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Abstract 

In a framed-tube tall building, shear wall systems are the most efficient structural systems for increasing the lateral load 

resistance. A novel and simple mathematical model is developed herein which calculates the natural frequencies of such 

tall buildings. The analyses are based on a continuous model, in which a tall building structure is replaced by an idealized 

cantilever beam that embodies all relevant structural characteristics. Governing equations and the corresponding eigen-

problem are derived based on the energy method and Hamilton’s principle. Solutions are obtained for three examples; 

using the separation of variables technique implemented in MATLAB. The results are compared to SAP2000 full model 

analysis; and they indicate reasonable accuracy. The computed natural frequencies for structures 50, 60 and 70 storey 

buildings were over-estimate 7, 11 and 14 percent respectively. The computed errors indicate that the proposed method 

has acceptable accuracy; and can be used during the initial stages of designing of tall buildings; it is fast and low cost 

computational process. 
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1. Introduction 

Tall building developments have been rapidly increasing worldwide. One of the most critical issues in tall 

buildings is choosing proper structural form to resist lateral loads. Lateral deformation must be severely controlled, 

that inhabitant feels comfort and to prevent damages to second-grade structural elements. Another vital point in tall 

buildings’ design is the dynamic analysis of these structures that is very important because of their more flexibility and 

consequently increases of vibrational amplitude and the fact that the dynamic characteristic of structures is mainly 

governed by their natural frequencies [1-2]. Therefore, dynamic parameters calculation of tall buildings is essential for 

primary designing. Dynamic parameters such as vibrational frequencies and mode shapes can be calculated by 

numerical methods such as finite element. While these numerical methods are used for final designing, approximate 

methods are very effective for primary designing. Approximate methods can help the designer in cases such as initial 

design when dimensions of some constructional members are not specified, comparison of achieved results with more 

advanced numerical methods, and finally specifying of structural dynamic behaviour which leads to better designing.  

One of the most ordinary approximate methods for dynamic parameters calculation of tall buildings is “continuum 

method” in which the tall building’s structure is substituted by a continuum beam, adopting Euler–Bernoulli or 

Timoshenko beam theory as the design tool [3]. Considering different kinds of parameters in the substituted beam can 

help the designer to achieve natural frequencies and mode shapes with more accuracy. For resistant of high-rise 
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buildings subjected to lateral loadings, framed tube, rigid frame, braced frame, shear wall or coupled shear walls can 

be considered. The framed tube is an economic and ordinary form for wide ranges of tall buildings. The most primary 

type of framed tube includes four frame panel vertical on each other; this system consists of closely spaced perimeter 

columns tied at each floor level by deep spandrel beams to form a tubular structure. The framed tube structure can be 

considered to be composed of: (1) two web panels parallel to the direction of the lateral load, (2) two flange panels 

normal to the direction of the lateral load. Framed tube behaviour is similar to a cantilever beam, and the columns in 

two parallel sides of the neutral axis function tensile and pressed [4]. Besides, frames parallel with lateral load under 

bending resulted from lateral loads indicate shear behaviour [5]. Tavakoli et al. [6-7] studied the seismic performance 

of outrigger-belt truss system subjected to the earthquake and blast load using finite element and component-mode 

synthesis. 

Several methods have been presented to analyze framed tube structures. Coull and Bose (1975) presented a method 

based on elasticity theory [8]. Coull and Ahmad (1978) presented a method for the achievement of position changes of 

the circumferential frame [9]. Kwan (1994) by using equal orthotropic planes, energy method and elasticity theory, 

presented equations for determining stress in columns and also for achievement of lateral deflection of the framed tube 

[4]. As the most studies of tall buildings directed toward analysis, Alavi et al. (2018, a, b) proposed simplified 

methods which are suitable for the preliminary design of high-rise structures [10-11]. About free vibration of tall 

buildings, different types of research have been done by several researchers, that in most of them the vibration of the 

structures is modelled as the vibration of a cantilever beam [12-14]. Many researchers have studied fundamental 

frequencies of tall buildings [15-17]. Kaviani et al. (2008) carried out an approximate method for determining the 

natural periods of multistory buildings subjected to earthquake [16]. In this article, based on a continuum approach 

and Hamilton’s principle, a simple mathematical method for calculation of natural frequencies of the combined system 

of the framed tube and shear wall is presented. In particular, Mohammadnejad and Haji Kazemi in several research 

investigated the natural frequencies of the framed tube structures in more details, considering the effects of shear lag 

phenomena [18-20].  

