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Abstract 

A symmetrical isolated rectangular footing with centered biaxial overturning develops soil pressure that shifts to counter 

balance the loads. The highest soil pressure is at a corner. The objective of this paper is to extend the uniaxial soil pressure 

solution to include biaxial loads and to document a simple and understandable way to directly calculate the shape of the 

soil pressure distribution. Another objective is to make the solution suitable for automation. In uniaxial overturning there 

are two transition shapes, trapezoidal and triangular. In biaxial overturning there are three transition shapes and they form 

4, 5 & 6 sided polyhedrons. This analysis calculates those volumes and compares them to the design vertical load to 

determine the characteristic shape of the soil pressure distribution. The calculation then proceeds to converge on the precise 

shape and calculate its centroid and moment capacity. Assemblies of tetrahedrons are used to model all of the soil pressure 

shapes. The advantage of this methodology is that matrix algebra can be used to organize the calculations and make them 

computationally efficient. The assumed soil pressure and footing dimensions can be adjusted until the calculated moment 

capacity matches the overturning moment. 
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1. Introduction 

A symmetrical isolated rectangular footing with centered biaxial overturning loads develop soil pressure that shifts 

to counter balance the loads. The highest soil pressure is at a corner. 

Figure 1 shows a footing with biaxial loading. All the loads are resolved to the center of the footing and they are 

perpendicular to one another. For soil pressure calculations all of the loads are projected to the foundation soil contact 

plane.  

 The input variables are as follows; 

 Vf Footing vertical load 

 W Footing Width 

 L Footing Length 

 MPL Moment parallel 

 MPR Moment perpendicular 
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Figure 1. Loads at foundation contact 

In plan, Peck [1] presents the axis of zero soil pressure as a line based on the pressure from eccentricity in each 

direction (Figure 2). Equation 1 is used to compute the fictitious pressures at the corners as if tension across the 
soil footing contact plane could exist. The moments create highest soil pressure at the corner labeled 1. 

q =
V

A
±

MPR ∗ cx

Iy
±

MPL ∗ cy

Ix
 (1) 

The axis of zero soil pressure is then located on the basis of pressures calculated from Equation 1. Including the 

moments of inertia accounts for the tendency of the footing to roll toward the weak axis. This is most evident for a 

footing with significant differences in the dimensions of L and W. For a square footing with length and width the same, 

the axis of zero soil pressure is aligned perpendicular to the moment vector. 

∅ = atan(

MPR ∗ cx
Iy

MPL ∗ cy
Iy

) (2) 

M = √𝑀𝑃𝑅2 + 𝑀𝑃𝐿2 (3) 

 
Figure 2. Axis of zero soil pressure 

In isometric view (Figure 3) the characteristic shape of the soil pressure is revealed (In this view the shape is between 

the first and second transitions). The shape grows in the direction of +V or shrinks in the direction of –V until the volume 

of the pressure distribution matches the vertical load. The base of the soil pressure distribution slopes as a planer surface 

between the maximum soil pressure and the axis of zero soil pressure. The soil pressure volume grows or shrinks as the 

axis of zero soil pressure moves parallel to itself. 
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Figure 3. Soil pressure shape 

1.1. Uniaxial Overturning Soil Pressure 

When a footing is subject to vertical load without overturning, the pressure distribution is uniform across the base of 

the footing. When overturning is applied the soil pressure shifts to counterbalance the moment. The volume shifts away 

from uniform and through two transition volumes, first trapezoidal and then triangular (Figure 4). Through all transitions 

the volume of the pressure distribution is still equal to the vertical load. In each case the vertical load multiplied by the 

eccentricity equals the overturning moment [2]. 

 

Figure 4. Uniaxial soil pressure 

1.2. Biaxial Overturning 

The same principal applies to biaxial overturning. Instead of two transition shapes there are three. The orientation of 

the axis of zero soil pressure is calculated (Equation 2). The leading edge of the soil pressure distribution or the axis of 

zero soil pressure is the intersection between the footing/soil contact plane and the base of the pressure distribution plane. 

As the axis of zero soil pressure moves parallel to itself, the soil pressure volume grows from enclosing small volumes 

to larger volumes. As is crosses through the corners it forms the transition volumes. It crosses three corners, thus there 

are three transition volumes.  

When L < W ∗ tan⁡(∅) the axis of zero soil pressure contacts the corner at L before W (Figure 5). When the axis of 

zero soil pressure contacts W before L then the solution follows a parallel but separate path or a simple axis rotation can 

be made to use this solution. 



