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Abstract 

This study aimed to develop travel time prediction models for transit buses to assist decision-makers improve service 

quality and patronage. Six-months’ worth of Automatic Vehicle Location and Automatic Passenger Counting data for six 

Washington Metropolitan Area Transit Authority bus routes operating in Washington, D.C. was used for this study. 

Artificial Neural Network (ANN) models were developed for predicting travel times of buses for different peak periods. 

The analysis included variables such as length of route between stops, average dwell time and number of intersections 

between bus stops amongst others. Quasi-Newton algorithm was used to train the data to obtain the ideal number of 

perceptron layers that generated the least amount of error for all peak models. Comparison of the Normalized Squared 

Errors generated during the training process was done to evaluate the models. Travel time equations for buses were 

obtained for different peaks using ANN. The results indicate that the prediction models can effectively predict bus travel 

times on selected routes during different peaks of the day with minimal percentage errors. These prediction models can 

be adapted by transit agencies to provide patrons with more accurate travel time information at bus stops or online. 

Keywords: Travel Time; Artificial Neural Network; Quasi-Newton Algorithm; Bus Transit. 

 

1. Introduction 

Washington, D.C. is ranked second among cities in terms of highest public transit commuters in the United States 

with approximately 9% of the working population using the Washington Metropolitan Area Transit Authority 

(WMATA) Metrobuses to commute [1]. The Metrobus in D.C. is the fifth largest bus system in the United States. It 

has over 1,450 buses and services approximately 350 routes across the D.C., Maryland and Virginia area [2]. The 

buses serve 11,129 stops, including 2,554 stops with bus shelters [3]. 

The accurate prediction of travel time is necessary to enable public transit agencies to provide patrons with 

efficient transit service and for them to effectively plan their commute or travel in the region. Transit agencies are 

continuously evaluating best practices available to improve reliability of their services. The use of technology, 

particularly in bus transit, has been critical for this purpose. This includes the use of Automatic Vehicle Location 

(AVL) technology, which has been instrumental in the tracking of buses in real-time. Automatic Passenger Counters 

(APC) installed on buses count the number of passengers alighting and boarding at each bus stop which helps in the 

computation of the total number of patrons onboard. 

 

                                                           
* Corresponding author: saarhin@howard.edu 

 
http://dx.doi.org/10.28991/cej-2020-03091615 

 

© 2020 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://www.civilejournal.org/
http://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/


Civil Engineering Journal         Vol. 6, No. 11, November, 2020 

2246 

 

 

The use of public transportation instead of personal vehicles has been encouraged as one of the solutions to traffic 

congestion. A study conducted by Abdulrazzaq et al. (2020) in Kanjang City, Malaysia indicated that travel time and 

travel distance coupled with schedule accuracy, fare reductions and increased accessibility significantly influenced 

riders decision to use public transport [4]. Obtaining accurate travel times of the metrobuses is an important task for 

transit authorities to provide reliable service to its patrons. A study conducted in 2013 found that transit buses in DC 

had an overall on-time performance of approximately 75%. The scheduled arrival times and actual arrival times had 

mean deviations ranging between 1.99 and 5.03 minutes [5]. The cumulative deviations in arrival times can negatively 

affect patron’s perception of transit reliability. It is therefore important that travel time prediction models are 

developed to provide more accurate information to patrons based on pertinent factors that affect travel and arrival 

times. 

There are several bus arrival prediction models that have been developed using different techniques such as 

Historical average models, Regression Models, Kalman Filter models and Artificial Neural Network (ANN) models 

based on several different variables [6]. Significant variables used in the various bus arrival prediction models include 

time of the day, vehicle arrival/departure, speed, distance, passengers boarding/alighting, en-route traffic conditions, 

etc. Ranjitkar et al. (2019) conducted a study that introduced 10 independent variables (factors) in seven (7) different 

models to compare their accuracies in predicting bus travel time using AVL and APC data. The developed models 

used included multivariate linear regression, ANN, decision tree, gene expression programming models, among others. 

The study concluded that ANN model performed best in comparison to the other models and the distance between two 

stops was the most significant variable for all models [7]. 

Machine Learning models such as ANNs provide a much more effective alternative and better accuracies in 

comparison to the conventional models [8]. ANNs are mathematical models that are inspired by the biological neural 

networks in the human brain. The effectiveness of ANN is based on its ability to approximate both linear and nonlinear 

functions to a required degree of accuracy using a learning algorithm, and to build ‘‘piece-wise’’ approximations of the 

functions. 

Jeong and Rilett (2004) developed historical data-based model, regression and ANN models and compared their 

performance using AVL data to predict bus arrival time in Houston, Texas. The prediction of bus arrival time was 

based on dwell time at stops and traffic congestion. The ANN model had the lowest Mean Absolute Percentage Error 

(MAPE) of about 54.24% and 48.61% when compared to the historical data-based and the regression models. The 

results from the study indicated that in terms of prediction accuracy, the ANN models outperformed the historical data 

model and regression models [8]. A study conducted by Chien et al. (2002) developed two ANN predictive models 

that were trained by link-based and stop-based data respectively to accurately predict bus arrival times in an urban road 

network. Though each model performed better under different scenarios, the study concluded that a hybrid ANN 

model which integrated both the link-based and stop-based models would further improve the accuracy of bus arrival 

time predictions [9].  

