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Abstract 

The tremendous growth of population, particularly in developing countries, has led to increased number of travels, 

especially those with load and freight specifications. Hence, expanding the present facilities or developing new networks 

or systems concerning freight and transportation is an essential issue. Among the various transportation systems, road 

freight has secured a significant place in sub-urban transportation, as it is responsible for transporting loads, decreasing 

transportation costs, and increasing the safety of highway users. Besides these advantages, poor and nonstandard design 

and performance of sub-urban highways and transport fleet and equipment leads to the increased number of accidents 

and inefficiency of these facilities.  Based on these facts, the primary aim of the present study is to probe into the factors 

affecting road freight accident severity. For this purpose, the data obtained from road freight accidents occurring in 2016, 

2017, and 2018 in Gilan Province, Iran, were used for analyzing the frequency, ranking and determining the factors, and 

creating models for accident severity. The results indicated that in accordance with the accident severity model in 2016, 

several factors such as the season of autumn, daytime light, drivers aged from 18 to 60, and pickup trucks have impacted 

the on-road freight accident severity. While, in 2017 the severity was affected by factors like rural road, freight trucks, 

non-faulty passenger cars, motorcycles, and pedestrians. When considering the effective variables in 2018, it was  found 

that such factors as the accident time (usually occurring between 12 p.m. to 6 p.m)., rural and major roads, freight trucks, 

non-faulty motorcycles, and the careless driving without due care and attention to the front were the variables affecting 

road freight accidents. Moreover, not following safety guidelines during freighting is the most effective variable in road 

freight accidents. 
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1. Introduction 

Over the last decade and also nowadays, road accidents have experienced an increasing trend; and there have been 

various studies on accidents around the world [1-3]. Road accidents are considered to be a typical phenomenon all 

over the world and approximately 1.3 million civilians die as a result of this phenomenon. Moreover, approximately 

20 to 50 million people have been injured in these accidents, where the majority were young people with ages ranging 

from 15 to 45. Road accidents are claimed to be the ninth most important factor of fatality in the world as it accounts 

for 2.2% of the mortality rate in the world. The costs of accidents are estimated to be about 500 million dollars all over 

the world. This is equal to between 1 to 2 percent of GDP in the countries with low to average income. The current 

trend of accidents indicates that if emergent measures are not taken in this regard, it is likely that road injuries will 
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become the seventh most important factor of fatality by 2030, 90% of which will have occurred in the countries with 

low to average income. It is essential that emotional and mental injuries as well as permanent disabilities resulting 

from these accidents be added to these complications [4].   

 Analyzing the accidents, it could be concluded that normally several parameters account for the accidents, which 

can be categorized into human, environmental, and vehicle-dependent factors [5]. Various studies have revealed that 

some parameters like AADT, traffic congestion, exceeding the speed limit and the number of lanes, drivers’ 

distraction, and weather conditions are among the factors which affect accidents [6-8]. Increase in the severity of any 

of the above-mentioned factors and/ or any inappropriateness of these conditions can lead to increased number of 

accidents [9-11]. 

An increase in the number of accidents results in the increase in the number of owners of motor vehicles. It can be 

said that the mentioned growth has been about 65% over the last 2 decades; while in developing countries it has 

occurred faster than this [12]. Because of this, road accidents are considered to be one of the most significant issues of 

public health in any given society.  Besides, it can be concluded that this problem is more serious than other public 

health-related issues as the majority of its victims are young and healthy people [13, 14].    

Ghaffar et al. (2004) [15] evaluated the effects of road traffic injuries (RTI) in Pakistan. The results indicated that 

most accidents happened between 12 and 18 pm. The level of RTI is higher among people aged between 16 and 45 

years. Furthermore, the results showed that RTI is almost three times higher in males than females. 

Labinjo et al. (2009) [16] provided a population-based survey to explore the epidemiology of RTI in Nigeria. The 

results showed that motorcycle accidents accounted for 54.33% of all RTI. The risk of crashes was higher among 

males aged between 18 and 44. 

Hu et al. (2012) [17] explored the characteristics of traffic accidents on rural roads using the quantitative analysis. 

The research shows that 92.68% and 5.42% of casualties occurred on tangents and curves, respectively. Considering 

the time parameter, casualties during the daytime have been more serious than the night.  Also, the results showed that 

crashes that cause injuries are most common during the day rather than night and motor vehicle accidents account for  

the majority of casualties. Zangooei Dovom et al. (2013) [18] explored the fatal accident distribution in Mashhad, Iran. 

According to the results, the male had more fatalities than the females. For both genders, most accidents had a peak at 

the ages of 21-30. The male to female overall casualty ratio was 3.41. Among all the road users, the riskiest group was 

male motorcyclists. 