Civil Engineering Journal         Vol. 5, No. 11, November, 2019 

2426 

 

 

For each foundation and assumed maximum soil bearing pressure Fv, there are three transition volumes dependent 

only on Vf, W, L and the axis of zero soil pressure . The three transitions for an arbitrary angle are shown in Figure 5. 

When their volumes are calculated and compared to the footing vertical load the characteristic shape for the soil pressure 

distribution is determined. The characteristic shape remains the same between transitions. Up to the first transition, the 

shape of the volume is four sided. Between the first and second transitions, its five sided. Between the second and third 

transitions, its six sided. And when greater than the third transition it’s still six sided.  

The range of volumes through all transitions is from uniform soil pressure and no overturning on the high end, to 

small tetrahedrons with highest possible eccentricities on the low end. When the footing vertical load is compared to the 

range of possible volumes, the characteristic soil pressure shape for the footing is found. Once identified, iteration is 

used to converge on the precise shape that matches the footing vertical load. The centroid of the shape is then calculated 

to determine the moment capacity. The footing and the loads are a free body and the calculation simply balances the 

forces and moments [7]. 

 

Figure 5. Three transition volumes 
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1.3. Maximum Soil Pressure 

The maximum soil pressure is the peak pressure that the foundation exerts on the ground under the foundation in 

units of force per length squared. Limits on this value are dictated by site conditions. For this paper it is assumed that 

limits on maximum soil pressure are provided separately.  For analysis purposes, with known footing dimensions and 

loads, the maximum soil pressure is adjusted until the calculated moment capacity matches the overturning. For design 

purposes, site limitations or allowable soil bearing pressure are initially assumed to size the foundation. Once the 

foundation is sized to meet design limitations and requirements, further refinement of the maximum soil pressure can 

be made to determine the smallest value that balances the overturning load. A footing that meets allowable soil pressure 

limits may have actual soil pressure that is lower. 

A footing subject to significant biaxial overturning must be sized to allow soil pressure to build at the corner. If the 

allowable soil bearing pressure is significantly higher than the unloaded condition (V/A) higher overturning can be 

accommodated. The footing must be big enough and strong enough to take advantage of the difference between the 

unloaded condition and the highest allowable pressure at the corner with overturning. The most economical solution is 

where the soil pressure reaches the allowable and vertical load eccentricity balances the overturning. The economical 

solution takes advantage of the allowable soil bearing pressure by reducing the footing size while achieving other 

stability goals and forcing the corner bearing pressure toward the allowable. If reserve soil bearing exists, the solution 

here will move toward the first transition volume. If the footing vertical load is small relative to the overturning moments 

the solution will also move toward the first transition volume.    

1.4. Calculation Method 

For this method of calculating soil pressure the loads and footing dimensions are known and the maximum soil 

pressure assumed. The calculation then proceeds to calculate the three transition volumes associated with those values. 

The design vertical load is then compared to the calculated transition volumes. 

Here, the calculation branches to one of four paths.  The first path is followed when the footing vertical load is less 

than the first transition volume. The second path is followed when the footing vertical load is between the first and 

second transition volumes. The third path is followed when the footing vertical load is between the second and third 

transition volumes and the fourth path is used when the footing vertical load is greater than the third transition volume. 

Although the solution is broken into four paths, the soil pressure shape transition is continuous from uniform soil 

pressure to a corner tetrahedron. The footing soil contact plane rotates about the highest loaded corner parallel to the 

axis of zero pressure. It starts horizontal and it ends as it approaches vertical. The transition volumes are the places it 

passes the other foundation corners. The soil pressure shape is the intersection of those two planes and vertical planes 

from the sides of the footing [4]. It is important to recognize the planer structure in order to reduce the number of 

unknown variables.  

For all four calculation paths, all of the corner points of the pressure distribution are written in terms of a single 

variable that is adjusted until the equation for the volume converges on the design vertical load. With just a single 

variable, there is a direct solution. It just produces a large complicated equation for both the volume and the center of 

gravity. No attempt is made here to solve for the single variable, rather this paper relies on the iterative solution. This 

makes it easier to control the precision, particularly when supported by automation. Consider using different precisions 

for z axis variables to adjust for units. Following convergence on the footing vertical load, the center of gravity and the 

moment capacity are calculated. 

Several analytical and graphical methods for solving this problem are available [1, 5-8] but the introduction of 

tetrahedrons and matrices simplifies the solution. There are certainly other numerical and higher level math solutions. 

