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Abstract 

Climate change is an important environmental issue, as progression of melting glaciers and snow cover is sensitive to 

climate alteration. The aim of this research was to model climate alterations forecasts, and to assess potential changes in 

snow cover and snow-melt runoff under the different climate change scenarios in the case study of the Zayandeh-rud 

River Basin. Three cluster models for climate change (NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0) were 

applied under RCP 8.5, 4.5 and 2.6 scenarios, to examine climate influences on precipitation and temperature in the 

basin. Temperature and precipitation were determined for all three scenarios for four periods of 2021-2030, 2031-2040, 

2041-2050 and 2051-2060. MODIS (MOD10A1) was also applied to examine snow cover using temperature and 

precipitation data. The relationship between snow-covered area, temperature and precipitation was used to forecast future 

snow cover. For modeling future snow melt runoff, a hydrologic model of SRM was used including input data of 

precipitation, temperature and snow cover. The results indicated that all three RCP scenarios lead to an increase in 

temperature, and reduction in precipitation and snow cover. Investigation in snowmelt runoff throughout the observation 

period (November 1970 to May 2006) showed that most of annual runoff is derived from snow melting. Maximum 

snowmelt runoff is generated in winter. The share of melt water in the autumn and spring runoff is estimated at 35 and 

53%, respectively. The results of this study can assist water manager in making better decisions for future water supply. 
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1. Introduction 

Rainfall pattern is changing in terms of volume, intensity and form around the world [1]. Snow coverage and 

continuity depend on the amount of precipitation and temperature, which are strongly related to climatic condition [2]. 

If the area of snow cover changes, future access to and management of water could be difficult in the long-term [3], 

because the amount of runoff and flooding are likely to increase. Since 2001 onwards, the importance of climate 

change for hydrologic systems which are affected by snow has been studied. Aziz et al. (2020) [4] showed that slight 

increases in temperature can significantly affect timing in runoff events in mountainous areas. Runoff is usually 

increasing in cold season and decrease e during warm period, probably because of snow melt as a result of increased 

temperature. Emmer et al. (2019) [5] has evaluated future runoff from three glacial areas in Peru using a hydrologic 

model, which included changes in snow cover. They found that the total volume of the area’s glaciers decreased by 

78% between 1971 and 2015 (because of increased evapotranspiration), furthermore by 2100, under scenarios A2 and 

B2 the area will have no glaciers coverage. Aili et al. (2019) [6] found that up to 2100, between around 3.9 and 6.8 km 

of glaciers would be lost in the Rio Maipo area, in Chile. 

                                                           
* Corresponding author: safieh.javadinejad.1@ens.etsmtl.ca 

 
http://dx.doi.org/10.28991/cej-2020-03091577 

 

© 2020 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 6, No. 9, September, 2020 

1716 

 

 

Studies have been also conducted in glacial basins in Asia, by for example Zhang et al. (2016) and Treichler et al. 

(2019) [7, 8]. The results showed that homogeneous regional variations in the Northern and Southern sites of the 

mountain are likely to have happened, and glacial cover is lost. Access to water in the Himalayas under climate change 

conditions was studied by Momblanch et al. (2019) [9]. They showed that future snowmelt runoff in different areas in 

the Himalayas can generate from melting between 100 or 50 percentage of glacier until 2100. The snowmelt runoff 

created because of temperature rise (rise by between 4 and 5 °C) in the future, and because of precipitation has risen 

by 7% in the period up until 2100. Liu et al. (2020) [10] showed that as little as 8% of the river basin glaciers in 

Central Asia might remain under scenarios A2 and B2, by the end of the 21st century, so most of the river basin 

glaciers are predicted to be lost by them.  

The effect of climate change on streamflow is analyzed in previous researches. Hydrologic modelling is a valuable 

tool for flood forecasting and decision making in water resources organization [11]. Previously, various hydrologic 

models with a snow factor were applied to model the daily stream flows in snow- and glacier-fed catchments [12-14]. 

Nevertheless, most of the hydrologic models are not practical to use for daily stream flow simulation and projection in 

the mountainous catchments, where the snowmelt is a main parameter in the water cycle [15, 16]. Because many of 

these models are sensitive to the precipitation driving, the precipitation data available from the high altitude 

catchments is usually not of very decent quality [17]. Lack of information for temporal and spatial rainfall variability 

causes a huge uncertainty in snowmelt runoff forecasting [18, 19]. 

