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Abstract 

Base isolation is one of the effective ways for controlling civil engineering structures in seismic zone which can reduce 

seismic demand. Also is an efficient passive control mechanism that protects its superstructure during an earthquake. 

However, residual displacement of base-isolation systems, resulting from strong ground motions, remain as the main 

obstacle in such system’s serviceability after the earthquake. Shape Memory Alloys (SMA) is amongst the newly 

introduced smart materials that can undergo large nonlinear deformations with considerable dissipation of energy without 

having any permanent displacement afterward. This property of SMA may be utilized for designing of base isolation 

system to increase the structure’s serviceability. Here, a proposed semi-active isolation system combines laminated 

rubber bearing system with shape memory alloy, to take advantage of SMAs high elastic strain range, in order to reduce 

residual displacements of the laminated rubber bearing. Merits of the system are demonstrated by comparing it to 

common laminated rubber bearing isolation systems. It is found that the optimal application of SMAs in base-isolation 

systems can significantly reduce bearings’ residual displacements. In this study, OpenSees program for a three 

dimensional six-storey steel frame building has been used by locating the isolators under the columns for investigating 

the feasibility of smart base isolation systems, i.e., the combination of traditional Laminated Rubber Bearing (LRB) with 

the SMA, in reducing the structure’s isolated-base response to near field earthquake records are examined. Also, a new 

configuration of SMAs in conjunction with LRB is considered which make the system easier to operate and maintain. 

Keywords: Base Isolation; Shape Memory Alloys; Steel Structure; Near Field Earthquakes; Nonlinear Seismic Analysis. 

 

1. Introduction 

Earthquake is one of the most destructive phenomena which caused catastrophic destruction. Annually, earthquakes 

take thousands lives, and bring about significant financial loss all over the world. Today, civil engineers concern is to 

design structures to withstand under earthquake forces and to dissipate the input earthquake energy through in-elastic 

deformations [1]. Generally, structures are designed according to codes with criteria based on structural collapse 

prevention. This approach allows for the forces due to ground motion to be transmitted into the structure; and relies 

only on strength and ductility of the structure to resist these forces. Hence, large motion can occur at higher floors of 

the structure, causing severe damage to the building. Seismic base isolation system change structure’s response by 

allowing the ground to undergo relatively large displacements without transmitting forces into the isolated structure. In 

fact, in most isolation designs, the structure generally moves as a rigid body. This means that ground accelerations 
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signals that pass through the isolators remains relatively constant along structure’s height [2], i.e. the acceleration of 

the top floors differ slightly from the accelerative motion imposed at lower level. It has been pointed out by Markris 

and Aghagholizadeh (2019), for reducing the earthquake forces acting on a structure or to absorb a part of the seismic 

energy, innovative systems and devices have been developed [3]. Seismic isolation systems are able to reduce the 

natural frequency created by the seismic load applied to the structures. Over the last few decades, several types of 

seismic isolators have been proposed and developed and are often divided into elastomeric and friction isolators, i.e. 

low damping natural rubber bearing, lead rubber bearing, high damping natural rubber bearing, pure- friction and 

friction pendulum system [4, 5]. Several studies have also focused on the evaluation of the seismic performance of 

highway bridges with seismic isolators using yielding steel dampers and laminated rubber bearings in comparison with 

other popular isolation systems [6, 7]. 

Recently, advanced materials have been used for seismic isolator and damping systems [8]. A group of metals that 

have the ability to dissipate energy through repeated cyclical loading, without significant permanent deformations is 

known as Shape Memory Alloys (SMAs). It has been pointed out by Wesolowskyi and Wilson (2004), shape memory 

alloys as compared to other metals, have a wide usable strain range; up to about 8%; thus, requiring a smaller volume 

of material in order to produce the comparable damping capacity. Furthermore, they have needed ability, i.e. providing 

stiff elastic resistance under large displacements [9]. A numerical parametric study carried out by Asgharian et al. 

(2016) for self-centering hybrid damper [10]. In this study, steel pipe used as a vertical link for energy dissipation and 

two transverse pairs of shape memory alloy wires as  for re-centering components. Tian et al. (2018) used shape 

memory alloy tuned mass damper for seismic vibration control of power transmission tower in order to assess 

nonlinear time history analysis method [11]. Ghasemi et al. (2019) pointed out that as the shape memory alloy is 

highly capable of dissipation energy, which can control the vibrations created by wave-induced of the offshore jacket 

platforms [12]. Also base isolation systems can have an extensive applications in different types of tall structures in 

order to reduce the lateral displacements, drifts and natural frequencies [13, 14].      