This solution is methodical and direct.  

The results of the calculation is a moment capacity for the given variables and the assumed soil bearing pressure. If 

the moment capacity is too low, the maximum soil pressure is increased or the dimensions of the footing are increased. 

If the moment capacity is too high, the maximum soil pressure is decreased or the dimensions are decreased. All solutions 

with excess moment capacity are viable, but not the most economic. The optimal solution is found when the highest 

allowable soil pressure is used and the moment capacity balances the overturning moment. To lower a footings soil 

pressure add size. Adding footing size in the direction of a line perpendicular to the axis of zero soil pressure is most 

efficient in counterbalancing overturning. Peck [1] provided a caution “However, a great degree of refinement cannot 

be justified in view of the uncertainties associated with the various assumptions that must be made in solving any 

problem of this type”. 

A flowchart of this design process is shown in Figure 6. 
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Figure 6. Calculation flowchart 

2. Transition volumes 

2.1. Transition Volume 1 

The first transition volume (TV1) forms a tetrahedron with coordinates shown in Figure 7. The determinant of the 

tetrahedron corner matrix yields the volume [9, 10]. The volume of all tetrahedrons is positive so absolute values of 

each determinant is used. The dimension W is aligned with the X axis, L with the Y axis and Fv with the Z axis.  

Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 X2 0 0 

3 0 L 0 

4 0 0 Fv 

X2 = L/tan (4) 

V =
1

6
∗ [

0 0 0 1
𝑋2 0 0 1
0 𝐿 0 1
0 0 𝐹𝑣 1

] (5) 

V =
1

6
∗ (𝐹𝑣 ∗ 𝐿 ∗ 𝑋2) (6) 

 

Figure 7. First transition volume 
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2.2. Transition Volume 2 

As the soil pressure volume grows past the first transition to the second, the projections of lines 2-3, 1-4 and 6-5 and 

the planes associated with them intersect at point A (Figure 8) [4]. This provides a visual model for the solution of the 

variables. The variables X3 and Z5 are written in terms of X2 and known values (Equations 5 & 6) [11].  

The second transition volume (TV2) is comprised of three independent tetrahedrons with corner coordinates shown 

in Figure 8. For each tetrahedron, a corner matrix is formed for the calculations. The volume is based on the sum of the 

determinants of the matrices. Other tetrahedron assemblies may be used to build the same volume, but the tetrahedron 

assemblies must be independent and fully encompasses, without gaps, the soil pressure volume. 

Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 W 0 0 

3 X3 L 0 

4 X2 0 0 

5 0 L Z5 

6 0 0 Fv 

X3 = W −
L

tan()
 (7) 

Z5 = Fv ∗
W ∗ tan() − L

W ∗ tan()
 (8) 

Figure 8 includes dotted lines delineating the tetrahedrons. The tetrahedron corners are listed here. The first three 

corners can be viewed as a triangle. The fourth corner can be viewed as the apex or common point of the triangle vertices. 

But any three corners can be viewed as the triangle, with the fourth corner being the apex. 

 1, 6, 2, 3 

 1, 3, 4, 6 

 4, 5, 3, 6 

V =
1

6
∗

[
 
 
 
 

[

0 0 0 1
0 0 𝐹𝑣 1
𝑊 0 0 1
𝑋3 𝐿 0 1

] + [

0 0 0 1
𝑋3 𝐿 0 1
0 𝐿 0 1
0 0 𝐹𝑣 1

] + [

0 𝐿 0 1
0 𝐿 𝑍5 1
𝑋3 𝐿 0 1
0 0 𝐹𝑣 1

]

]
 
 
 
 

 (9) 

The volume equations separate each determinant by a plus (+) sign. 

V =
1

6
∗ (𝐹𝑣 ∗ 𝐿 ∗ 𝑊 + 𝐹𝑣 ∗ 𝐿 ∗ 𝑋3 + 𝐿 ∗ 𝑋3 ∗ 𝑍5) 

 

Figure 8. Second Transition Volume 

(10) 
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2.3. Transition Volume 3 

As the soil pressure volume grows past the second transition to the third, the projections of lines 1-4 and 6-5 and the 

planes associated with them intersect at point A and the projections of lines 1-2 and 6-7 and the planes associated with 

them intersect at point B. This provides a visual model for the solution of the variables (Figure 9). The variables Z5 and 

Z7 are written in terms of W, L and Fv from similar triangles. 