     The effects of climate change on climatic conditions and surface water resources in Iran have also been 

investigated. Yoosef Doost et al. (2018) [20] used the HADCM3 climate model under the scenarios A2 and B2 to 

study the effects of climate alteration in the Taleghan Basin in Iran. More details about HADCM3 climate model 

under scenarios A2 and B2 is shown in Valdes et al. (2017) study [21]. However, there are few studies that have 

analyzed the effects of climate change on snowmelt runoff in Iran.  

Since a significant proportion of precipitation in the Zayandeh-rud area is snow, thus snowmelt water plays a major 

role in the River water supply. Because there is a lack of data and numerical values for snowmelt runoff, moreover 

because of lack of control on the snowmelt runoff, therefore investigating the value of snowmelt runoff under the 

climate change effects is very important. Understanding the relationship between climate change, and snow and ice 

runoff is essential in water management. The purpose of this study was to investigate how future temperature might 

affect snow cover and snow melt in the Zayandeh-rud area. Unlike previous studies (e.g., [22]), the data presented in 

the fifth report (CMIP5) were considered by simulating climate change scenarios in this study. More details about 

CMIPS is presented in Salman et al. (2018) research [23]. In this study, the structure of climate change models and 

scenarios to project the future climate change effects on temperature and precipitation is given. This is including the 

description of the snow-melt runoff model and snow cover area, which are explained in section 2. In section 3, the 

results of snowfall projection, snow coverage areas and snow melting forecasts are presented. The comparison of the 

results with the previous studies, are explained in section 4 and the summary of  new findings including the projection 

of seasonal climate change effects on snow melt parameters  is presented in section 5. 

2. Materials and Methods 

2.1. Study Area 

The study area is one of the main basins in the Kafrud desert, with an area of 41,548 km
2
, between 32 ̊10΄ and 33 ̊ 

40΄ N, and 50° 30΄ and 53° 23΄ E. It is bounded to the north by the “Salt Lake” (which is small), to the west by the 

Gulf of Oman and the Oman Sea, and to the east by the Kavir-siyahkooh mountain range to the south of the Kavir 

Sirjan sub_zone (which is located in the south of Zayandeh Rud basin). Its important rivers include the Zayandeh-rud 

(405 km long), the Khoshkehrood (165 km), and the Izodkhad (125 km). The catchment covers parts of Isfahan, 

Chaharmahal and Bakhtiari, Fars and Yazd provinces, with Isfahan Province accounting for more than 83% and Yazd 

province by less than 3.5%. Figure 1 illustrates the study area. 

Natural flows in the Zayandeh-rud River are increased by the diversion of water through the first and second 

tunnels of Koohrang, originating from Koohrang River in Chaharmahal and Bakhtiari Province. Because the average 

rainfall in the basin is less than 150 mm/year, Zayandeh-rud Dam, in Chadegan region, stores spring and winter 

runoff, which then is released to the main River. The upstream parts of the basin comprise less than 10% of the whole 

catchment and are mostly mountainous. The central and lower parts of the basin (89%) are sedimentary plains, and are 

used for agriculture. Many overflows and detours have been constructed along the river, to take water for urban and 

industrial usage. The Zayandeh-rud Basin and water flows end in natural swamp of Gavkhoni and into the seasonal 

salt marshlands.  

In this study, meteorological data were used to forecast the area’s possible future climate, and also the data from 

hydrometric stations and statistics to simulate runoff. The availability of historic data records with lower statistical 

errors were considered in this study as main criteria. 
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Figure 1. The location of Zayandeh-rud River Basin [24] 

The flowchart of overall research methodology is shown in Figure 2. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2. The structure of the methodology in this study 

Climate change models and scenarios 

NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0 

under RCP 8.5, 4.5 and 2.6 scenarios 
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Snow cover data were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite and 

daily snow cover maps, (which used from MODIS are named MOD 10A1) for this area. Snow precipitation was 

modeled using the snowmelt runoff model (SRM) [25] and verified with historic data. Climate change scenarios were 

extracted using general flow and downscaled models (e.g., the delta change method [26]), applying statistical methods 

based on the delta change method for the study area, and their effect on snowmelt runoff under these scenarios was 

investigated. 