Lee and Jeong (2016) [19] investigated the characteristics of traffic collisions occurred in expressways and rural 

roads among the truck drivers. The results showed that with respect to the day of the week, the accident rate was 

higher in the middle of the week. On rural roads, the accident rate during the daytime was much higher than the night 

time (81.7%). The accidents occurred mostly in clear/cloudy weather (76.2%). Besides, the majority of accidents 

occurred over a straight road (62.2%), followed by an intersection (15.4%) and a curved road (9.4%). 

Road freight is the oldest way of transporting cargo in the world. In terms of the price and speed, it is the most 

appropriate way to transport a variety of goods and cargo.  Nowadays, the majority of the cargo is transported by 

means of road freight, which along with its merits, has some disadvantages. One of the disadvantages is the accidents 

occurring due to the failure of freight vehicles on roads, which in addition to economic losses results in fatality or 

injury of road users as well. Hence, in this study, the effective factors are identified by means of considering the 

severity of road freight accidents, particularly the accidents resulting from some vehicles like pickup trucks, trucks, 

trailer cars, etc. Then, through modelling and statistical analyses of accidental data, the appropriate approaches to 

decrease road accidents and increase civil welfare and traveller’s safety are identified. For this purpose, after analyzing 

the frequency of accidents, their ranking is performed and the factors affecting the severity of accidents are 

determined. Moreover, the impact of independent variables on the severity of freight vehicle accidents is modelled. 

The purposes and adopted innovations in the present study can be summarized as follows: 

 Application of Friedman test and Factor analysis methods for the road freight accidents, 

 Investigating the effect of independent variables on the severity of freight vehicles, 

 Frequency analysis of variables affecting freight vehicles accidents, 

 Ranking independent variables affecting the severity of freight vehicles, 

 Modelling of independent variables affecting the dependent variables of freight vehicles accidents severity, 

2. Research Methodology 

In this section, initially, the specifications of the study area will be introduced. Then, different statistical analysis 

methods and modelling of accident severity will be executed according to Figure 1. 
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2.1. Case study 

Gilan is one of the northern provinces of Iran, whose capital is Rasht megacity. This province lies along the 

Caspian Sea and Azerbaijan, sharing with it an international boarder via Astara in the north. It is located to the west of 

Mazandaran Province, east of Ardabil Province and north of Zanjan and Qazvin Provinces. Gilan covers an area of 

14044 square kilometres and based on the census carried out in 2012, its population is 2480874. Gilan is the tenth 

province in Iran in terms of population and is the second most populated province in northern Iran i.e. it ranks only 

second to Mazandaran Province. The population density of this province is 177 persons per square kilometre, which 

secures third place in Iran. Constituting 46% of the total population of the province, Rasht megacity is the center of the 

province and the most populated city in the north of the country and the 11th most populated city in Iran [20, 21].  

Sub-urban highways of Gilan Province are 2573 kilometres in length, of which 1682 km, i.e. 65% of the total 

length of highways within the province and 2.2% of the total length of highways of Iran, are capable to be utilized for 

freight purposes. There are 363, 256, and 1063 kilometres of the mentioned total highway network length function as 

highway, main, and rural roads, respectively. Figure 2 displays all the existing roads in Gilan Province, which can be 

used for freight transport. Due to the abundance of details, the functions of rural roads are excluded [22]. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1. Flowchart of the present study 

 

Figure 2. Representing the roads capable of freighting in Gilan Province (Iran) 

Accident data collection 
from 2016 to 2018 

Identify freight accidents 

Delete incorrect 

information 

Data 

encoding Input to SPSS 

Analysis and Modelling 

- Frequency analyses 

- Ranking by Friedman test 

- Determining the factors by 

factor analysis 
- Modeling accident severity 

Conclusion 



Civil Engineering Journal         Vol. 6, No. 5, May, 2020 

931 

 

 

2.2. Statistical Analysis and Modeling Methods 

For analysing the Road Freight Accidents of Gilan Province, some statistical analysis and modelling methods, 

including Kolmogorov–Smirnov test (K–S test), Friedman analysis, Factor analysis, and Logit modelling were used. 

The statistical analyses used in this study were performed using SPSS software. 

2.2.1. Kolmogorov-Smirnov Test (K–S test)   

One of the main assumptions for most statistical tests is the normality of data distribution where the Kolmogorov–

Smirnov test (K–S test) is utilized for this purpose. This test is a nonparametric test for data distribution. In 

approximate significance test, comparing | the output with α (significance level), the normality of data distribution can 

be determined. If α =0.05(means with 95% certainty) if P-value >0.05, the data distribution can be assumed as normal. 