The third transition volume (TV3) is comprised of four independent tetrahedrons with coordinates shown in Figure 

9. The sum of the determinants of the four tetrahedron corner matrices yields the volume which from symmetry is always 

exactly half of the full volume (𝐹𝑣 × 𝑊 × 𝐿). 

Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 W 0 0 

3 W L 0 

4 0 L 0 

5 0 L Z5 

6 0 0 Fv 

7 W 0 Z7 

Z5 = Fv ∗
W ∗ tan()

𝐿 + 𝑊 ∗ tan()
 (11) 

Z7 =
Fv ∗ L/tan()

W + L/ tan()
 (12) 

Tetrahedron corners. 

 1, 2, 3, 6 

 1, 6, 3, 4 

 2, 3, 7, 6 

 4, 5, 6, 3 

The Soil pressure volume is based on the sum of the determinants of the four tetrahedron corner matrices. 

V =
1

6
∗

[
 
 
 
 

[

0 0 0 1
𝑊 0 0 1
𝑊 𝐿 0 1
0 0 𝐹𝑣 1

] + [

0 0 0 1
0 0 𝐹𝑣 1
𝑊 𝐿 0 1
0 𝐿 0 1

] + [

𝑊 0 0 1
𝑊 𝐿 0 1
𝑊 0 𝑍7 1
0 0 𝐹𝑣 1

] + [

0 𝐿 0 1
0 𝐿 𝑍5 1
0 0 𝐹𝑣 1
𝑊 𝐿 0 1

]

]
 
 
 
 

 (13) 

V =
1

6
∗ (𝑊 ∗ 𝐿 ∗ 𝐹𝑣 + 𝑊 ∗ 𝐹𝑣 ∗ 𝐿 + 𝑊 ∗ 𝐿 ∗ 𝑍7 + 𝑊 ∗ 𝐿 ∗ 𝑍5) (14) 

 

Figure 9. Third Transition Volume 



Civil Engineering Journal         Vol. 5, No. 11, November, 2019 

2431 

 

 

3. Soil Pressure Solutions 

This is where a decision is made as to which calculation path to follow. The three transition volumes have been 

calculated. The footing vertical load is known. One of four calculation paths is chosen that is representative of the 

relationship between the footing vertical load and the transition volumes. 

3.1. 0 < Footing Vertical Load < First Transition Volume 

As Y3 transitions from zero to L, the volume grows from zero to the first transition volume (Figure 10). 

Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 X2 0 0 

3 0 Y3 0 

4 0 0 Fv 

X2 = 𝑌3/tan⁡(∅) (15) 

The volume of the soil pressure distribution in terms of Y3 is based on the determinant of the tetrahedron corner 

matrix. 

V =
1

6
∗ [

0 0 0 1
𝑋2 0 0 1
0 𝑌3 0 1
0 0 𝐹𝑣 1

]  (16) 

V =
1

6
∗ (𝐹𝑣 ∗ 𝑋2 ∗ 𝑌3) (17) 

The center of gravity of the volume in the plan view plane are shown in Equation 18 & 19 [9]. 

 

Figure 10. Footing vertical load (Vf) < first transition volume 

Xcg =
1

4
∑ 𝑥𝑖

4

𝑖=1

 (18) 

Ycg =
1

4
∑𝑦𝑖

4

𝑖=1

 (19) 

 

The xi and yi are taken directly from the matrix columns x and y. 

Xcg =
𝑋2

4
 (20) 

Xcg =
Y3

4
 (21) 
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Figure 11. Eccentricity 

3.2. Eccentricity (e) 

The footing eccentricity is the perpendicular distance between the center of gravity of the soil pressure distribution 

and the center of the footing. The calculation for the eccentricity depends on the relative position between a line drawn 

from the center of the footing to the centroid of the pressure shape and another line drawn from the center of the footing 

perpendicular to a line parallel to the axis of zero soil pressure passing through the centroid. Both possibilities are shown 

in Figure 11. Angle  has a range of π/2 to 𝐴𝑡𝑎𝑛(𝐿/𝑊) which swings past the line from the center to the center of 

gravity. Equation 22 accounts for this and it and Equation 23 are applicable for all four solution paths. 