 In this study, a three dimentional six stroey steel frame building has been cosidered. The base isolation system has 

been design according to ASCE7 code requirements. Their charecteristics dependent on the weight and period of its 

superstructure. The near field earthquke data from Northridge records are selected and scaled in order to carry the 

response history analysis; by generating design response spectrum which is specialized for the site. The structure is 

modeled in OpenSees package, which is based on finite element method. By definining the base isolation materials 

from OpenSees library, fixed-based structure and base isolation system in a 3D model are analysed. SMA bars are 

implemented into the base isolation system’s model and the structural response due to earthquake records are 

computed and compared. 

2. Base Isolation and Shape Memory Alloys Concept 

Shape memory alloys are earthquake-resistant in civil engineering structures which can dissipate significant energy 

and are able to to return to their previous shape after being severely deformed. It has been pointed out by Nakashima 

et al. (2004) that designing of base isolation in any structures should follows two objectives, achieving life safety and 

limiting damage due to a significant earthquake [15]. To achieve these  objectives, the base isolation should be stable 

and sustain forces and displacements with significant earthquake [16]. Base isolation system has a limited ductility 

and a significant inelastic response which meet the second performance objective of damage control [17, 18]. A lead 

rubber bearing, manufactured from layers of rubber, bonded with layers of steel and in middle of bearing a solid lead 

core ted shown in Figure 1 [19]. 

 

Figure 1. Lead rubber bearing [19]    

Design of isolators is based on the ASCE7, the following procedures such as equivalent lateral static force and 

dynamic analysis for time-history can be used. For design of isolators, some requirements such as structural site with 

S1 and site class A, B, C, or D. Effective period of isolated structure at the maximum displacement, TM, and the 

effective period of the isolated structure at the design displacement, TD, can be obtained [20]. Also, the base isolation 

system should meet the following criteria [21]: 

https://www.sciencedirect.com/topics/engineering/parametric-study
https://www.sciencedirect.com/topics/engineering/energy-dissipation
https://www.sciencedirect.com/topics/engineering/shape-memory-alloy
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 Effective stiffness at the design displacement is greater than one-third of the effective stiffness at 20 percent of the 

design displacement. 

 Base isolation system is capable of producing a restoring force. 

 Maximum considered earthquake displacement to less than the total maximum displacement. 

The following steps are illustrated for dynamic analysis procedure: 

 First step: the target period assumed to be not less than at least three times of the fixed base period of structure (TD 

> 3 Tfix). 

 In the second step, design displacement (DD) and maximum considered earthquake response displacement (DM), at 

the center of rigidity of the isolation system can be calculated by Equations 1 to 4.  

𝐷𝐷 =
𝑔. 𝑆𝐷1. 𝑇𝐷

4𝜋2. 𝐵𝐷
 (1) 

𝐷𝑀 =
𝑔. 𝑆𝑀1. 𝑇𝑀

4𝜋2. 𝐵𝑀
 (2) 

Where [11]:  

𝑇𝐷 = 2𝜋√
𝑊

𝐾𝐷𝑚𝑖𝑛. 𝑔
 (3) 

𝑇𝑀 = 2𝜋√
𝑊

𝐾𝑀𝑚𝑖𝑛. 𝑔
 (4) 

Where; W: weight of structure above the base isolator. Where 𝐾𝐷𝑚𝑖𝑛: minimum effective stiffness of base isolation at 

the design displacement in the horizontal direction and 𝐾𝑀𝑚𝑖𝑛: minimum effective stiffness of base isolation at the 

maximum considered earthquake response displacement in the horizontal direction can be obtained by Equations 5 and 

6 respectively:  

𝐾𝐷𝑚𝑖𝑛 =
∑|𝐹𝐷

+|𝑚𝑖𝑛 + ∑|𝐹𝐷
−|𝑚𝑖𝑛

2𝐷𝐷
 (5) 

𝐾𝑀𝑚𝑖𝑛 =
∑|𝐹𝐷

+|𝑚𝑖𝑛 + ∑|𝐹𝐷
−|𝑚𝑖𝑛

2𝐷𝑀
 (6) 

As shown in Equations 5 and 6, minimum effective stiffness of the isolators can be obtained by using parameters such 

as ∑|𝐹𝐷
+|𝑚𝑖𝑛   &   ∑|𝐹𝐷

−|𝑚𝑖𝑛 from testing the isolators, so value for 𝑇𝑀, can be assumed to be 3.0 sec. 