2.2. Snow Cover 

Determining the level of snow cover in the simulation of snowmelt runoff in this area is of particular importance. 

Some 1,450 daily snow cover images from MODIS (MOD 10A1) were used from the period between 2000 to 2007 

determine the extent of the cover in this area. 

2.3. Climate Change Projection 

The models presented in CMIP5 have better spatial quality than those in CMIP3, so in this research different 

General Circulation Models (GCMs) from CMIP5 were used. The images were entered into ARCGIS 10/1 software 

and the daily proportion of snow cover was calculated [27]. Cloud cover is an obstacle in determining the true extent 

of snow cover, thus images with cloud cover exceeding 20% were eliminated, and average snow cover was considered 

based on linear interpolation between the days immediately before and after. 

2.4. Snow-melt Runoff Model 

The snow-melt runoff model is one of the most widely used for simulating daily flows in mountainous areas and 

has been successfully tested by the World Meteorological Organization. It is a conceptual hydrologic model, and can 

be used to simulate daily runoff, and to predict snow-melt and precipitation. In this study, simulated daily runoff from 

snow-melt and rainfall in the study area were calculated using Equation 1.  

Qn+1= Csn. an (Tn+∆Tn) sn. A. 0.116 (1+Kn+1) + CmPn. A. 0.116 (1-K n+1 + (QSn + Qrn) Kn+1                               (1) 

Where Q is the daily mean discharge (m
3
/s), Cs the coefficient of snow runoff, Cr the coefficient of rainfall runoff, “an” 

is a coefficient for degree-days (cm C
-1

d
-1

), T+∆T the number of degrees and days (cd); S the ratio of snow cover to 

the total area, P represents daily rainfall (cm), A the basin area (km
2
), K a reduction factor (Yc, Xc), and 𝑛 the number 

of days simulated. The factor 0.116 is a constant.  

The 38 models of CMIP5 were implemented with new scenarios (e.g., Representative Concentration Pathway 

(RCP)). RCP scenarios represent radiative drives. A Representative Concentration Pathway (RCP) is a greenhouse gas 

concentration (not emissions) trajectory, adopted by the IPCC for its fifth Assessment Report (AR5) in 2014. It 

supersedes Special Report on Emissions Scenarios (SRES) projections published in 2000. 

Three pathways have been selected for climate modeling and research, which describe different climate futures, all 

of which are considered as possible, depending on how much greenhouse gases are emitted in the years to come. The 

three RCPs, namely RCP2.6, RCP4.5, and RCP8.5, are labelled after a possible range of radiative forcing values in the 

year 2100. Among all scenarios, RCP 2.6 are the scenarios with low radiation propulsion patterns and consist B1 

(convergence and ecologically friendly) and B2 scenarios [28] and the scenarios of RCP 8.5 show a scenario of 

radiative drives with high radiation propulsion patterns. 

Three models, NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0, were selected and used under scenarios RCP 

2.6, 4.5 and 8.5 for four periods – 2021-2030, 2031-2040, 2041-2050 and 2051-2060 – to try to predict the greatest, 

least and most intermittent changes in climate. In this study, the three models which have been modelled showed the 

best fit with observed climate parameters (for example precipitation modelled by these three models is similar to the 

precipitation which is estimated by rain gauges for historical time period). NorESM1-M was selected as an 

exponential model for model calibration. In this study, among the three models, the model of NorESM1-M showed the 

best simulation and therefore best fit with observed climate parameters. 

2.5. Estimating Future Snow Cover 

Snow cover is an important parameter in the area’s runoff pattern. Water storage in the form of snow and ice helps 

modify runoff variability, created by the rainfall pattern. Changes in snow cover area cause changes in snow-melt 

runoff. For this study, future snow coverage was estimated using the relationship between the snow-covered area, 

temperature and rainfall. Multivariate analysis based on regression using SPSS was performed with 4 predictor 

variables – mean monthly temperature, mean monthly precipitation, and the previous month's temperature and 

precipitation – to calculate snow cover at altitudes above 1,800 m. 
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3. Results 

3.1. Analysis of Snow Covers Area 

Snow cover in the area starts in November and is most extensive in January, which is a very cold month. After that, 

the area covered decreases because of increasing temperature and evapotranspiration. In June, the area covered by 

snow is at its lowest, because the temperature and evapotranspiration are both at their maximum. Figure 3 shows the 

monthly variation in snow cover at different altitudes (period 2000 to 2006). The extent of snow cover increases with 

topographic level. As Figure 3 indicates the snow cover for each month and for each year fluctuates.  