If⁡ > π − atan(

L
2

− Ycg

W
2

− Xcg
) then 

⁡e = cos(∅ − π/2 − atan(

𝑊
2

− 𝑋𝑐𝑔

𝑌
2

− 𝑌𝑐𝑔
)) ∗ √(

𝑊

2
− 𝑋𝑐𝑔)

2

+ (
𝐿

2
− 𝑋𝑐𝑔)

2

 

Else 

e = cos(π/2 − ∅ − atan(

𝐿
2

− 𝑌𝑐𝑔

𝑊
2

− 𝑋𝑐𝑔
)) ∗ √(

𝑊

2
− 𝑋𝑐𝑔)

2

+ (
𝐿

2
− 𝑋𝑐𝑔)

2

 

(22) 

Footing capacity 

M = 𝑒 ∗ 𝑉 (23) 

3.3. First Transition Volume < Footing Vertical Load < Second Transition Volume 

As X2 grows from L/tan() to W, the volume grows from the first transition to the second transition volume (Figure 

12). As the x coordinate of point 3 grows, the projections of the line 2-3, 1-4 and 6-5 and the planes associated with 

them intersect at a point. The projected triangles form a visual basis for calculation of the variables X3 and Z5. They are 

calculated in terms of X2 (Equations 24 & 25). The volume of the soil pressure volume is based on the sum of the 

determinants of the three corner matrices (Equations 26 & 27). The eccentricity (e) is used to calculate the moment 

capacity. 

Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 X2 0 0 

3 X3 L 0 

4 0 L 0 

5 0 L Z5 

6 0 0 Fv 
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Variables in terms of X2 

X3 = X2 −
L

tan(∅)
 (24) 

Z5 = Fv ∗
X2 ∗ tan(∅) − L

𝑋2 ∗ tan(∅)
 (25) 

Tetrahedron corners. 

 1, 6, 2, 3 

 1, 3, 4, 6 

 4, 5, 3, 6 

 

Figure 12. First transition volume < (Vf) < second transition volume 

The volume of the soil pressure distribution in terms of X2 is based on the sum of the volume of the three tetrahedrons.  

V =
1

6
∗

[
 
 
 
 

[

0 0 0 1
0 0 𝐹𝑣 1
𝑋2 0 0 1
𝑋3 𝐿 0 1

] + [

0 0 0 1
𝑋3 𝐿 0 1
0 𝐿 0 1
0 0 𝐹𝑣 1

] + [

0 𝐿 0 1
0 𝐿 𝑍5 1
𝑋3 𝐿 0 1
0 0 𝐹𝑣 1

]

]
 
 
 
 

 (26) 

V =
1

6
∗ (X2 ∗ L ∗ 𝐹𝑣 + 𝐹𝑣 ∗ 𝐿 ∗ 𝑋3 + 𝐿 ∗ 𝑋3 ∗ 𝑍5) (27) 

For soil pressure volumes comprised of multiple tetrahedrons, geometric decomposition is applied [12]. 

Xcg =
∑ (𝑉𝑖

𝑛
1 ∗ 𝑋𝑐𝑔𝑖)

𝑉
 (28) 

The center of gravity of the volume is derived from the assembly of individual tetrahedrons. 

Xcg =
1

V ∗ 6
∗ (X2 ∗ L ∗ 𝐹𝑣 ∗

𝑋2 + 𝑋3

4
+ 𝐹𝑣 ∗ 𝐿 ∗ 𝑋3 ∗

𝑋3

4
+ 𝐹𝑣 ∗ 𝐿 ∗ 𝑋3 ∗ 𝐹𝑣 ∗ 𝑍5 ∗

𝑋3

4
) (29) 

Ycg =
1

V ∗ 6
∗ (X2 ∗ L ∗ 𝐹𝑣 ∗

𝐿

4
+ 𝐹𝑣 ∗ 𝐿 ∗ 𝑋3 ∗

2 ∗ 𝐿

4
+ 𝐿 ∗ 𝑋3 ∗ 𝑍5 ∗

3 ∗ 𝐿

4
) (30) 

The footing eccentricity (e) is the perpendicular distance between the center of gravity of the soil pressure distribution 

and the center of the foundation. See equations 22 and 23. 

3.4. Second Transition Volume < Footing vertical load < Third transition volume 

As dimension Y3 grows from zero to L, the volume grows from the second transition to the third transition volume 

(Figure 13). As it grows, the projections of lines 1-5, 6-8 and 3-4 meet at point A. The projections of line 1-2, 6-7 and 

3-4 meet at point B. The projected triangles form a visual basis for calculation of the variables. X4, Z7 and Z8 are 

calculated in terms of Y3 (Equations 31, 32 & 33).  
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Corner coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 W 0 0 

3 W Y3 0 

4 X4 L 0 

5 0 L 0 

6 0 0 Fv 

7 W 0 Z7 

8 0 L Z8 

 

Variables in terms of Y3 

X4 = W − (
L − Y3

tan(∅)
) (31) 

Z7 =
Fv ∗ Y3

W ∗ tan(∅) + 𝑌3
 (32) 

Z8 =
Fv ∗ (W ∗ tan(∅) + Y3 − L)

(Y3 + W ∗ tan(∅))
 (33) 

Tetrahedron corners. 