 Second step: the modified displacement can be obtained using Equations 7 and 8. 

𝐷𝐷
′ =

𝐷𝐷

√1 + (
𝑇𝑓𝑖𝑥

𝑇𝐷
)

2

 

(7) 

𝐷𝑀
′ =

𝐷𝐷𝑀

√1 + (
𝑇𝑓𝑖𝑥

𝑇𝑀
)

2

 

(8) 

 Third step: the total of design displacement and maximum considered earthquake response displacement (DTD and 

DTM), can be obtained by Equations 9 and 10 respectively: 

𝐷𝑇𝐷 = 𝐷𝐷
′ [1 + 𝑦

12𝑒

𝑏2 + 𝑑2] (9) 

𝐷𝑇𝑀 = 𝐷𝑀
′ [1 + 𝑦

12𝑒

𝑏2 + 𝑑2] (10) 
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 Fourth step: the base shear can be evaluated using Equations 11 and 12. 

𝑉𝑠 =
𝐾𝐷𝑚𝑎𝑥𝐷𝐷

𝑅𝐼
 (11) 

𝐾𝐷𝑚𝑎𝑥 =
1 + 𝛼

1 − 𝛼
𝐾𝐷𝑚𝑖𝑛    (12) 

Where; 𝛼 is the ratio of secondary stiffness to primary stiffness of isolator. 

The RI factor is based on the type of seismic force-resisting system used for the structure above the isolation system 

and should be 0.375 of the value of R given in ASCE 7, Table 12.2-1, with a maximum value not greater than 2.0 and a 

minimum value not less than 1.0. It should be noted that in this study the isolated structure RI = 2. 

 Fifth step: controlling drift and base shear limit which shall not exceed the following limits: 

1. Maximum storey drift of the structure above the isolation system shall not exceed 0.015hsx. 

2. Maximum storey drift of the structure above the isolation system shall not exceed 0.020hsx. 

The value of base shear, VS shall not be taken as less than one of the following limits: 

1. Base shear corresponding to the factored design wind load.   

2. Lateral seismic force required to fully activate the isolation system multiplied by 1.5. 

The isolators make a reduction in forces created by earthquake in the design of structures and also reduce floor 

displacement and accelerations which can be apply into the new and retrofitting of existing structures. Recently, the 

performance of the isolator in the base of structures has been used in near-fault earthquakes, long period and large 

velocity pulses in the velocity history of ground motion can be characterized. For the isolated base structure, if the 

period of the mentioned pulses coincides with the period of the structure, the seismic response of the system will be 

amplified. The base isolation structure will be influenced with normal to the fault ground motion such that, the isolator 

effects will be reduced or maybe negative. To solve this type of problems with the isolation systems, shape memory 

alloys can be applied in vibration control of structures. The shape memory alloys has two unique properties: shape 

memory effect and super elastic effect. Both of these properties acting on the solid-solid phase transformation first 

more ordered phase named austenite and less ordered phase named martensite. To transfer from the one mentioned 

phase to another, it is necessary to exist the variation in temperature or stress which the transformation due to 

temperature variation called shape memory effect and due to the stress variation called super elastic effect.  

The super elastic effect can be considered in base isolator residual displacement problem. It can fully reenter the 

original shape of the isolator, and this shape recovery is also compeer with significant hysteresis loop which leads to 

energy dissipation. Combination of the isolators and these smart materials can lead to an intelligent solution for the 

mentioned problems with isolators in a near-fault earthquake. Residual displacements of the isolators can be removed 

with a re-centring force which was generating by the SMA bars due to the ground motion. In this study to meet the 

mentioned purpose, two principal part of isolators (top and below flange of isolator) should be linked with the SMA 

bars as shown in Figure 2. 

