
 Available online at www.CivileJournal.org 

Civil Engineering Journal 

  Vol. 6, No. 10, October, 2020 

 

 

 

  

 
  

 

 

    

2045 

 

 

A Mathematical Model for Ballast Tamping Decision Making in 

Railway Tracks 

 

Mohammad Daddow a*, Xiedong Zhang a, Hongsheng Qiu a, Zhihua Zhang b, 

Yingqi Liu c 
a Road and Railway Engineering, School of Transportation, Wuhan University of Technology, 430063 Wuhan, China. 

b Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, 430010 Wuhan, China. 

c Structural Engineering, University of Hong Kong, 999077 Hong Kong, China. 

Received 26 June 2020; Accepted 01 September 2020 

Abstract 

Ballast tamping is considered as an important maintenance process for railway infrastructures and has a large influence 

on the capacity of any railway networks. But optimizing the plan of that process is a complex problem with a high cost. 

This paper discusses optimizing tamping operations on ballasted tracks to improve the track geometry and reduce the 

total maintenance cost. A mathematical model for this problem in the literature is improved here by including the 

restriction on the resources (tools, workers and budget) in the model and including constant/variable values for track 

possession cost and available resources. The optimal solutions obtained for all instances are found by using the global 

optimization. Besides, a numerical study is presented to test and evaluate the model performance. The results show that 

the proposed model can be adopted by the infrastructure manager (IM) to make suitable tamping scheduling decisions 

under normal or private conditions; however, the private conditions lead to an increase of the final cost compared to that 

of the normal ones. 
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1. Introduction 

Ballast tamping is considered to be an important maintenance operation for railway infrastructures and has a big 

influence on the capacity of railway tracks because of its private requests such as possessing a track for a long time, 

heavy equipment involved, planning difficulties, etc. [1]. Furthermore, tamping process is too expensive [2], therefore 

an optimal scheduling for this process is required to minimize the total cost as much as possible (Famurewa et al. 2015 

[1]; Miwa 2002 [3]; Oh et al. 2006 [4]; Macke and Higuchi 2007 [5]; Andrade and Teixeira 2011 [6]; Heinicke et al. 

2015 [7]). 

In this paper, the problem of optimal planning of ballast tamping tasks on a railway track is presented, and the aim 

is to get the optimum plan for them minimizing the discounted total cost (DTC) in a given horizon. Some assumptions 

and considerations are explained as the following: 

 The track in concern is composed by a series of sections of 200 m of length, 
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 The track condition degradation for each section is determined by the increase of the standard deviation of the 

longitudinal level over wavelengths from 3 to 25 m as in Gustavsson (2015) [8]. Moreover, it is assumed that 

this degradation is a linear one over time, 

 It is assumed that there is a linear relationship between the recovery of track section condition and the standard 

deviation of the longitudinal level of that section at the time of tamping, 

 It is assumed that the tamping process is being performed at the end of each period, 

 It is considered the DTC for the objective function and the constraints of the available workforce in the 

proposed model, and 

 The concern model in this paper is carried out in AMPL [9] and solved by CPLEX (version 12.6.2.0) [10]. 

In literature, a lot of studies have been presented to obtain an optimal schedule of maintenance activities in railway 

systems by using several methods and techniques in operations research. Budai et al. (2006 and 2009) [11, 12] studied 

the preventive maintenance scheduling problem (PMSP) for railway infrastructures. In the first work, the authors 

solved that problem by using two heuristics and solved it in the second one by using genetic and memetic algorithms. 

Peng et al. (2011) [13] applied a heuristic solution approach which used local search and project swapping method to 

solve the railway track maintenance scheduling problem in order to minimize the total travel costs of the maintenance 

crews and the influence of maintenance projects on railway operation. Gustavsson et al. (2014) [14] provided the 

model of the opportunistic replacement problem to the scheduling problem of preventive maintenance with interval 

costs in order to plan maintenance actions over a finite horizon minimizing the costs for all maintenance intervals. 

Another study proposed a mathematical model for the PMSP under different (seasonal) values of the track possession 

cost in the planning horizon. Then the authors compared between the optimum schedules for fixed and seasonal 

possession costs for a set of maintenance activities, in order to analyze the impact of possession costs on the optimal 

plan of the PMSP (Daddow et al. 2016 [15]). Also, many other papers have studied the PMSP (Higgins 1998 [16]; 

Canto 2008 [17]; Moghaddam and Usher 2011 [18]; Liu et al. 2019 [19]; Kamel et al. 2020 [20]). 