 

Figure 3. Proportional snow covers at different elevations – monthly, 2000 to 2006 

3.2. Runoff Simulation  

The runoff model was calibrated and evaluated for the period 1973 to 2006. Figure 4 shows the simulated and 

measured discharge variations. Because snow cover area changes a lot (as showed in Figure 3), so the runoff also has a 

fluctuation for each year. The coefficient of determination (R
2
) is 0.70 and the percentage difference between the 

estimated and observed runoff is 35%. The quality of the simulation is thus acceptable. The difference is because the 

model cannot calculate the water seepages and water losses. 

 

Figure 4. Comparison of observed and simulated discharges - The Zayandeh-rud basin [24]  

The proportion of snow-melt in relation to a total runoff from the area for the period between 2000 to 2006 was 

investigated, and the results indicate that maximum snow-melt occurs in winter and spring (55%). Snow-melt runoff is 

highest in winter because, especially in March (late winter), the temperature rises and the speed of melting increases.  
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Table 1. Annual average snow-melt proportion in total runoff – 2000 to 2006 

Season Average snow-melt component (cm) Total runoff generated (cm) 

Fall 34 96 

Winter 75 140 

Spring 53 100 

Summer 160 400 

3.3. Precipitation and Temperature Forecasting  

The three climate models of NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0, were used to predict the 

temperature and precipitation under the three RCP scenarios. The model was calibrated using historical data from 

2000 to 2006, and showed a high correlation between observed and simulated temperature and precipitation. In 

general, the model can simulate climate parameters very well.  

Table 2. Correlation coefficients between observed and simulated temperature and precipitation obtained using SPSS 

Parameter Correlation coefficient 

Temperature 0.80 

Precipitation 0.62 

 

The average temperature and precipitation for the period November to June were calculated, and the downscaled 

output of NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0 was calculated according to Table 3. The grid was 

1.5×1.5 km and some 18,222 grids were used. The downscaled output was used because the data from the climate 

model were at large scale in order to obtain data at the scale of the study area [29]. 

The simulation shows that the average temperature increases with respect to the base period. This means that in 

coming decades, there is an average increase in the different scenarios, for example the average temperature is 

increased between 1.1 and 3.4 °C in NorESM1-M, between 2 and 4.35 °C in IPSL-CM5A-LR, and between 1.3 and 

3.5 °C in CSIRO-MK3.6.0. 

Comparing the predicted temperatures in the models, the highest temperatures are found in the 2050s in IPSL-

CM5A-LR under scenario RCP 8.5. The average temperature increases in the 2050s is about 1.8, 2.8 and 3.5 °C, 

respectively, for RCP scenarios 2.6, 4.5 and 8.5. The trend of annual average changes for November to June indicates 

that temperature rises by about 0.05 °C/a. The results of the study also indicate decreasing trend in annual precipitation 

compared to the base period. NorESM1-M indicates a greater reduction in precipitation than the other two models. 

The three climate models suggest that the mean rainfall in the 2050s will be 2, 3.2, and 4.5% lower for RCP scenarios 

2.6, 4.5 and 8.5, respectively. The greatest reduction indicated in the 2050s is about 14 mm for RCP scenario 8.5. The 

average annual rainfall from November to June drops about 0.038%/a. 

