had a similar impact on the GEHP system performance for both cooling and heating modes. As 

the engine speed increased from 1400 to 2000 rpm, the heating capacity increased by 28.5% and the system PER 

dropped by 11.7% in the heating mode while the cooling capacity increased by 23% and the system PER dropped 

by 13.5% in the cooling mode.   

 In the cooling mode, as the ambient temperature increased from 28 to 32 °C, the cooling capacity and system PER 

decreased by up to 7% and 12%, respectively. However, in the heating mode, as the ambient temperature increased 

from 2.7 to 12.2 °C, the heating capacity and system PER increased by 27% and 18%, respectively. 

 In the cooling mode, an increase in the chilled water flow rate and inlet temperature improved both system cooling 

capacity and PER. In the heating mode, an increase in the condenser water flow rate slightly improved the system 

heating capacity and PER.      

These experimental analyses provide useful information for theoretical study as the experimental results proved the 

theoretical finding from numerical simulations in the literature.  
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