 6, 2, 3, 7 

 1, 6, 3, 2 

 1, 6, 4, 3 

 6, 5, 4, 8 

 1, 6, 5, 4 

The volume of the soil pressure distribution in terms of Y3 is based on the sum of the volume of the five tetrahedrons. 

V =
1

6
∗

[
 
 
 
 

[

0 0 Fv 1
𝑊 0 0 1
𝑊 𝑌3 0 1
W 0 𝑍7 1

] + [

0 0 0 1
0 0 𝐹𝑣 1
𝑊 𝑌3 0 1
W 0 0 1

] + [

0 0 0 1
0 0 Fv 1
𝑋4 L 0 1
W Y3 0 1

] + [

0 0 Fv 1
0 𝐿 0 1
X4 L 0 1
0 𝐿 Z8 1

]

+ [

0 0 0 1
0 0 𝐹𝑣 1
0 L 0 1
𝑋4 𝐿 0 1

]

]
 
 
 
 

 

(34) 

V =
1

6
∗ (𝑊 ∗ 𝑌3 ∗ 𝑍7 + W ∗ Y3 ∗ 𝐹𝑣 + 𝐹𝑣 ∗ (𝐿 ∗ 𝑊 − 𝑋4 ∗ 𝑌3) + 𝐿 ∗ 𝑋4 ∗ 𝑍8 + 𝐹𝑣 ∗ 𝐿 ∗ 𝑋4) (35) 

The center of gravity of the volume is: 

Xcg =
1

V ∗ 6
∗ (𝑊 ∗ 𝑌3 ∗ 𝑍7 ∗

3 ∗ 𝑊

4
+ W ∗ Y3 ∗ 𝐹𝑣 ∗

2 ∗ 𝑊

4
+ 𝐹𝑣 ∗ (𝐿 ∗ 𝑊 − 𝑋4 ∗ 𝑌3)

∗
𝑋4 + 𝑊

4
+ 𝐿 ∗ 𝑋4 ∗ 𝑍8 ∗

𝑋4

4
+ 𝐹𝑣 ∗ 𝐿 ∗ 𝑋4 ∗

𝑋4

4
) 

(36)  

Ycg =
1

V ∗ 6
∗ (𝑊 ∗ 𝑌3 ∗ 𝑍7 ∗

𝑌3

4
+ W ∗ Y3 ∗ 𝐹𝑣 ∗

𝑌3

4
+ 𝐹𝑣 ∗ (𝐿 ∗ 𝑊 − 𝑋4 ∗ 𝑌3) ∗

𝐿 + 𝑌3

4
+ 𝐿 ∗ 𝑋4

∗ 𝑍8 ∗
𝐿 + 𝐿 + 𝐿

4
+ 𝐹𝑣 ∗ 𝐿 ∗ 𝑋4 ∗

𝐿 + 𝐿

4
) 

(37)  
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Figure 13. Second transition volume < (Vf) < third transition volume 

The footing eccentricity (e) is the perpendicular distance between the center of gravity of the soil pressure distribution 

and the center of the foundation. See Equations 22 and 23. 

3.5. Third Transition Volume < Footing Vertical Load  

As coordinate Z5 grows from zero to Fv, the volume grows from the third transition to full volume (Figure 14). In 

this range there is compression on all of the foundation contact and there is a parallel separate solution of V/A±Vec/I. 

As the volume grows greater than the third transition volume the axis of zero soil pressure leaves the footing footprint. 

As this happens the projections of lines 1-2 and 6-7 meet at point B. The projections of line 1-4 and 6-8 meet at point 

A. The projected triangles form a visual basis for calculation of the variables Z7 and Z8. They are calculated in terms 

of Z5 (Equations 44 & 45). Before Z7 and Z8 can be calculated a set of lines and angles are developed in a section 

through the footing corners and on a plan view. The goal is to develop the projections of the foundation lines (a and c) 

to the Axis of zero soil pressure (Figures 15 and 16). 