Indeed this test is a compliance testing of the quantitative data distribution. Normality distribution test is the most 

common test for examining the normality of a specific distribution [23]. 

2.2.2. Friedman Test 

The Friedman test is one of the statistical tests used to compare between several groups and, ranks groups by using 

the average value, whether these groups  belong to one community or not. This test is a non-parametric one 

corresponding to the F test and is usually used in ranking scales rather than the F test [24]. In the F test, there should 

be homogeneity of variances that is less observed in ranking scales. The Friedman test is applied for the analysis of 

two-way variance (for non-parametric data) by a ranking method.  Also it is used to compare the average ranking of 

different groups. 

2.2.3. Factor Analysis 

The factor analysis method is used to find out the underlying variables of a phenomenon or for summarizing a set 

of data. The primary data for factor analysis is the matrix of correlation between variables. Factor analysis does not 

have predetermined dependent variables. Factor analysis is applied for two general categories: exploratory purposes 

and confirmatory purposes. If there is no speculation about the structure of the dimensions relationships, exploratory 

factor analysis is used. Otherwise, the confirmatory factor analysis is used [25]. 

In the exploratory factor analysis, the researcher seeks to investigate the empirical data to discover and identify the 

indices as well as the relationships between them. There is no pre-defined model here. In other words, exploratory 

analysis, in addition to its exploratory or suggested value can be a structure maker, modeller, or hypothesis creator. 

Exploratory factor analysis is used when the researcher does not have sufficient previous and pre-empirical evidence 

to create a hypothesis about the number of underlying factors and wants to determine the number or nature of the 

factors justifying the covariance of variables. Therefore, exploratory analysis is more considered as a method of 

compilation and production of a theory, rather than a method of testing a.  

2.2.4. Multiple Logit Regression 

 Establishing a relationship between the set of variables x and the dependent variable Y, we would encounter a 

multivariable problem. In analysing such a problem, various types of mathematical models have been used to consider 

the complexity of the relationship between these variables. The logit regression method is a mathematical method used 

to describe the relationship between multiple variables denoted by x and a two-valued dependent variable. A function 

that is used in this method is an S-shaped function called the logit function, which can also be applied in multi-valued 

problems by expansion [26]. As it is known, the logit regression method can be utilized to define the variable Y as the 

multi-valued parameter. In the simplest case, we can consider P(Y=i) as a linear function of XI (Pi = xi β), where β is 

the vector of regression coefficients. This equation considers that the probability Pi at the left side of the equation 

should be between zero and one, but the linear vector product xiβ at the right side could include all the real numbers. A 

simple method for solving this problem is to use the probability transfer function to remove the distance limits and 

model the transferred function as a linear function of the parameters. This conversion occurs in two steps. First, the Pi 

probability changes to the chance of success according to Equation 1: 

𝑂𝑑𝑑𝑆 =
𝑝𝑖

1 −  𝑃𝑖

 (1) 

In the second step, the logarithm of the above-mentioned equation is taken to obtain the logit or success chance 

logarithm (Equation 2): 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝐿𝑜𝑔
𝑃𝑖

1 − 𝑝𝑖

 (2) 

The results are quite similar. The reverse transfer function, also called anti-logic, is applied to calculate the 

probability in terms of logit (Equation 3): 



Civil Engineering Journal         Vol. 6, No. 5, May, 2020 

932 

 

 

𝐿𝑜𝑔𝑖𝑡−1(𝑍𝑖) =
𝑒𝑧𝑖

1 + 𝑒𝑧𝑖
 (2) 

The fact that the value of the logit function varies between zero and one, is the first reason for using this function in 

the probability problems. The second reason in this regard is the form of this function, so that if we start from negative 

infinity and move to the right, by increasing z, the value of f (z) does not change much and remains in the range of 

zero until we reach the growth threshold. In this range, the value of the function increases rapidly to approach unity, 

and at this time, the increase of z does not have much effect on the increase of the function value. Therefore, the logit 

is a transfer function that associates the probabilities in the interval (0, 1) with all the real numbers. The negative logit 

represents a less than 50% probability, and the positive logit represents a more than 50% probability. Thus, the logit 

model is a general linear model that has a logit transfer function. In other words, the logit of Pi probability, instead of 

the probability, follows the linear model [27]. 

3. Results and Analysis 

In this part, accidents data in 2016, 2017, and 2018 were used to identify the variables affecting the accidents 

leading to damage, injury, and fatality when encountering the freight vehicles. Then, the data were considered in terms 

of statistics and frequency. K–S test, Factor Analysis, Friedman, and Logit test analyses were employed to consider 

the variables affecting the severity of accidents.  