 

Figure 2. Combination LRB isolators with the SMA bars 

Several key parameters on the hysteresis loop have be determined for shape memory alloys as illustrated and shown 

in Figure 3 which indicate the energy dissipation and restoration after unloading.  
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Figure 3. Stress-strain behavior of the shape memory alloys [21] 

𝜎𝑠𝑡𝑎𝑟𝑡
𝐴𝑠 : Starting stress value for the forward phase transformation 

𝜎𝑓𝑖𝑛𝑎𝑙
𝐴𝑠 : Final stress value for the forward phase transformation 

𝜎𝑠𝑡𝑎𝑟𝑡
𝑀𝑠 : Starting stress value for the reverse phase transformation 

𝜎𝑓𝑖𝑛𝑎𝑙
𝑀𝑠 : Final stress value for the reverse phase transformation 

𝜀𝐿: Maximum residual strain 

𝛼: Parameter for material responses in tension and compression. 

3. Time History Analysis and Structural Model 

As suggested by ASCE 7, in time-history analysis, at least three different strong ground motions will be needed to 

apply the structural model and the scaled ground motion [21] . Seven ground motions which are the maximum value 

of each response parameter have been used for design as listed in Table 1, are taken for the response- history analysis. 

All of the selected records are near field record as shown in Table 1. 

Table 1. Description of records [17] 

Event's name Date VS (m/s) Fault distance (KM) 

1. Chi Chi Taiwan 1999 472.8 5.18 

2. Northridge 1999 282.3 6.5 

3. Cope Mendocino 1992 712.8 8.18 

4. Loma Prieta 1989 1070.3 5.02 

5. Tabas 1978 766.8 2.05 

6. Erzincan 1992 274.5 4.38 

7. Landers 1992 684.9 2.19 

  

In this study several combinations of scaling factors have been defined for three 6-storey structural models and 

assumed to be located in California zone. The details of steel structural building are shown in Figures 4 and 5 and 

other properties are listed below: 

 No. storey: 6 

 Height of stories:  3.2 m 

 No. span in X direction: 3 

 No. span in Y direction: 2 

 Span length in X & Y direction: 6 m 

 Lateral load resisting system in X & Y direction: Special Moment Frame 

 Dead load: 350 Kg/m
2
 for each storey and 250 Kg/m

2
 for roof 

 Live load: 150 Kg/m
2
 for each storey and 200 Kg/m

2
 for roof 

 Circumferential wall: 800 Kg/m for each storey and 250 Kg/m for roof 
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Figure 4. Plan of 6-storey model 

 

Figure 5. Beams and columns of 6-storey model in X & Y direction  

The dynamic properties of steel building are listed in Table 2. 

Table 2. 6-storey model, dynamic properties (Natural period in sec) 

 

 

 

The site class of soil considered to be C (very dense soil and soft rock) base on ASCE 7 code, and is residential 

structures. The design parameters for the models are as follow [21]: 

Importance Factor (Ie) was defined as 1 in this study concerning the risk category. 

Site location, evaluate S1 and SS (acceleration parameters), S1 =0.82g and SS =1.61g 

Site class, to evaluate properties of soil at a given site. 

Site categorized are as site class A, B, C, D, E and F. 

For this study site classification C has been selected (C: Very dense soil and soft rock). 

Number of Mode X direction Y direction Rotational 

I  0.64 0.53 0.42 

II 0.2 0.17 0.14 

III 0.11 0.09 0.07 
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Fa and Fv are functions of the site class and site coefficient parameters can be determined by acceleration 

parameters and site classification: 

S1 =0.82g     SS =1.61g   Soil Type (site classification): C 

Based on the ASCE 7: 

Fa: Site coefficient at short periods => Fa = 1 

Fv: Site coefficient at 1 second period => Fv = 1.3 

Maximum considered earthquake response spectral (MCER), response acceleration parameters adjusted for site class 

effects can introduce by Equation 13: 

 𝑆𝑀𝑆 = 𝐹𝑎. 𝑆𝑆 = 1 ∗ (1.61𝑔) = 1.61𝑔 (13) 

Design earthquake spectral response acceleration parameter at a short period, SDS, and at the 1 second period, SD1, 

can calculated using Equations 14 and 15. 