Table 3. Temperature and precipitation in the period November to June for different models and scenarios 

Parameter 
Time 

period 

NorESM1-M IPSL-CM5A-LR CSIRO-MK3.6.0 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

Mean annual 

temperature 
(0C) 

2021-30 9.1 9.31 9.41 9.71 9.83 9.90 9.51 9.37 9.51 

2031-40 9.3 9.57 9.8 9.99 10 10.50 9.90 9.90 9.97 

2041-50 9.6 10 10.3 10.17 10.59 10.97 9.30 10.20 10.57 

2051-60 9.8 10.13 10.48 10.17 11.28 11.12 9.30 10.40 10.69 

Mean annual 

precipitation 

(mm) 

2021-30 336.2 311.24 317.20 297.12 299.17 299.80 303 300.7 298.20 

2031-40 339.24 324.7 322.10 298.09 296.78 294.03 295 293 298.78 

2041-50 337.14 327.10 322.03 298.09 294.89 295 297 296 295.80 

2051-60 332.08 319.19 316.15 298.20 291 292.20 293.5 290 289 

3.4. Forecasting Runoff 

     After calibration, the SRM model was used to simulate runoff using different GCM and RCP outputs for the study 

periods. Table 4 shows the average runoff in the simulated periods. 
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Table 4. Runoff from November to June for different models and scenarios 

Parameter 
Time 

period 

NorESM1-M IPSL-CM5A-LR CSIRO-MK3.6.0 

RCP 8.5 RCP 4.5 RCP 2.6 RCP 8.5 RCP 4.5 RCP 2.6 RCP 8.5 RCP 4.5 RCP 2.6 

Runoff 

(m3/s) 

2021-30 157 143 150 120.50 123 118.20 123.45 125 120 

2031-40 152 142 154 119 120 118 123.50 122.20 123.20 

2041-50 154 145 154.70 115.75 114 115 117 116 115.1 

2051-60 151.50 141.50 143.1 115 96 98 120 118.8 100.01 

The average runoff rate is reduced by about 0.2 m
3
/s per year from the year of between 2006 to 2100. With 

increasing temperature and decreasing rainfall, the amount of snow cover decreases, reducing the volume of snow-

melt related runoff. Total annual runoff volume is expected to decrease by about 12% (RCP 2.6), 13% (4.5), and 10% 

(8.5). The reduction in runoff in RCP scenario 8.5 is probably less than in the other two because of increased rainfall 

in the fall.  

3.5. Future Snow-melt 

The snow-melt proportion predicted in relation to the total runoff in the Zayandeh-rud River Basin is significantly 

reduced, from about 40% historically to 29% in decade 2051-60, because of a combination of reduced precipitation 

and some change from snow to rain. All models predict reduced snow-melt volumes, by about 28% on average. Figure 

5 indicates the results of forecasting for snow melt. As figure presents, the results of different climate change scenarios 

are different. As shown in the figure, the proportional contribution of snow-melt to runoff is reduced in all scenarios, 

and most significantly in spring.  

3.6. Snowfall Forecasting 

Figure 6 shows the Pearson correlation coefficient for snow cover with temperature and precipitation in the area. 

The results show that snow melt values follow the amount of precipitation and temperature. Temperature has a 

negative relationship with snow cover because if temperature increases, then the area of snow cover will decrease. 

Precipitation in May and June has a negative relationship with snow cover, because at this time, precipitation is in 

form of rain instead of snow. Snow fall from December through April can increase snow cover, because at this time, 

precipitation is in form of snow and there is a positive relationship with snow cover. Therefore between March and 

April the highest correlation between precipitation and snow cover is observed and between May and June there is 

least correlation between temperature and snow cover. That is because of the temperature increases, and the snow 

cover decreases.  

 

Figure 5. Proportion of snow-melt to total annual average runoff for observed data and three RCP scenarios for duration of 

2006 to 2100 
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Figure 6. Pearson correlation coefficient of area of snow covers with changing precipitation and temperature (for the period 

November to June) 

The relationship between snow cover, temperature and precipitation was analyzed using the temperature and 

precipitation projections, and the extent of snow cover estimated for the years 2021 to 2060. Annual snow cover is 

more likely to decrease 12% by 2020, 17% by 2030, 20% by 2040, and 22% by 2050, compared with the historic 

period. The largest reduction in snow cover is observed annually for the decade from 2050 in model IPSL-CM5A-LR 

under scenario RCP 8.5, and the lowest in model NorESM1-M under scenario RCP 2.6 in the decade from 2020. 

Table 5 shows snow cover predictions for the different models and scenarios. 