Other optimization models have been developed in the area of optimal scheduling of ballast tamping tasks in the 

railway infrastructures. Oyama and Miwa (2006) [21] developed an optimization model for the planning of tamping 

actions that includes two steps: 1) a transition model for predicting changes in the surface irregularities; and 2) a 

mathematical model for getting a suitable plan for those actions. In another research, Zhang et al. (2013) [22] studied 

the problem of scheduling of tamping operations on a regional railway network in the UK and used a genetic 

algorithm to obtain its solution. Another valuable work related to the area is carried out by Vale et al. (2012) [23] 

where the authors developed a model for scheduling the tamping actions to minimize the total number of these actions 

on the determined track in a given horizon. Then Gustavsson (2015) [8] upgraded that model by taking disaggregated 

constraints for the track layout influence and minimizing the total cost instead of the total number of tamping 

operations. Also, Wen et al. (2016) [2] extended the model in Vale et al. (2012) [23]  by minimizing the net present 

cost of the objective function and considering the impact of previous tamping operation through the calculation of 

track condition recovery. Daddow et al. (2017) [24] extended the model in [8] by regarding the effect of unused life of 

early tamped parts and the available workforce constraints in their model. Besides, the authors compared between two 

scenarios of minimum and maximum limits of the available maintenance crews. Finally, Bakhtiary et al. (2020) [25] 

improved a model that is available in the literature taking into account that an opportunistic maintenance threshold as a 

main decision variable in the new model in order to minimize the total cost of track tamping activities. 

The contribution of this paper is to extend the mathematical model in [8] through the following respects: 

 Consider the limitation of resources (machines, manpower, budget, etc.) in the model’s constraints, and 

 Consider constant/varied values for the track possession cost and available workforce for the time periods in the 

planning horizon. 

This extension aims to help the infrastructure manager (IM) to get an optimum schedule for tamping operations on 

the studied track in the planning horizon under variable circumstances. 

The remainder of this paper is organized as follows. Section 2 presents the problem statement. In Section 3, the 

mathematical formulation of the studied problem is provided. The computational results are presented and analyzed in 

Section 4. Finally, Section 5 presents conclusions and suggestions for future research. 

2. Problem Description 

This paper discusses the problem of optimum planning of tamping tasks on ballasted tracks. As above mentioned, it 

is considered that the railway track consists of many sections of 200 m of length, the track condition for each section is 

defined by its standard deviation of the longitudinal level and the condition of track section has a linear degradation 

over time and not allowed to exceed a specific limit (i.e. track quality limit). Furthermore, the linear relationship for 
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the recovery value is calculated as shown in Equation 1 based on the Office for Research and Experiments (ORE, 

1988) [26]: 

   1.( )j j

i i i
r a d b  (1) 

Where, 

a, b = Real parameters which are used to determine the recovery value, 

di 
= Degradation rate of the longitudinal deviation for the section i, 

j

i
r

 
= Recovery of the longitudinal deviation after tamping process for the section i in the period j, 

 1j

i  
= Longitudinal deviation for the section i at the end of the period 𝑗 − 1, and 

  1j

i i
d

 
= Longitudinal deviation for the section i at the time of tamping operation. 

Besides, the Union Internationale des Chemin de Fer (UIC, 2008) [27] recommends that tamping operations begin 

and end on a straight alignment in order to consider the impact of track layout on the tamping plan, where the track 

layout considers two types of the track sections, which are: 1) straight alignments (S); and 2) curves (C). Figure 1 

explains how this recommendation is applied through the calculations. In this figure, it is assumed that the curve 

section 3 and the straight section 9 require to tamping actions. So that, the tamping process will include the sections 2, 

3, 4, 5 and 6 together which they represent all members of the smallest set (I3) of successive sections such that 3  I3 

and the first and last sections in I3 are straight sections, while it will include the section 9 only because this section is a 

straight one. 

 
Figure 1. Track layout influence on tamping planning 

It is worth noting that the available resources are limited (such as equipment, budget and maintenance crews), so it 

is assumed throughout this paper that the available workforce is restricted and does not exceed a certain threshold for 

each period in the planning horizon. 