3.1. Frequency Analysis of the Accidents Results  

In this study, there is one dependent variable, i.e. accidents severity, and there are 12 independent variables such as 

time of the accident, day of the accident, season of the accident, road function type, road pavement condition, accident 

point geometry, lighting status, type of freight vehicle responsible for the accident, age of the faulty driver, type of the 

non-faulty vehicle, weather condition, the main cause of the accident, where their frequency analysis is presented in 

the following part. Figures 3 to 15 present the frequency of each of the variables used in this study from 2016 to 2018, 

split by year. 

 

Figure 3. Accident severity frequency (injury, fatality, and damage) by year 

 

Figure 4. Accidents frequency regarding the time of the accidents by year 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

2016 2017 2018

F
r
e
q

u
e
n

c
y
 

Property damage Fatal Injury

0

5

10

15

20

25

30

35

40

45

24--6 6--12 12--18 18--24

F
r
e
q

u
e
n

c
y
 

2016

2017

2018



Civil Engineering Journal         Vol. 6, No. 5, May, 2020 

933 

 

 

 

Figure 5. Accidents frequency regarding the day of the accident by year 

 

Figure 6. Accidents frequency regarding season of the accident by year 

 

Figure 7. Accident frequency regarding the type of highway function year 
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Figure 8. Accidents frequency regarding highway surface condition by year 

 

Figure 9. Accidents frequency regarding accident point geometry by year 

 

Figure 10. Accidents frequency regarding lighting condition by year 
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Figure 11. Accidents frequency regarding the type of the faulty freight vehicle by year 

 

Figure 12. Accidents frequency regarding the type of non-faulty vehicle by year 

 

Figure 13. Accidents frequency regarding weather condition by year 

0

10

20

30

40

50

60

70

Pickup truck small truck truck Trailer Carry fuel

F
r
e
q

u
e
n

c
y
 

2016

2017

2018

0

10

20

30

40

50

60

70

sedan bus & mini-

bus

heavy

vehicle

motorcycle pedestrians Dealing

with object

Reversal Deviation

from road

F
r
e
q

u
e
n

c
y
 

2016

2017

2018

0

10

20

30

40

50

60

70

80

sunny rainy snowy foggy

F
r
e
q

u
e
n

c
y
 

2016

2017

2018



Civil Engineering Journal         Vol. 6, No. 5, May, 2020 

936 

 

 

 

Figure 14. Accidents frequency regarding the type of the main cause by year 
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3.3. Results of Friedman Test  

Friedman Test can be utilized to test the equality of variable levels rank. In this study, there are 12 independent 

variables for ranking the accident severity. Friedman Test is used to determine the rank of each variable. Table 2 

presents the data for each variable, Chi-Square statistics range, degrees of freedom, and sig in order. As sig is less than 

5%, H0 is rejected and ranking equality (priority) hypothesis of these 12 factors is not accepted. Table 3 also displays 

descriptive statistics which indicate the mean rank of each variable. The smaller the mean rank, the more important is 

the corresponding variable. 

Table 2. Results of Friedman parameter 

Year Number of data Chi-square df Sig. 

2016 1152 4565.01 11 0.00 

2017 987 3960.32 11 0.00 

2018 1189 4702.97 11 0.00 

Table 3. Results of Friedman Test for the accidents 

Independent variables 
2016 2017 2018 

Average Rank Average Rank Average Rank 

Time of the accidents 9.59 12 9.31 12 9.24 12 

Season of the accident 7.65 9 8.34 9 8.21 9 

Day of the accident 7.04 7 6.99 7 6.91 6 

Type of highway function 8.91 11 8.49 10 8.66 10 

Highway surface condition 3.95 2 3.86 2 4.19 2 

Accident point geometry 3.88 1 3.63 1 3.66 1 

Lighting condition 4.38 3 4.32 3 4.33 3 

Faulty freight vehicle 5.81 5 6.02 5 5.69 5 

Faulty driver's age 7.35 8 7.15 8 7.05 8 

Non-faulty vehicle 6.15 6 6.83 6 7.02 7 

Weather condition 4.76 4 4.47 4 4.36 4 

Main cause 8.54 11 8.59 11 8.69 11 

According to the obtained rankings from Table 3, it can be concluded that the most important variables affecting 

road freight accidents in all the three years under study are the accident point geometry (straight, horizontal curve, and 

intersections), road pavement status, and lighting status, respectively.  

3.4. Exploratory Factor Analysis  

It is inevitable to come across with a large number of variables in any study. In order to obtain more accurate 

analysis data as well as accomplish more scientific and at the same time practical results, researchers have always been 

attempting to reduce the number of variables and establish a new structure for them. Therefore, Factor Analysis is 

typically used to achieve this goal. Factor Analysis tries to identify basic variables or factors to explain the correlation 

pattern among the observed variables. Factor Analysis plays a pivotal role in identifying the hidden variables or 

factors utilizing the observed variables.  