 

  
Figure 14. Isometric view Vf > third transition volume 
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Figure 16. Plan view Vf > third transition volume 

b =
Z5 ∗ √W2 + L^2

𝐹𝑣 − 𝑍5
 (38) 

 = atan⁡(
W

L
) (39) 

 =
π

2
−      (40) 

In plan view, when a line is drawn from the center of the footing through the footing corner and intersecting the line 

of zero soil pressure, it forms angle . The calculations for Z7 and Z8 depend on the relative positions between  and . 

Depending on the footing shape and the axis of zero soil pressure,  can land on either side of . Both possibilities are 

shown in Figure 16. Equations 41, 42 and 43 account for that. 

If⁡ < :⁡⁡= 
π

2
− (− )⁡Else⁡ =⁡

π

2
− ( − )  (41) 

If⁡ < :⁡⁡a =
b ∗ sin()

sin()
⁡Else⁡a = c ∗ tan(∅) (42) 

If⁡ > :⁡⁡c = a/ tan() Else⁡c =
b ∗ sin()

sin()
  (43) 

Corner Coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 W 0 0 

3 W L 0 

4 0 L 0 

5 W L Z5 

6 0 0 Fv 

7 W 0 Z7 

8 0 L Z8 
 

Figure 15. Section view Vf > third transition volume 
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Z7 =
Fv ∗ (L + 𝑎) ∗ tan⁡()

W + (L + a) ∗ tan⁡()
 (44) 

Z8 =
Fv ∗ (W + c) ∗ tan⁡()

L + (W + c) ∗ tan⁡()
 (45) 

The volume of the soil pressure distribution in terms of Z5 is based on the sum of the volume of the six tetrahedrons 

listed here. 

 6, 4, 8, 5 

 3, 4, 5, 6 

 2, 3, 5, 6 

 2, 7, 5, 6 

 1, 3, 4, 6 

 1, 3, 2, 6 

V =
1

6
∗

[
 
 
 
 

[

0 0 Fv 1
0 L 0 1
0 𝐿 Z8 1
W L 𝑍5 1

] + [

W L 0 1
0 L 0 1
𝑊 𝐿 Z5 1
0 0 Fv 1

] + [

𝑊 0 0 1
𝑊 𝐿 0 1
𝑊 L 𝑍5 1
0 0 𝐹𝑣 1

] + [

W 0 0 1
W 0 𝑍7 1
W L 𝑍5 1
0 0 Fv 1

]

+ [

0 0 0 1
W 𝐿 0 1
0 L 0 1
0 0 Fv 1

] + [

0 0 0 1
W 𝐿 0 1
W 0 0 1
0 0 Fv 1

]

]
 
 
 
 

 

(46) 

V =
1

6
∗ (𝑊 ∗ 𝐿 ∗ 𝑍8 + 𝑊 ∗ 𝐿 ∗ 𝑍5 + 𝑊 ∗ 𝐿 ∗ 𝑍5 + 𝑊 ∗ 𝐿 ∗ 𝑍7 + 𝑊 ∗ 𝐿 ∗ 𝐹𝑣 + 𝑊 ∗ 𝐿 ∗ 𝐹𝑣) (47) 

The center of gravity of the soil pressure volume shown here. 

Xcg =
1

V ∗ 6
∗ (𝑊 ∗ 𝐿 ∗ 𝑍8 ∗

𝑊

4
+ 𝑊 ∗ 𝐿 ∗ 𝑍5 ∗

𝑊

4
+ 𝑊 ∗ 𝐿 ∗ 𝑍5 ∗

3 ∗ 𝑊

4
+ 𝑊 ∗ 𝐿 ∗ 𝑍7 ∗

3 ∗ 𝑊

4
+ 𝑊 ∗ 𝐿

∗ 𝐹𝑣 ∗
𝑊

4
+ 𝑊 ∗ 𝐿 ∗ 𝐹𝑣 ∗

2 ∗ 𝑊

4
) 

(48) 

Ycg =
1

V ∗ 6
∗ (𝑊 ∗ 𝐿 ∗ 𝑍8 ∗

3 ∗ 𝐿

4
+ 𝑊 ∗ 𝐿 ∗ 𝑍5 ∗

3 ∗ 𝐿

4
+ W ∗ L ∗ Z5 ∗

2 ∗ 𝐿

4
+ 𝑊 ∗ 𝐿 ∗ 𝑍7 ∗

𝐿

4
+ 𝑊 ∗ 𝐿

∗ 𝐹𝑣 ∗
2 ∗ 𝐿

4
+ 𝑊 ∗ 𝐿 ∗ 𝐹𝑣 ∗

𝐿

4
) 

(49) 

The footing eccentricity (e) is the perpendicular distance between the center of gravity of the soil pressure distribution 

and the center of the foundation. See equations 22 and 23. 
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4. Examples 

4.1. Tower Footing 

The input variables are as follows. 