There are compound and various structural systems for increasing efficiency of framed tube buildings. A more 

uniform distribution of axial stress in flange and web frames, and also a decrease in the values of deflection at the 

highest level of structures could be obtained using the mega bracing system [21], shear walls shear core, and also 

outrigger-belt trusses in the frame tube structures [22-23]. The system which is considered in this article is a combined 

system of the framed tube and shear wall. When framed tube and shear wall system subjected to lateral loads, the 

shear wall deforms in bending form with downward concavity and with maximum gradient. Interaction of forces 

causes that shear wall to restrain deflection of frames in bases, and framed tube is like a restrain for the shear wall 

above structure. Therefore, deflection of the construction decreases. In the recent decade, studies about analysis of free 

vibration of the frame with shear wall have been done. Kuang (2001) based on continuum method and D’Alembert’s 

principle achieved governing differential equations of free vibration of structures with the symmetrical shear wall [24]. 

Wang (2005) presented an equation for computing the natural vibration of buildings with coupled shear walls which is 

proved to be the fourth-order Sturm–Liouville differential equation, and a hand method for determining the first two 

periods of natural vibration of the buildings. Also, to determine the first natural frequency of these structures, a 

relation has been suggested [25]. In continuance of previous studies, Bozdogan and Ozturk represented an 

approximate method based on the continuum approach and transfer matrix method for free vibration analysis of multi-

bay coupled shear walls [26]. Kamgar and Rahgozar (2019) used energy method as a robust method to compute the 

roof displacement and axial forces of columns in tall buildings reinforced with a framed tube and outrigger system 

[27].  

Although free vibration analysis of framed tube system and shear-walled frame has been studied extensively over 

the past few decades, there have been few research efforts related to determining vibrational characteristics of the 

combined system of framed tube and shear-wall system. Therefore, to fill in the gap, in this study, a simple analytical 

method for calculating natural frequencies of the combined system of framed tube and shear walls is presented. On the 

basis of the continuum approach, framed tube and shear walls are replaced by an equivalent cantilever beam located at 

the mass center. It should be noted that the first natural frequency of any structure has an important issue in 

determining the linear and nonlinear response of structures subjected to the dynamic loads. On the other hand, 

calculating the values of natural frequencies of structures using numerical methods is computationally expensive. 

Therefore, the main aim of this paper is related to calculate the natural frequency of tall buildings that consist of 

framed tube and shear walls using simple analytical methods. The three-dimensional structure is replaced by an 

equivalent beam. For this purpose, Hamilton's principle is used to obtain the governing equation of a combined 

system. Then the characteristic equation is obtained by applying the boundary conditions. The characteristic equation 

is solved to calculate the natural frequency. Several numerical examples are solved, and the results are compared with 

those obtained from SAP2000 and other work. Finally, the results show the ability of the proposed method in 

comparison with the other methods. 
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2. Lagrange’s Equations For Combined System Of Framed Tube And Shear Wall 

In this section a simple mathematical method for calculation of natural frequencies of a combined system of framed 

tube and shear walls is presented based on the works done by Kwan (1994); Malekinejad and Rahgozar (2010) [4, 28]. 

Kwan (1994) proposed a model for the analysis of framed tube structures; those following assumptions are considered 

for modelling the framed tube system by using equivalent orthotropic plates [4]:  

 The material of the structures is homogenous, isotropic and obeys Hooke’s law. 

 Spacing of beams and columns are uniform throughout the building height.  

 3-The floor slabs of tall buildings are not deformable in their planes and have no motion perpendicular to their 

planes. 