The aim of this paper is to obtain an optimum plan for the tamping tasks on the studied track minimizing the DTC 

in a finite horizon by considering constant/varied values for the track possession cost and the available workforce for 

the time periods of the planning horizon. The total maintenance cost contains two parts as follows: 

 A unit ballast tamping cost for each section of the railway track, and 

 A possession cost that is paid whenever any tamping job is being done on the railway track in that period. 

3. Mathematical Formulation 

A valuable advantage for Gustavsson’s Model (GM) in [8] can be mentioned as the ability of considering track 

possession cost through the tamping scheduling procedure. This ability leads to result in cost savings by scheduling 

the tamping actions together as much as possible in the same period. But similar to any other model, that model has 

some weaknesses which one of them can be indicated that it does not consider the available workforce constraints in 

the model. Therefore, it may give an impractical plan for tamping operations for the studied track (for example, the 

total number of planned tamping actions in some periods more than the available workforce for the IM). Based on this 

weakness, GM has been improved in this paper in such a way that the available workforce constraints are involved in 

the model in order to obtain more practical solution for the studied problem. Besides, the model in this paper presents 

two benefits which are as follows: 

 Possibility to consider varied available workforce values through every time period independently, and 

 Possibility to consider different track possession cost values for every time period independently too. 
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Both benefits are very helpful for the IM to plan the tamping works based on his available circumstances in the 

studied area. However, the importance of these two benefits is shown in Section 4.2. 

For this purpose, the relevant sets, parameters, decision variables, objective function, constraints and flowchart of 

the proposed model are presented below. 

3.1. Sets and Parameters 

The sets and parameters of the developed model in this paper are given as follows: 

N = Set of considered track sections, 

T
 

= Set of time periods in the planning horizon, 


i

I N
 

= Smallest set - for each section i  N - of sequential indices of railway track section such that i  Ii and the 

first and last sections in Ii are straight alignments, while if the section i is a straight alignment then Ii = {i}, 

mc
 

= Unit ballast tamping cost, 

jpc
 

= Unit possession cost for the period j, 

r
 

= Discount rate (%), 

M
 

= Adequately large number used in the big-M constraints of the problem, 

i
d

 
= Degradation rate of the longitudinal deviation for the track section i (mm/90 day), 

 max

i  

= Maximum value of the longitudinal deviation for the section i based on the maximum allowable speed 

of the vehicle (mm), 

 init

i  
= Longitudinal deviation for the section i at j = 0 (mm), 

&a b
 

= Real parameters to calculate the condition recovery, and 

jA
 

= Maximum possible number of sections for tamping in the period j  T. 

3.2. Decision Variables 

The decision variables are given as follows: 

j

i
x  

= Binary decision variable that determines whether tamping process is assigned to the section i  N at the 

period j  T ( 1j

i
x ) or not ( 0j

i
x ), 

jz
 

= Binary decision variable that indicates whether the track is used for tamping tasks at the period  jT (

1jz ) or not ( 0jz ), 

 j

i  

= Decision variable that calculates the longitudinal deviation for the track section i  N at the end of period 

j  T (mm), 

j

i
r

 

= Decision variable that determines the longitudinal deviation’s recovery after tamping operation for the 

section i  N at the period j  T (mm), and 

j

i
q

 

= Decision variable that is used here to transfer the model from non-linear into linear one as in Vale et al. 

(2012) [23]. It equals to ( .j j

i i
x r ); where it takes the value of 

j

i
r  when 1j

i
x , and zero when 0j

i
x  (mm). 

3.3. Objective Function and Constraints 

The objective function of the model is given as follows: 

 

   
    
     

  0.25

1
. . .

(1 )

j

j j j

i
j T i N

min mc x pc z
r

  (2) 

Subject to the following constraints: 

1j j j

i i i id q       ,i N  ,j T 0j  (3) 

 .j j

i i
q M x   ,i N j T  (4) 
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   0 .(1 )j j j

i i i
r q M x   ,i N j T  (5) 

   1.( )j j

i i i
r a d b   ,i N  ,j T 0j  (6) 

   1 maxj

i i i
d   ,i N  ,j T 0j  (7) 

 0 init

i i
 i N  (8) 

j j

k i
x x   ,

i
k I  ,i N j T  (9) 

j j

i
x z   ,i N j T  (10) 



 j j

i
i N

x A  j T  (11) 

 , 0,1j j

i
x z   ,i N j T  (12) 

 , , 0j j j

i i i
q r   ,i N j T  (13) 