 Vf = 51000 lb  Footing vertical load 

 W = 8 ft    Footing Width 

 L = 6 ft    Footing Length 

 MPL = 20000 ft-lb  Moment parallel 

 MPR = 70000 ft-lb  Moment perpendicular 

When maximum soil pressure is set to Fv = 2540 psf, 

 From Equation 2,  = 69 deg. 

 From Equation 3, M = 72800 ft-lb 

 From Equation 6, V1 = 5850 lb 

 From Equation 10, V2 = 45100 lb 

 From Equation 14, V3 = 609600 lb 

Since the actual vertical load is 51000 then the characteristic shape is between the second and third transition volumes. 

Iterate on Y3 between 0 and L until equation 35 equals input Vf. Y3 = 2.08 ft. 

 From Equation 31, X4 = 6.51 ft-lb 

 From Equation 32, Z7 = 230 psf 

 From Equation 33, Z8 = 1880 psf 

 From Equation 35, V = 51000 ft 

 From Equation 36, Xcg = 2.58 ft 

 From Equation 37, Ycg = 2.71 ft 

 From Equation 22, e = 1.43 ft 

 From Equation 23, M =  73000 ft-lb 

If lower soil bearing pressure is assumed then there will not be sufficient eccentricity to balance the load. If higher 

soil bearing pressure is assumed then the eccentricity will be larger and there will be unused soil bearing and moment 

capacity. 

 

 

Corner Coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 8 0 0 

3 8 2.08 0 

4 6.50 6 0 

5 0 6 0 

6 0 0 2540 

7 8 0 230 

8 0 6 1880 

 
     Figure 18. Example 4.1 soil pressure 

 

 
Figure 17. Example 4.1 tower footing 
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4.2. Bridge Pier 

This is a duplicate of an example from Young (1989) [5]; 

The input variables are as follows. 

 Vf = 1,500 ton   Footing vertical load 

 W = 20 ft    Footing Width 

 L = 10 ft     Footing Length 

 MPL = 4000 ft-ton   Moment parallel 

 MPR = 4800 ft-ton   Moment perpendicular 

When maximum soil pressure is set to Fv = 35.7 ton/sf,  

 From Equation 2,  = 31 deg. 

 From Equation 3, M = 6248 ft-ton 

 From Equation 6, V1 = 990 ton 

 From Equation 10, V2 = 1420 ton 

 From Equation 14, V3 = 3566 ton 

With 1,500 ton vertical load the characteristic shape is between 

transition volume 2 and 3. 

Iterate on Y3 between 0 and LW until equation 35 equals input Vf. Y3 = 0.35 ft. 

 From Equation 31, X4 = 3.94 ft 

 From Equation 32, Z7 =  1.0 ton/sf 

 From Equation 33, Z8 = 6.84 ton 

 From Equation 35, V = 1500 ton 

 From Equation 36, Xcg = 5.18 ft 

 From Equation 37, Ycg = 3.04 ft 

 From Equation 22, e = 4.18 ft 

 From Equation 23, M = 6270  ft-ton 

If lower soil bearing pressure is assumed then there will not be sufficient eccentricity to balance the load. If higher 

soil bearing pressure is assumed then the eccentricity will be larger and there will be unused soil bearing and moment 

capacity. 

 

 

 

 

 

 

 

 

 

 

Corner Coordinates 

Point Number X (ft) Y (ft) Z (lb/sq-ft) 

1 0 0 0 

2 20 0 0 

3 20 0.35 0 

4 3.94 10 0 

5 0 10 0 

6 0 0 35.7 

7 20 0 1.0 

8 0 10 6.84 

 

Figure 19. Example 4.2 bridge pier 
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Figure 20. Example 4.2 Soil pressure 

5. Conclusion 

A straight forward and understandable extension of the uniaxial soil pressure calculation can be made for biaxial 

loading. Soil pressure distributions under footings subject to biaxial overturning can be calculated by modeling the soil 

pressure shape as an assembly of tetrahedrons and using matrix algebra to solve for the volume and center of gravity. 

These results are comparable with other solutions. 

This method yields the corner coordinates of the pressure distribution and they can be input into solid modeling to 

confirm the volume’s mass properties. The equations are presented in a form that can be automated to speed convergence 

on the solution. 
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