 The structure is assumed symmetric in plan and height and cannot twist. 

 All beams and columns are uniforms along with the building height. 

The kinetic (Equation 1) and potential energies (Equation 2) of the considered dynamic system are written as 

follows [29]: 

2
b

0

1
K(t) m( x )[ y( x,t )] dx

2
   (1) 

2 2

0 0

1 1

2 2

b b

P( t ) EI( x )[ y ( x,t )] dx S( x )[ y ( x,t )] dx     (2) 

In which y(x, t) is displacement and S(x) is the shear stiffness GA(x). In which G is the shear modulus, and A(x) is the 

cross-sectional area. 

The function A is in the form of L integral, between two arbitrary times of 
2

,
1

t t . 

2 2

1 1

t t

t t

A Hdt (K P)dt     (3) 

Hamilton’s principle represents that A has a stationary value expressed as A 0  , where  is known as the 

variational operator. 

 Hamilton’s principle can be written in the following form [28]: 

 
2

1

t b

nc 1 2
t 0

A= H + y dx+ L dt = 0 y = 0 at t = t ,t 0 x b    
  

  
  

   (4) 

Using properties of operator and integration by parts, the following matters result: 

 Differential equations of motion known as the Lagrange’s equation, 

 Boundary displacements, 

 Boundary forces, 

 Eigenvalue solution form. 

H can be determined as follows: 

1 1 12 2 2H my EIy Sy
2 2 2

     (5) 

Using the Lagrange equation, Eq. (4) can be rewritten as follows: 

2

1

t b

t 0

H H H
A= y + y + y F y dx dt = 0

y y y

  
    

  

   
    

    
   (6) 

At this step, the integrand in Equation 6 should be transformed into one containing only 𝛿𝑦 . Therefore, this 

equation is integrated by part, both respect to space and time. After simplification, one can obtain: 
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            

 
 

(7) 

By replacing Equation 5 into Equation 7, the following equation with a series of boundary conditions is derived:  

2

2
(Sy ) ( EIy ) (my) 0 0 x b

x tx

  
      

 
 (8) 

Using the method of separation of variable and let  y( x,t ) Y( x ) T( t ) , two equations can be obtained. The 

frequencies can be obtained from the x-dependent equation [29]: 

0Ymω)Y(EI
dx

d
)Y(S

dx

d 2

2

2

  (9) 

The Equation 9 after simplifying will be changed as follows by definition the  and  parameters (Equations 11 

and 12). 

4 2
2 2 2

4 2

d Y d Y
ω Y 0 0 n 1

dn dn
       (10) 

2 2S
b

EI
   (11) 

2 2m
b

EI
   (12) 

Values of EI, S and m can be determined by applying the boundary conditions Equations 13 to 16. These boundary 

conditions are related to the displacement value at the bottom of the structure (𝑌(𝑛=0)), the value of rotation at the 

bottom of the structure (𝑌′(𝑛=0)), shear force ([𝑌" − 𝛾2𝑌′]|𝑛=1) and bending moment (𝑌"|𝑛=1) values at the top of the 

structure. 

Y 0(n 0) 
 (13) 

Y 0(n 0)
 

 (14) 

2
n 1Y Y 0 

   
   (15) 

n 1Y 0
   (16) 

The Y function is considered as follows to obtain a solution for the governing equation (Equation 10): 

C pnY(n) e  (17) 

Therefore, the solutions of the equation (Equation 10) will be as follows by considering Equation 17: 

p
2 4

2 2 2
1,2 1 3,4 2ω p = ± B , p = ±i B

2 4

 
     (18) 

In which: 

4 2
2 2

1B ω
4 2

 
    (19) 

 

4 2
2 2

2B ω
4 2

 
    (20) 
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To solve the Equation 10, one can rewrite it as follows: 

G

H

J

K2

Y(n)

Y(n)
p(n,ω)

Y(n)

Y α Y(n) (n)

 
  

   
   

   
  
   

 

 (21) 

1 1 2 2

1 1 1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 2 1 1 2 1 2 1 2 2 1 2

cosh(B n) sinh(B n) cos(B n) sin(B n)

B sinh(B n) B cosh(B n) B sin(B n) B cos(B n)
p(n,ω)

B cosh(B n) B sinh(B n) B cos(B n) B sin(B n)

B B sinh(B n) B B cosh(B n) B B sin(B n) B B cos(B n)

 
 


 

   
 
  

 (22) 

After substituting boundary conditions, a nontrivial solution for Equation 21 can be obtained by setting the 

determinant of coefficients to zero. 