Equation 2 defines the objective function which minimizes the DTC in the given horizon. The longitudinal 

deviation value for the section i at the end of period j is determined by Equation 3, where if there is a tamping action at 

the period j then that value is decreased by
j

i
r . The value of 

j

i
q is determined through Equations 4 and 5. If 0j

i
x  

(i.e. no tamping for the section i in the period j) then 
j

i
q is set to 0 by Equation 4, otherwise 

j

i
q is set to 

j

i
r by 

Equation 5. The longitudinal deviation’s recovery for the section i at the period j is calculated by Equation 6 which 

depends on the value of that deviation at the time of tamping. Equation 7 determines the maximum allowable value of 

the longitudinal deviation’s growth for the section i and Equation 8 gives the initial value for that deviation when j = 0. 

Equation 9 ensures that any tamping operation will begin and end on a straight alignment and Equation 10 guarantees 

that the possession cost is considered every period in which any tamping process is being planned. The total number of 

tamping operations which can be planned in the period j and cannot be exceeded the value of Aj is ensured by 

Equation 11. Finally, the problem variables are defined by Equations 12 and 13. 

3.4. Flowchart of the Model 

The flowchart of the proposed model is shown in Figure 2. The first step involves determination of the related sets, 

parameters and decision variables. The second step entails formulation of the objective function as shown in Equation 

2. The third step deals with formulation of the constraints, which are explained above. The fourth step includes 

performance of the suggested model in AMPL. The model described above has a linear objective function and linear 

constraints. Therefore, the model is treated as a mixed integer linear program (MILP). In the fifth step, the required 

data is determined as presented in the next section. The MILP model is solved by using CPLEX in the sixth step. The 

last step involves analysis of results as shown in Section 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Framework of the planning model 
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4. Computational Results 

4.1. The Included Data 

It is adopted the following data for the calculations: 

 The total number of track sections equals to 180 with length of 200 m, 

 The planning horizon is 2 years and corresponds to eight time periods of 90 days, 

 The parameters a and b equal to 0.4257 and -0.153, respectively as in Vale et al. (2012) [23], 

 The unit ballast tamping cost mc =1, the available workforce Aj = 65  j T , the possession cost 10jpc  

 j T a and the discount rate r = 4.5%, 

 The track layout with S and C sections is shown in Figure 3. In this figure, the number of curve sections (C) 

equals to 87 which represents 48.33 % of the  total considered track sections, 

 The degradation rate for track sections (mm/day) is presented in Figure 4. It can be seen in this figure that the 

values are mostly varied between 0.0005 and 0.0025 mm/day, 

 The initial condition for each section of the track (mm) is presented in Figure 5. Obviously, the studied truck 

has a good geometrical quality where most of values are less than 1.5 mm, and 

 It is considered that the maximum train speed changes between 160 and 220 km/h, hence the track quality limit 

for all sections equals to 1.9 mm based on EN13848-5 (CEN, 2008) [28] as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

Figure 3. The track layout 

 

Figure 4. Degradation rate of the longitudinal deviation for the studied track 
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Figure 5. Initial track condition values for the studied track sections 

4.2. Results 

The advantage of this model can be summarized as the ability of considering variable values for the possession cost 

and the available workforce through the tamping planning process. This ability is helpful to the IM in order to put a 

suitable optimal schedule for this operation based on his private circumstances in the studied area. To illustrate this 

further, different cases are studied and the obtained results are compared and analyzed. These cases are as follows: 

 First case (general case): it considers constant values for Aj and pcj for all periods in the planning horizon, 

 Second case (there is a wish to plan actions in a specific period(s)): the IM wishes to plan the maximum 

allowable number of tamping activities in a specific period (s) where the tamping machines and maintenance 

crews are available in that period(s) in order to fulfill the maximum interest from the available workforce.  This 

situation can be achieved by assigning a small value for the possession cost of that period(s) to encourage the 

model to plan those actions through that period (s), 

 Third case (there is no wish to plan actions in a specific period(s)): on the contrary of the second case, in this 

situation where the IM does not need to schedule any action in a specific period(s) because the workforce is not 

available in that period(s). This matter can be done by allocating a big value for the possession cost or a small 

value for the available workforce for that period(s) to push the model to avoid planning maintenance actions 

during that period(s), and 

 Fourth case (mixed case): it involves planning in desired periods and non-planning in undesired periods at the 

same time. This condition can be performed by assigning small or big values for the possession cost and the 

available workforce for the related periods based on the considered circumstances. 