When performing Factor Analysis, first one should be sure whether the available data could be used for the analysis 

purpose. In other words, it should be determined whether the number of the intended data (sample size and the 

relationship between variables) is appropriate for Factor Analysis or not. Consequently, in this study the KMO index 

and Bartlett test were utilized to test the referred hypothesis.  

Table 4 displays the results for the KMO index and Bartlett test in the present study. The more the index 

approximates 1, the more appropriate the intended data will be for Factor Analysis. Similarly, if KMO index is smaller 

than 0.5, the Factor Analysis results are not appropriate for the intended data and this analysis should not be used to 

interpret the results. Besides, the sig value obtained from the Bartlett Test is smaller than 5% for all the cases and 

therefore the assumption that the correlation Matrix is known is rejected.  
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Table 4. KMO and Bartlett's test result 

Year 2016 2017 2018 

Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy 
0.562 0.516 0.524 

Bartlett's Test of 

Sphericity 

Approx Chi-Square 1201.311 877.590 1187.728 

df 66 66 66 

Sig 0.000 0.000 0.000 

The tables obtained from Factor Analysis consist of two parts. The first part is for special values which determine 

the factors that are included in the analysis. Those factors whose specific values are smaller than 1 are excluded from 

the analysis. In this study, the factors 1, 2, 3, 4, and 5 which their special values are larger than 1 are included in the 

analysis.  

The second part indicates the specific values of the factors extracted through the rotation. It should be noticed that 

in the rotation of all the remaining factors, a proportion of the total changes, which are explained via these 5 factors, is 

taken as fixed (approximately 60%). Tables 5 to 7 present the specific values of road freight accidents from 2016 to 

2018, respectively. 

Table 5. Specific values of vehicle accidents in 2016 

Total Variance Explained 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 1.892 15.765 15.765 1.892 15.765 15.765 

2 1.570 13.084 28.848 1.570 13.084 28.848 

3 1.259 10.489 39.338 1.259 10.489 39.338 

4 1.168 9.737 49.075 1.168 9.737 49.075 

5 1.088 9.064 58.139 1.088 9.064 58.139 

6 0.982 8.180 66.319    

7 0.903 7.521 73.840    

8 0.864 7.197 81.038    

9 0.715 5.962 87.000    

10 0.639 5.326 92.325    

11 0.493 4.105 96.430    

12 0.428 3.570 100.000    

Extraction Method: Principal Component Analysis. 

Table 6. Specific values of vehicle accidents in 2017 

Total Variance Explained 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 1.696 14.134 14.134 1.696 14.134 14.134 

2 1.570 13.082 27.216 1.570 13.082 27.216 

3 1.266 10.547 37.763 1.266 10.547 37.763 

4 1.188 9.896 47.660 1.188 9.896 47.660 

5 1.102 9.183 56.842 1.102 9.183 56.842 

6 0.994 8.285 65.127    

7 0.924 7.699 72.826    

8 0.891 7.427 80.254    

9 0.743 6.191 86.445    

10 0.646 5.384 91.828    

11 0.557 4.641 96.470    

12 0.424 3.530 100.000    

Extraction Method: Principal Component Analysis. 
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Table 7. Specific values of vehicle accidents in 2018 

Total Variance Explained 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 1.746 14.551 14.551 1.746 14.551 14.551 

2 1.518 12.654 27.205 1.518 12.654 27.205 

3 1.378 11.487 38.692 1.378 11.487 38.692 

4 1.246 10.383 49.074 1.246 10.383 49.074 

5 1.047 8.728 57.802 1.047 8.728 57.802 

6 1.000 8.332 66.134    

7 0.906 7.553 73.687    

8 0.851 7.096 80.782    

9 0.722 6.018 86.801    

10 0.642 5.353 92.154    

11 0.554 4.614 96.768    

12 0.388 3.232 100.000    

Extraction Method: Principal Component Analysis. 

Tables 8 to 10 indicate the rotated matrix of the components from 2016 to 2018, which include the factor loads for 

each variable in the factors remaining after rotation. The higher the absolute value of these coefficients in each row, 

the more noticeable role the related factor plays in the total changes of the given variable. 