 𝑆𝐷𝑆  =  0.667 𝑆𝑀𝑆   (14) 

 𝑆𝐷1  =  0.667 𝑆𝑀1 (15) 

SDS: 5% damped design spectral response acceleration at 0.2 second period  

SD1: 5% damped design spectral response acceleration at 1 second period  

SDS = 0.667 SMS = 0.667 × 1.61g = 1.0733g 

SD1 = 0.667 SM1 = 0.667 × 1.066g = 0.71066g 

Base on ASCE 7, the risk category are listed in Tables 3 and 4 [21]. 

Table 3. Risk category based on the short period [21] 

Value of SDS 
Risk category 

I or II III IV 

𝑺𝑫𝑺 < 𝟎. 𝟏𝟔𝟕𝒈 A A A 

𝟎. 𝟏𝟔𝟕𝒈 ≤ 𝑺𝑫𝑺 < 𝟎. 𝟑𝟑𝒈 B B C 

𝟎. 𝟑𝟑𝒈 ≤ 𝑺𝑫𝑺 < 𝟎. 𝟓𝒈 C C D 

𝟎. 𝟓𝒈 ≤ 𝑺𝑫𝑺 D D D 

Table 4. Risk category based on the S period [21] 

Value of SD1 
Risk category 

I or II III IV 

𝑺𝑫𝟏 < 𝟎. 𝟎𝟔𝟕𝒈 A A A 

𝟎. 𝟎𝟔𝟕𝒈 ≤ 𝑺𝑫𝟏 < 𝟎. 𝟏𝟑𝟑𝒈 B B C 

𝟎𝟏𝟑𝟑𝒈 ≤ 𝑺𝑫𝟏 < 𝟎. 𝟐𝒈 C C D 

𝟎. 𝟐𝒈 ≤ 𝑺𝑫𝟏 D D D 

 

For moment resisting frames category (D), behavior factor of (𝑅) = 8  and the seismic response coefficient, CS, 

can be obtained using Equation 16.  

 
𝐶𝑠 =

𝑆𝐷𝑆

𝑅
𝐼𝑒

     𝐶𝑠 =
2.49𝑔

8
1

= 0.13416𝑔   
(16) 

The approximate fundamental period (Ta), in s, can be calculated by Equation 17.  

 𝑇𝑎 = 𝐶𝑡 . ℎ𝑛
𝑥 (17) 

Where hn is the structural height from the base, Ct and x are determined from ASCE 7 [21]. 

The following flowchart is given to show procedures of research methodology: 
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4. Results and Comparisons 

In this study, displacement and acceleration responses of the model have been presented and compared with each 

other in such a ways to illustrate the significant differences which exist in displacement and acceleration responses 

between the fixed base and isolated base and isolated base equipped by shape memory alloys material in isolators: 

4.1. Fixed Base Results 

Displacement response for an ordinary building subjected to Northridge record is shown in Figures 6 to 9.  

 

Figure 6. X-Direction displacement response of first floor for Northridge record 

 

Figure 7. X-Direction displacement response of sixth floor for Northridge record 
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Figure 8. Y-Direction displacement response of first floor for Northridge record 

 

 

Figure 9. Y-Direction displacement response of sixth floor for Northridge record 

According to Figures 6 to 9, in a 6-storey steel structure, displacement graphs demonstrate a response for an 

ordinary building where the maximum displacement in the first storey is 2.09 cm and 1.88 cm in X and Y directions. 

In sixth storey, maximum displacement is 17.6 cm and 19.3 cm in X and Y direction respectively. So, the building has 

a noticeable relative displacement in stories. The period of the structure is same as conventional steel moment frames.  

4.2. Isolated Base Results 

Displacement response for an ordinary building subjected to Northridge record is shown in Figures 10-13.  

 

Figure 10. X-Direction displacement response of first floor to the Northridge record 

 

Figure 11. X-Direction displacement response of sixth floor to the Northridge record 
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Figure 12. Y-Direction displacement response of first floor for Northridge record 

 

Figure 13. Y-Direction displacement response of sixth floor for Northridge record 

Compared to the fixed base, the relative displacement decreased from 4.02 cm to 0.59 cm and from 3.17 cm to 0.83 

cm in X and Y direction respectively. The relative displacement shown in Figure 14, indicate a reduction since 

isolators have been used. However, after earthquake, a significant residual displacement can be observed in base 

isolation devices, which consequently alter the performance of the isolators afterwards. 