For each case, the available workforce (Aj), the track possession cost (pcj), the total number of tamping activities 

(x), the total number of possession periods (z), the DTC and the distribution of tamping actions on periods are 

presented in Table 1. 

Table 1. Results of studied cases for tamping actions 

Case j 
Available workforce and possession cost values in period j 

x z DTC 
Distribution of 

actions 1 2 3 4 5 6 7 8 

1 
Aj 65 65 65 65 65 65 65 65 

219 4 249.75 Figure 7 
pcj 10 10 10 10 10 10 10 10 

2 
Aj 65 65 65 65 65 65 65 65 

220 5 249.70 Figure 8 
pcj 10 10 1 10 10 10 10 10 

3-i 
Aj 65 0 65 65 65 65 65 65 

233 4 261.12 Figure 9 
pcj 10 100 10 10 10 10 10 10 

3-ii 
Aj 65 65 65 0 0 65 65 65 

254 4 284.40 Figure 10 
pcj 10 10 10 100 100 10 10 10 

3-iii 
Aj 65 65 65 65 65 65 65 65 

233 4 346.41 Figure 11 
pcj 10 100 10 100 100 10 10 10 

4 
Aj 65 65 65 0 65 0 65 65 

225 5 255.92 Figure 12 
pcj 10 10 10 100 10 100 1 10 
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Figure 6 presents the optimal schedule for tamping actions under given data which above mentioned and it 

represents the general case. In this figure, the planning horizon and the track sections are shown in the vertical and 

horizontal axes, respectively. Besides, the tamping tasks with total number of 219 are planned in four periods (i.e. 1, 2, 

4 and 5, respectively) with DTC of 249.75. The distribution of these actions by period is illustrated in Figure 7. As 

observed in this figure, 24 actions are planned in the first period and 65 actions in each period of 2, 4 and 5, 

respectively. In this paper, it is assumed that this distribution represents the standard one for the studied problem (i.e. 

it represents the normal situation for the considered track and existing resources). 

 

Figure 6. The optimal schedule for tamping operations for given data 

 

Figure 7. The standard distribution of tamping actions for the studied track for case 1 

Practically and in some circumstances as it is mentioned above, it is preferred to plan a set of maintenance actions 

by the IM in a specific period(s) because during that period(s) –for example– the traffic on the studied track is not 

crowded or the machinery and manpower are available (second case), or maybe he tries to avoid planning any action 

in a specific period(s) because there are no enough equipment and crews to perform those actions during that period(s) 

(third case), or maybe he needs to mix the previous two situations together (fourth case) based on the available 

conditions in the considered area of the railway network. 

In order to present an example for the second case which is mentioned in Table 1, it is assumed that the IM needs to 

plan the largest possible number of tamping actions in the third period but it is not allowed to exceed a certain 

threshold value (where it is assumed that it equals to 65 in this paper). It is found that the best way to achieve this 

demand is by taking pc3 =1 with respect to the other values which are considered in the general case (Table 1). 
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Compared to the solution of the general case, the total number of tamping operations increases by one action and also 

the total number of possession periods increases by one period while the DTC reduces from 249.75 to 249.70 due to 

the decrease in the value of pc3 from 10 to 1. The distribution of tamping works by period for this case is presented in 

Figure 8. It is noted in this figure that 14, 21, 65, 60 and 60 activities are scheduled in the time periods 1, 2, 3, 5 and 6, 

respectively. Moreover, the new constraints which are considered by the IM in this case led to a different distribution 

of tamping operations. 

The third case which is provided in Table 1 consists of three instances as follows: 

 Instance for one period (the IM wishes to avoid planning tamping jobs in the second period): this request can be 

achieved by taking (pc2 =100) or (A2 =0) or (pc2 =100 and A2 =0) with respect to the other values in the general 

case. The model in this example plans 61, 65, 65 and 42 maintenance actions in the periods 1, 4, 5 and 7, 

respectively as shown in Figure 9. The DTC value in this case equals to 261.12 which is more than the 

corresponding one in the general case by 4.55%. In other words, the new constraints led to an increase of the 

DTC value. 