Table 8. Component rotation matrix for vehicle accidents in 2016 

 
Component 

1 2 3 4 5 

Time of the accidents 0.136 0.752 0.364 0.066 0.209 

Season of the accident 0.673 -0.136 -0.054 0.231 -0.162 

Day of the accident 0.053 -0.054 -0.231 0.016 0.661 

Type of highway function 0.055 -0.403 0.573 -0.177 0.223 

Highway surface condition 0.747 -0.229 -0.104 -0.071 0.081 

Accident point geometry -0.136 -0.076 -0.325 0.418 0.402 

Lighting condition 0.390 0.648 0.372 0.100 0.163 

Faulty freight vehicle -0.021 -0.374 0.491 0.470 -0.086 

Faulty driver's age -0.003 -0.137 0.294 0.269 -0.326 

Non faulty vehicle -0.003 0.378 -0.361 0.460 -0.378 

Weather condition 0.826 -0.115 -0.158 -0.045 -0.028 

Main cause -0.058 -0.168 0.055 0.618 0.283 

Table 9. Component rotation matrix for vehicle accidents in 2017 

 
Component 

1 2 3 4 5 

Time of the accidents -.074 0.699 -0.316 0.285 -0.140 

Season of the accident 0.297 -0.058 -0.111 0.154 0.460 

Day of the accident -0.146 0.111 -0.069 -0.252 0.344 

Type of highway function 0.389 -0.474 -0.171 0.323 -0.397 

Highway surface condition 0.824 0.098 0.004 -0.165 0.105 

Accident point geometry 0.092 0.124 0.464 0.306 0.331 

Lighting condition 0.135 0.654 -0.245 0.404 -0.232 

Faulty freight vehicle 0.084 -0.428 0.100 0.642 -0.017 

Faulty driver's age -0.155 0.046 0.036 0.433 0.551 

Non faulty vehicle -0.085 0.402 0.599 -0.033 -0.092 

Weather condition 0.804 0.188 -0.044 -0.166 0.136 

Main cause 0.198 0.076 0.688 0.052 -0.298 
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Table 10. Component rotation matrix for vehicle accidents in 2018 

 
Component 

1 2 3 4 5 

Time of the accidents 0.014 -0.625 -0.324 0.405 0.039 

Season of the accident 0.288 -0.180 0.266 0.004 -0.036 

Day of the accident -0.120 -0.025 -0.014 0.064 0.825 

Type of highway function 0.088 -0.009 0.749 0.245 0.218 

Highway surface condition 0.836 -0.015 0.045 -0.214 -0.007 

Accident point geometry 0.183 0.465 -0.283 0.182 0.020 

Lighting condition 0.274 -0.602 -0.199 0.434 0.142 

Faulty freight vehicle 0.026 0.268 0.460 0.598 -0.058 

Faulty driver's age -0.017 -0.022 0.024 0.446 -0.508 

Non faulty vehicle 0.175 0.343 -0.539 0.269 0.063 

Weather condition 0.844 -0.099 0.056 -0.166 -0.019 

Main cause 0.297 0.563 -0.119 0.306 0.174 

Extraction Method: Principal Component Analysis. 

Based on the Factor Analysis performed for 12 variables affecting the road freight accidents in 2016, as indicated 

in Table 8, 5 factors are identified as the major factors. Factor Analysis indicates that variables like the season of 

accident, road pavement condition and weather condition are ranked as the first important category of factors; 

variables like time of accident and lighting status as the second important category of factors; variables like type of 

road and faulty vehicle as the third important category of factors; variables like non-faulty vehicle, accident point 

geometry, and the main cause as the fourth important category of factors; and finally weekdays and the age of the 

driver are ranked as the fifth important category of factors affecting the severity of road freight accidents in 2016. 

Based on the Factor Analysis carried out for 12 variables affecting the road freight accidents in 2017, as indicated 

in Table 9, 5 factors are identified as major factors. Factor Analysis shows that the first important category of factors 

include variables related to the road pavement status and weather conditions; while, variables like time of the accident 

and lighting status are the second most important category of factors; variables like accident point geometry, non-

faulty vehicle, and the main cause are the third most important factor; faulty vehicle as the fourth most important 

factor; and the season of accident, weekdays, type of highway, and age of the driver are ranked as the fifth most 

important category of factors affecting the severity of road freight accidents in 2017. 

Based on the Factor Analysis conducted for 12 variables affecting the road freight accidents in 2018, as presented 

in Table 10, five factors are identified as major factors. Factor Analysis indicates that factors like season of the 

accident, road pavement status and weather conditions are ranked as the first most important factor; while variables 

like time of the accident, lighting status, and main cause as the second most important factor, type of road and non-

faulty vehicle as the third; faulty vehicle as the fourth; and weekdays and the age of driver as the fifth most important 

factor affecting the severity of road freight accidents in 2018. 