1 2

2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 2 1 1 2 1 2 1 2 2 1 2

1 0 1 0

0 B 0 B
=0

B coshB B sinhB -B cosB -B sinB

B B sinhB B B coshB B B sinB -B B cosB

 (23) 

Solving Equation 23 using MATLAB software yields: 

5 4 2 3 3 2 3 3 2
1 2 1 2 1 2 1 2 1 2 1 1 2 2

3 3 2 3 3 2 2 4 5
1 2 1 1 2 2 1 2 1 2 1 2 1 2

B B coshB cosB B B sinhB sinB B B cosh B B B cos B

B B sinh B B B sin B B B sinhB sinhB B B coshB cosB 0

   

   
 (24) 

By solving this equation, the natural frequencies are calculated. For numerical study, EI, S, m, parameters should be 

calculated. To calculate G in S GA( x ) Kwan’s relations are used [4]. 

b s

h

stG=
Δ Δ

+
Q Q

 (25) 

In which: 

3 2
b b c

m c m c

Δ (h - d ) (s - d )h
= +( )

Q 12E I s 12E I
 (26) 

2
2s b c

m sc m sb

Δ (h - d ) (s - d )h
= +( )

Q G A s G A
 (27) 

Where bI and cI are moments of inertia of the beam and column respectively, sbA and scA are effective shear areas of 

the beam and column, and finally mG is the shear modulus of the material. 

The following step by step procedures shown the methodology of the proposed method 

 Determining the values of mass per unit length (m) along height of structure; 

 Determining the flexural (EI) and shear stiffness (S) of the structure; 

 Calculation the  and  parameter using Equations 11 and 12; 

 Solving Equation 24 to find the B1 and B2 parameters and finally computing the first natural frequency of the 

structure using Equations 19 and 20. 
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3. Examples and Comparison of Results with Computer Analysis 

To verify the accuracy and efficiency of the proposed approximate method, three numerical high-rises symmetric 

reinforced concrete buildings which consist of a framed tube and shear walls are presented for determining the natural 

frequencies [30]. Then, a comparison is presented between the results in order to evaluate the simplicity and accuracy 

of this method. Characteristics of these structures are listed in Table 1, also plan and actual system of tall building are 

shown in Figure 1. 

Table 1. Geometrical characteristics of structures in plan and height 

 

 

 

 

 

  

 

Figure 1. Plan and actual system of tall building consist of framed tube and shear walls 

The elastic characteristics of materials are listed in Table 2. 

Table 2. Elastic characteristics 

𝑬 (𝑮𝑷𝒂) 𝑮 (𝑮𝑷𝒂) 𝝆𝒄(𝒌𝒈/𝒎𝟑) 𝝂 

20 8 400 0.25 

Equivalent properties of the buildings are listed in Table 3 based on Kwan’s method in 1994 [4].       

Table 3. Equivalent properties of tall buildings 

𝑮 (𝑮𝑷𝒂) 𝒕 (𝒎) 

1.37 0.21 

Flexural (EI) and shear stiffness (S) of the framed tube system and shear walls are calculated as follows:  

 

Number of stories Story’s height Spans length Dimensions of shear-wall Plan’s dimensions 

n  h(m)  wS (m)  fS (m)  B(m)  h(m)  t(m)  2a(m)  2b(m)  

50 3 3 3 2.2 3 0.3 36 36 

60 3 3 3 2.2 3 0.35 42 42 

70 3 3 3 2.2 3 0.35 42 42 
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9 9 9 2