Table 5. Annual area of snow covers from November to June, by decade, for different models and scenarios 

Parameter 
Time 

period 

NorESM1-M IPSL-CM5A-LR CSIRO-MK3.6.0 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 2.6 RCP 8.5 RCP 4.5 RCP 2.6 

Area of snow 

cover (km2) 

2021-30 2007 1797 1780 1769 1772 1775 1779 1790 1780 

2031-40 1792 1745 1722 1715 1716 1700 1780 1692 1773 

2041-50 1693 1750 1625 1650 1640 1570 1692 1800 1960 

2051-60 1650 1700 1555 1600 1557 1480 1693 1670 1599 

4. Discussion  

Hydrographic change forecasts are important for water resource management. Previous studies did not use the 

current climate models and did not attempt to forecast snow-melt runoff. Equally, they did not compare the value of 

snow melt runoff between current and future time period. This study provides a range of climate change predictions 

for future snow-melt runoff yield in the Zayandeh-rud River Basin between 2021 and 2060. The latest climate models 

(CMIP5) were used under the RCP 2.6, 4.5 and 8.5 scenarios. Snow cover images were used to determine the snow 

cover area in high altitude areas of Zagros, in places where there are relatively few snowfall stations. Images from the 

Zayandeh-rud Basin show extensive snow cover at altitudes above 1,800 m. snow cover is high (above 3,000 m ) from 

December to February, but snow cover is low in May and June (less than 3,000 m). 

The SRM’s efficiency in mountainous catchments can be credited to the use of MODIS, which remotely sensed 

snow cover data as an input into the model. However, as Sharma et al. (2020) [30] mentioned still more research is 

needed to do this analysis. As Hao et al. (2019) [31] mentioned the analysis of the climate change impact indicated 

that watershed hydrology would alter under different climate change scenarios. In simulating snow-melt with the SRM 

model, validation indicates that the model's performance is acceptable in estimating runoff in the study area. In 

comparison with the observed historical period (2000 to 2007), the value of snow-melt runoff in fall and winter could 

be reduced by 10% and 24% in the year of 2060. 
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The indications are that the mean annual temperature in coming decades will increase. The results obtained and 

arising from temperature changes in the different scenarios, are consistent with those obtained by others recently 

studied [32-34]. 

The study’s results indicate that total annual rainfall in the study area will decrease over the period up to 2060. The 

temperature is more likely to increase and snow areas, and snow-melt and runoff are likely to increase. The results of 

this study, based on reductions in runoff and snow-melt, are consistent with those of other researchers [35-37]. Also 

consistent to previous studies that indicate the increased/decreased snow cover area results in the increasing/ 

decreasing in total flow and pick flow during different season e.g. [38-40].  

5. Conclusion 

This research has used integrated models to model the future snow cover and snow melt under different climate 

change scenarios. The study forecasted climate alterations, and assessed the potential changes in snow cover and 

snow-melt runoff under different climate change scenarios in the Zayandeh-rud Basin. Three climate change models 

of cluster models (NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0) applied under RCP 8.5, 4.5 and 2.6 

scenarios, to examine climate influences the precipitation and temperature in the basin. Temperature and precipitation 

determined for all three scenarios for four periods –2021-2030, 2031-2040, 2041-2050 and 2051-2060. MODIS 

(MOD10A1) applied to examine snow cover. The relationship between snow-covered area, and temperature and 

precipitation used to forecast future snow cover. By inputting climate data into the SRM model which used climate 

data as an input  to analyze the impact of climate change on the hydrological process. The analysis of the climate 

change impact indicated that watershed hydrology would alter under various time periods and different seasons. The 

results indicated that all three RCP scenarios will lead to an increase in temperature, and reduction in precipitation and 

snow cover. Investigation of snowmelt runoff throughout the observation period (November 1970 to May 2006) 

showed that most of annual runoff is derived from melting snow. Maximum snowmelt runoff is generated in winter. 

The share of meltwater in the autumn and spring runoff is estimated at 35 and 53%, respectively. In addition, the study 

results indicate that the total annual rainfall in the study area will decrease over the period up to 2060. The temperature 

is more likely to increase and snow areas, and snow-melt and runoff are likely to increase. The results of this study, 

based on reductions in runoff and snow-melt, are consistent with those of other researchers.  However, the obtained 

modeling results will offer valuable decision support mechanism for water resources management and for 

development of local ecosystem sustainability and social-economic improvements. 
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