 Instance for two periods (the IM does not wish to plan maintenance actions in the fourth and fifth periods): this 

requirement can be performed by assuming (pc4 = pc5 =100) or (A4 = A5 =0) or (pc4 = pc5 =100 and A4 = A5 =0) 

with respect to the other values in the general case. Its distribution is presented in Figure 10. In this figure, it 

can be observed that the model schedules 59, 65, 65 and 65 operations in the time periods 1, 2, 3 and 6, 

respectively. The DTC in this example equals to 284.4 which is more than the value of DTC in the general case 

by 13.87%. 

 Instance for three periods (the IM aims to avoid planning any maintenance operation in the second, fourth and 

fifth periods as much as possible): this demand can be only achieved by considering (pc2 =pc4 = pc5 =100) with 

respect to the other values. In the distribution of this example which is illustrated in Figure 11, it is easy to see 

that the solver is enforced to plan tamping tasks in the fifth period (65 activities) although its possession cost is 

very high in order to get a feasible solution for the problem. In addition, the increase of the DTC value of this 

instance is 38.7% comparing with the general case. Here it should be denoted that by taking (A2 =A4 = A5 =0) 

through the model, the solver does not find a feasible solution for the problem. 

Therefore, it can be noted that the tight restrictions which are assumed during the previous three instances in the 

third case cause an increase of the total number of tamping actions and the DTC values compared to those in the 

general case, while no changes in the values of the total number of possession periods (Table 1). 

Finally, the fourth case is shown in Table 1 by an example which assumes that the IM wants to plan the largest 

possible number of maintenance actions in the seventh period and avoid planning any action in the fourth and sixth 

periods simultaneously. This demand can be performed by taking (pc4 = pc6 =100 and pc7 =1) or (A4 = A6 =0 and pc7 

=1) or (pc4 = pc6 =100, A4 = A6 =0 and pc7 =1). The distribution of tamping actions in this case is shown in Figure 12. 

In this figure, the solver plans 25 actions in the seventh period and it does not schedule any action in the other two 

periods (i.e. 4 and 6 periods). Here also there is an increase of x, z and DTC values compared to those in the general 

case as presented in Table 1 and the DTC value is more than the corresponding one in the general case by 2.47%. 

 

Figure 8. Distribution of tamping actions by period for case 2 
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Figure 9. Distribution of tamping actions by period for case 3-i 

 

Figure 10. Distribution of tamping actions by period for case 3-ii 

 

Figure 11. Distribution of tamping actions by period for case 3-iii 

61

0 0

65 65

0

42

0
0

20

40

60

80

1 2 3 4 5 6 7 8

T
o
ta

l 
ta

m
p

in
g

 a
ct

io
n

s 
(Σ

x
) 

Periods

Histogram of total tamping actions by period

59

65 65

0 0

65

0 0
0

20

40

60

80

1 2 3 4 5 6 7 8

T
o
ta

l 
ta

m
p

in
g

 a
ct

io
n

s 
(Σ

x
) 

Periods

Histogram of total tamping actions by period

38

0

65

0

65 65

0 0
0

20

40

60

80

1 2 3 4 5 6 7 8

T
o
ta

l 
ta

m
p

in
g

 a
ct

io
n

s 
(Σ

x
) 

Periods

Histogram of total tamping actions by period



Civil Engineering Journal         Vol. 6, No. 10, October, 2020 

2055 

 

 

 

Figure 12. Distribution of tamping actions by period for case 4 

Thus, the results show in the previous comparisons that consideration of tight restrictions in the studied problem 

leads to an increase of the total number of tamping actions and therefore an increase of the DTC. On the other hand, 

the IM can use the presented model as a good decision tool in order to obtain the optimal solution for tamping problem 

over the considered track under different conditions based on the track traffic and the available workforce during the 

planning horizon. 

5. Conclusion and Future Research 

In this paper, GM is improved by introducing available workforce restrictions in the model and considering 

constant/variable values for the track possession cost and the available workforce. This model seeks to obtain the 

optimum tamping plan for the studied track under different circumstances in a finite horizon. These circumstances 

depend upon the track possession cost and availability of machines and maintenance teams to perform the tamping 

activities on the considered track which may vary from one period to another in the planning horizon. 

The analysis of the results shows that the developed model can be used as a suitable decision-making tool for the 

IM to get the optimal schedule for tamping operations under private situations based on the track traffic and the 

available resources through the time periods of the planning horizon. However, these situations may be led to an 

increase of the final cost. 

The suggested model in this paper requires improvements in the coming work. Currently, the model only considers 

few constraints; there is a need to be extended to use other additional constraints such as budget constraints and 

environmental, operational and social constraints.  
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