3.5. Road Freight Accidents Severity Model 

To establish a model for road freight accident severity, 12 independent variables and 1 dependent variable were 

defined. Afterward, they were converted into nominal variables (0 and 1) to be aptly used in SPSS. The dependent 

variable, i.e. accident severity, was defined as injury, fatality, and damage accidents. As there were a small number of 

fatal accidents, such accidents were categorized as injury accidents. Ultimately, the number of dependent and 

independent variables was narrowed down into 2 and 12 respectively. The variables include the type of the faulty 

vehicle, type of the road function, the main cause, type of collision, age of the faulty driver, time of the accident, road 

pavement status, etc. The enter, backward, and forward methods can be utilized to establish the Logit model. Now, it 

should be noticed which of the above-mentioned methods contributes to more appropriate output. In other words, one 

should consider which of the above-mentioned methods can present a better model for road freight accidents in Gilan 

Province.  

To identify such a significant issue, the correct percentage and goodness criteria for the fit model were considered 

to identify the fitness of the model. The goodness criterion of the fit model is indicated by R2 parameter. This 

parameter shows the percentage of the changes in a given dependent variable determined through Logit independent 

variables. Also, the correct percentage criterion determines to what extent the model prediction is correct. In other 

words, these two criteria are used to make comparisons between the models and identify a better model. It is 

performed in such a way that the more the R2 value approaches unity, a better fit model is established. Similarly, a 

higher correct percentage value of a given model, indicates a more powerful model in predicting the accidents.  
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It should be noticed that as in the first method (enter) all the variables simultaneously are input into the equation, 

the model  lacks enough time to appropriately process the data and select the most significant variables; hence, it 

cannot be an appropriate method. Because of this, the forward and backward methods are used to input the data into 

Logit equation. Each method which has the highest accuracy in predicting the number of accidents could be adopted as 

the best method. In the backward and forward methods, respectively, those variables exit and/or enter where by their 

exit or entrance, the minimum change would occur in the value of R2 corresponding to the equation. Likewise, exit or 

entrance of the variable leads to improvement or in other words increase of R2
 value. This method helps us with 

choosing the way of entering the independent variables to be analyzed. Applying various methods provides us with 

establishing different equations with the same data and ultimately selecting the best equation.  

Table 11 summarizes Logit models in two forward and backward methods. The determiner of the best model is its 

degree of accuracy when making predictions. Accordingly, the backward method with its higher degree of correct 

percentage in all the cases is selected as the best method to establish Logit model for the severity of road freight 

accidents. 

Table 11. Summary of the forward and backward methods  

2018 2017 2016 Logit method 

77.7 74.3 73.2 Forward 

78.7 79.9 82.1 Backward 

As it was explicated, the present backward method model was selected owing to its high degree of accuracy in 

predicting accidents. Hence, this chapter is devoted to introducing the best model. The Chi-Square statistic is used to 

determine the effectiveness of dependent variables on independent variables and the fitness of the overall model, 

which is comparable with F statistics in ordinary regression analysis. Tables 12 to 14 present the backward method 

model coefficients for the vehicle accidents in 2016, 2017, and 2018, respectively. According to these Tables, the Chi-

Square model shows whether the independent variable(s) affects the dependent variable or not. As it is observed, in all 

the models the Chi-Square values have zero Sig. Therefore, the independent variables affect the dependent variable 

and indicate a high degree of fitness. 

Table 12. Backward method model coefficients in 2016 

Sig. Df Chi-Square Final Step 

0.040 3 8.287 Step 

Step 7 0.000 27 630.500 Block 

0.000 27 630.500 Model 

Table 13. Backward method model coefficients in 2017 

Sig. df Chi-Square Final Step 

0.240 8 17.65 Step 

Step 5 0.000 23 518.975 Block 

0.000 23 518.975 Model 

Table 14. Backward method model coefficients in 2018 

Sig. df Chi-Square Final Step 

0.270 2 7.255 Step 

Step 7 0.000 30 630.459 Block 

0.000 30 630.459 Model 

By selecting the backward method and then entering all the selected variables into the process of model 

development; and after passing a variety of stages, the ultimate model is obtained through this method. Tables 15 to 17 

display the variables entered into the model, using the Wald test, and ultimate Logit model. Wald test considers the 

significance of the variables entered into the regression equation and it is comparable with t statistics in normal 

regression. Based on these Tables, the Logit model for different years can be presented in this way; the Positive 

coefficients of the independent variables indicate their positive relationship with the severity of accidents; while, the 

negative coefficients demonstrate their negative relation with the severity of accidents.  
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Based on Tables 15 to 17, in 2016, variables like autumn, daylight time, the drivers aging 18 to 60, pickup truck, 

and not following safety guidelines in case of freighting goods were the most effective variables on the severity of 

road freight accidents. Whereas, in 2017, such variables like rural, trucks and trailers, non-faulty private vehicles, 

motors, pedestrians, and no following safety guidelines were the most effective variables. When considering the most 

effective variables in 2018, it was determined that the variables of accidents occurring between 12 p.m to 6 p.m, rural, 

highways, trailers, non-faulty motorcycles, disregarding front are the main causes, and not following safety guidelines 

when freighting are the effective variables on road freight accidents.   