Figure 14. X & Y Direction relative displacement of each floors for Northridge record 
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4.3. Isolated Base Equipped with SMA Results 

As observed in the base isolation system, there is a negligible residual displacement compare to the base-isolated 

system equipped with shape memory alloys, the residual displacement in the X direction is 0.53 cm compared to the 

base isolation system with 7.96 cm and in the Y direction is 0.29 cm compared to 8 cm. The stiffness of shape 

memory alloys has an insignificant effect on dissipating energy and the relative displacement is slightly different from 

base isolation systems. According to Figures 14 and 19, the relative displacement difference is negligible in 

comparison with the base isolation system with the maximum relative displacement of 0.79 cm and 0.67 cm in X and 

Y direction compared to 0.59 cm and 0.83 cm. The period of the structure is almost same for both cases. The results 

maximum displacement, residual displacement and maximum relative displacement for three cases of fixed base, 

isolated base and isolated base equipped with shape memory alloys are listed in Table 5.   

 

Figure 15. X-Direction displacement response of first floor for Northridge record 

 

Figure 16. X-Direction displacement response of sixth floor for Northridge record 

 

Figure 17. Y-Direction displacement response of first floor for Northridge record 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

D
is

p
la

ce
m

en
t 

[m
] 

Time [sec] 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

D
is

p
la

ce
m

en
t 

[m
] 

Time [sec] 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

D
is

p
la

ce
m

en
t 

[m
] 

Time [sec] 



Civil Engineering Journal         Vol. 6, No. 7, July, 2020 

1325 

 

 

0

1

2

3

4

5

6

7

-0.01 0 0.01 0.02 0.03 0.04 0.05

S
to

re
y

 N
u

m
b

er
 

Relative Displacement [m] 

X Direction 

Fixed Base Isolated Base with SMA

0

1

2

3

4

5

6

7

-0.01 0 0.01 0.02 0.03 0.04

S
to

re
y

 N
u

m
b

er
 

Relative Displacement [m] 

Y Direction 

Fixed Base Isolated Base with SMA

 

Figure 18. Y-Direction displacement response of sixth floor for Northridge record 

Figure 19. X and Y Direction relative displacement of each floor for Northridge record 

Table 5. Results of displacement  

 
Direction Storey  

Maximum 

displacement (cm) 

Residual 

displacement (cm)  

Decreasing 

percent 

Maximum 

relative displacement (cm)  

Fixed Base  

X 
Storey 1 2.09 0.11 - 

4.02 
Storey 6 17.6 0.12 - 

Y 
Storey 1 1.88 0.18 - 

3.17 
Storey 6 19.3 0.14 - 

Isolated Base  

X 
Storey 1 26.9 7.69 - 

0.59 
Storey 6 27.5 7.8 - 

Y 
Storey 1 27.6 8 - 

0.83 
Storey 6 28.8 7.6 - 

Isolated Base 
Equipped with SMA  

X 

Storey 1 20.1 0.53 93.1% 

0.79 

Storey 6 21.5 0.63 91.9% 

Y 

Storey 1 23.5 0.29 96.4% 

0.67 

Storey 6 25.6 0.32 95.8% 
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5. Conclusion 

In this study, a three dimensional six-storey steel structural building was modelled in OpenSees program by 

locating the isolators under the columns in order to investigate the feasibility of smart isolation systems. Initially, 

fixed-based results are observed which shows that their responses are same as conventional buildings; with significant 

storey drifts and vulnerable in near-field earthquake excitations with noticeable acceleration at first story and shear 

force consequently. Base isolation system results are compared to fixed-based results. Maximum relative displacement 

of base isolation system has been reduced to 85 percent compared to fixed-based where the period of the structure 

became 3 times greater than fixed-based structure. Considering the results, in the base-isolated system equipped with 

shape memory alloys, the residual displacement decreased up to 94 percent in the X direction and up to 97 percent in 

the Y direction. It can be concluded that the efficient function of a base isolation can be reserved for the future and the 

maintenance costs of the structure. The importance of the structure and considering the high price pf shape memory 

alloys, the economic values of these types of structures should be considered. The indicated system significantly 

elevates the durability of base isolation during service level of earthquakes over the time which may reduce base 

isolation maintenance and replacement expenditures. 
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