8 8 8 2

50 storey        EI = 2 ×10 ×6418.41+ 2 ×10 × 2799.42 = 18435.66 ×10 kg.m

S = 20.59 ×10 +63.36 ×10 = 83.95 ×10 kg.m



 

9 9 9 2

8 8 8 2

60 storey        EI = 2 ×10 ×10372.57 + 2 ×10 ×5556.72 = 31858.58 ×10 kg.m

S = 24.16 ×10 +73.92 ×10 = 98.08 ×10 kg.m


 

9 9 9 2

8 8 8 2

70 storey        EI = 2 ×10 ×15386.45 + 2 ×10 ×8975.68 = 48724.26 ×10 kg.m

S = 28.52 ×10 +85.32 ×10 = 113.84 ×10 kg.m


 

 

Where m is mass per unit height of the buildings, which is derived as follows: 

76550400
50 storey m = = 510336 kg / m

150


  

118056960
60 storey m = = 655872 kg / m

180
  

179576640
70 storey m = = 855127 kg / m

210
  

By substituting the values of EI, S and m for each of the structure into the Equations 11 and 12,  and  can be 
calculated. By substituting their values into Equations 19 and 20, 1B and 2B can be found. Finally, by using Equation 

24, natural frequencies are calculated based on a computer program which has been developed in MATLAB for three 

numerical examples 50, 60 and 70 storey tall buildings. Comparison of computer analysis results (SAP2000) with the 

proposed method are listed in Table 4. 

Table 4. Comparison of natural frequencies between SAP2000 and proposed approximate method 

Number of stories 𝜸 𝝀 𝝎(𝒓𝒂𝒅/𝒔) Percent of Error in 𝝎 

 Proposed method SAP2000  

50 4.25 3.74 1.93 1.80 7 

60 3.15 4.65 1.53 1.37 11 

70 2.85 6.12 1.27 1.09 14 

The calculated natural frequencies for structures 50, 60 and 70 storey tall buildings have over estimate 7, 11 and 14 

percent differences with results of computer analysis (SAP2000). The main source of errors between the proposed 

approximate method and SAP2000 may be lead from followings: all closely spaced perimeter columns tied at each 

floor level by deep spandrel beams are modelled as a tubular structure, the equivalent elastic properties for GA and EI 

and neglecting the effect of shear lag in the approximate method have been used. 

Also the results for 60 and 70 storey tall buildings with shear walls are compared with the research carried out by 

Rahgozar et al. using B-spline functions [30]. As shown in Table (5), the natural frequencies calculated by the 

proposed approximate method are overestimated by 15 and 9 percent for 60 and 70 storey building respectively. 

Table 5. Comparison of natural frequencies between proposed approximate method and Rahgozar et al. [30] 

 

Number of stories 𝝎(𝒓𝒂𝒅/𝒔) Percent of Error in 𝝎 

 Proposed method Rahgozar et al. [30]  

60 1.53 1.30 15 

70 1.27 1.15 9 

4. Conclusion 

Natural frequencies and mode-shapes play an important role in structural design of tall buildings. Especially the 

first natural mode; since it is the dominant component in response of a tall building to earthquake or wind loading. In 

this article, an approximate method for free vibration analysis of the combined system of framed tube and shear walls 

was presented. In the proposed method, the structure is modelled as a cantilever hollow box with equivalent structural 

characteristics. The governing differential equation was derived by energy method and Hamilton’s principle. Applying 

appropriate boundary conditions, natural frequencies of the combined system of framed tube and shear walls were 

obtained. Comparing to results from comprehensive finite element models; the proposed method overestimate the first 

natural frequency by 7% for the 50-storey, 11% for the 60-storey, and 14% for the 70-storey building. Differences are 

within acceptable ranges for a quick estimate. Hence, the proposed method may reliably be used for free vibration 



Civil Engineering Journal         Vol. 6, No. 5, May, 2020 

952 

 

 

analysis of framed tube tall buildings reinforced by shear walls. The proposed method is simple, accurate, economical, 

reliable, and especially suitable for use during the preliminary design; where a large number of structures with 

different features need to be analyzed. 
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