Table 15. Logit model variables for vehicle accident severity in 2016 

Variables Beta S.E. Wald Sig. Exp (Beta) 

Season (Autumn) -0.662 0.255 6.725 0.010 0.516 

Daylight (day) -0.462 0.184 6.300 0.012 0.630 

faulty driver's age (18-30) -1.300 0.409 10.104 0.001 0.273 

faulty driver's age (31-45) -1.371 0.389 12.444 0.000 0.254 

faulty driver's age (46-60) -1.289 0.405 10.117 0.001 0.275 

faulty freight vehicle (pickup trucks) 1.087 0.510 0.002 0.046 1.024 

not following safety guidelines when freighting -1.237 0.629 3.862 0.049 0.290 

Constant 3.464 0.000 4.591 0.000 3.195 

Table 16. Logit model variables for vehicle accident severity in 2017 

Variables Beta S.E. Wald Sig. Exp (Beta) 

Rural road 1.500 0.700 4.586 0.032 4.480 

Daylight (day) -0.463 0.185 6.243 0.012 0.630 

faulty freight vehicle (trucks) 1.757 0.853 4.246 0.039 5.794 

faulty freight vehicle (trailers) 0.149 0.379 0.156 0.043 1.161 

non-faulty vehicle (private cars) -1.625 0.727 5.001 0.025 0.197 

non-faulty vehicle (motorcycles) 3.681 1.023 12.935 0.000 9.687 

Pedestrians 3.569 1.239 8.294 0.004 5.464 

not following safety guidelines when freighting -1.713 0.633 7.320 0.007 0.180 

Constant 1.183 0.879 1.811 0.178 3.265 

Table 17. Logit model variables for vehicle accident severity in 2018 

Variables Beta S.E. Wald Sig. Exp (Beta) 

Rural road -0.701 0.206 11.535 0.001 0.496 

Daylight (day) 1.385 0.620 4.990 0.025 3.997 

faulty freight vehicle (trucks) 0.800 0.399 4.026 0.045 2.225 

faulty freight vehicle (trailers) 1.521 0.916 2.754 0.097 4.575 

non-faulty vehicle (private cars) 3.877 0.623 3.781 0.000 4.261 

non-faulty vehicle (motorcycles) 0.706 0.329 4.602 0.032 0.454 

not following safety guidelines when freighting 0.789- 0.516 2.341 0.026 0.454 

Constant -0.379 2.627 0.000 1.000 0.684 

The most noticeable points obtained from the type of accidents over the years in this case study reveal the need for 

special and more attention of the authorities responsible for road accidents.  These include the police and ministry of 

road and city planning, rural planners, trailers, motorists, as well as drivers’ following safety guidelines while 

freighting loads, all of these variables have been effective on the road freight accidents over the years 2016, 2017, and 

2018. 

4. Conclusion 

Through probing into the data concerning the road freight accidents, the present article focused on analyzing the 

effects of various variables on the severity of accidents from 2016 to 2018. Based on the results of the frequency of 
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variables, it was determined that more than 50% and 40% of road freight accidents were related to the damage and 

injury accidents, respectively. The accidents leading to fatality just constituted 10% of the total number of accidents. 

The majority of accidents occur between 6 a.m to 12 p.m and 12 p.m to 6 p.m on weekdays in autumn. In more than 

70% of the cases, road pavement is dry, the weather is sunny, the route is straight, and it is daytime. Among the faulty 

freight vehicles in road accidents, the pickup trucks and trucks are engaged in 60% and 30% of the accidents, 

respectively. Other freight vehicles account for 10% of road the freight accidents. Furthermore, according to the 

obtained ranking, variables of accident point geometry (tangent, horizontal curve, and intersections), road pavement 

status, and lighting status have the highest influence on the road freight accident severity.  

By performing the Factor Analysis method, 5 most effective factors on road accidents in 2016, 2017, and 2018 

were identified. Moreover, the output of the results obtained from Logit model indicates that the severity of accidents 

increases as the result of trailers and motorcycles presence. Moreover, regarding freighting goods in rural areas, some 

special measures should be taken. Unfortunately, the main cause of road freight accidents is not following safety 

guidelines by the drivers of freighting vehicles. Hence, some strict measures should be adopted as well as more 

effective fining strategies should be applied for such drivers. 
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