Yu et al. (2017) developed accelerated time survival and linear regression models to estimate both travel times and 

the level of uncertainty associated with these predictions (travel time variance) based on a headway bus route data 

from Pennsylvania State University-University Park Campus. The results indicated that though the bus travel times 

prediction accuracies from both models were similar, the accelerated time survival models performed better with 

smaller uncertainties of 76% and reduced travel time prediction variation of 12% [10]. Treethidtaphat et al. (2017) 

designed a bus arrival prediction model using Deep Neural Network (DNN) based on GPS data from a public 

transportation bus line in Bangkok, Thailand. The results determined that the DNN model provided better bus arrival 

prediction times by up to 55% when compared an OLS model and the bus line’s current prediction model [11]. 

Chen (2018) proposed an Arrival Time Prediction Model (ATPM) for passenger and/ or tourism systems using 

Hsinchu and Yosemite Bus systems in Taiwan as case study. Three months’ worth of data for 14 highway routes and 

40 urban roads were used in the ATPM based on Random Neural Networks (RNN). From the results, the ATPM 

produced better accuracies when compared to the conventional ANN models. A smart bus system designed using the 

proposed ATPM produced accuracies of 94.75% for highways and 78.22% for urban roads in providing travel time 

information to agency and riders [12]. A study by Yu et al. (2018) proposed and compared bus travel time prediction 

models based on Random Forests Near Neighbor (RFNN), Linear Regression (LR), K-Nearest Neighbor (KNN), 

Support Vector Machines (SVM) and classic Random Forests (RF). AVL data from two bus routes in Shenyang, China 

with comparable traffic situations were used. The results determined that though the RFNN bus travel time prediction 

model had the longest computation times, it generated better accuracies in the MAE, MAPE and RMSE [13]. 

Petersen et al. (2019) designed and implemented a multi-output and multi-time-step Deep Neural Network model 

which blends convolutional and Long Short-Term Memory (LSTM) layers to form a hybrid model (ConvLSTM). The 

model used six months’ worth of urban bus transportation data provided by Movia Public Transport Authority, 

Copenhagen, comprising of AVL and GPS data. Results from the study showed that the ConvLSTM model performed 

better across all peaks with a MAPE of 4.04% in the morning peak and 5.61% in the afternoon peak when compared to 
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the Historical Average model, the current bus line’s prediction model, the LSTM model and Google maps traffic 

models. In addition, the ConvLSTM model could predict travel times for multiple links and multiple time-steps ahead 

[14]. 

Despite the studies and models developed, none has been developed specifically to predict bus travel time using 

ANN considering the unique nature of traffic patterns in the DC area. This research aimed at developing ANN models 

to predict travel time of transit buses in Washington, DC using AVL and APC data. The models will enable public 

transit agencies to provide more accurate travel time information to patrons to improve reliability and consequently 

increase bus ridership. This report presents the findings of the case study conducted to predict bus transit travel times 

in Washington, DC with ANN using AVL and APC data. The materials and methods section provides the description 

of the study site along with the selection process of bus routes. This section also provides the process of obtaining the 

data and filtering it based on relevant independent variables to generate data sets per peak period required for the 

analysis. The data analysis will constitute of a descriptive statistics section along with the ANN model development to 

find bus travel times. The training strategy and the optimization algorithm to perform the neural network analysis are 

described in this section. The results section presents the findings of the neural network training for the different case 

scenarios (varying number of perceptron layers). The initial and final training and selection errors are compared for 

every iteration to compare the highest percentage change in error. Furthermore, the Normalized Squared Errors of the 

testing datasets are compared to determine the accuracy and reliability of the training strategies and the travel time 

equations. A summary of the study is presented in the conclusion section. 

2. Materials and Methods 

This section provides the steps that were followed for the collection of data required for the analysis as shown in 

Figure 1. 

 

Figure 1. Flowchart of the study process 
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Figure 1 presents a flowchart of the methodology that was followed to obtain travel time equations for buses using 

neural network training. 

2.1. Site Description and Selection of Bus Routes 

The Washington Metropolitan Area Transit Authority (WMATA) oversees the operations of Metrobus service in 

Washington, DC. The city is divided into four (unequal) quadrants: Northwest (NW), Northeast (NE), Southwest 

(SW), and Southeast (SE). As of July 2018, the population of Washington, DC was approximately 702,455 with an 

annual growth rate of approximately 1.4% [15]. WMATA has a bus fleet of approximately 1,600 buses that operate on 

325 routes in Washington, DC, in portions of Maryland, and Northern Virginia, covering a total land area of about 

1,500 square miles. Metrobuses operate 24 hours a day, 7 days a week and make more than 400,000 trips each week 

day. Of the total number of bus stops, 2,556 (22.2%) have shelters, while the remainder do not [16]. Figure 2 

represents a location map of Washington, DC (shown in red) to the left and a road map of Washington, DC to the right 

[17]. 

 

 

Figure 2. Location and Road map of Washington, DC 

WMATA buses have Global Positioning System (GPS) installed onboard of transit buses to track its location and 

display it on a geographical map of the area (Automatic Vehicle Location). Automatic Passenger Counters (APC) 

installed on buses count the number of passengers alighting and boarding at each bus stop which helps in the 

computation of the total number of patrons onboard. For this study, six (6) months (January 2019 – June 2019) worth 

of AVL and APC data for 6 WMATA bus routes was collected for analysis. Bus routes of two functional roadway 

classifications were considered: arterials and collectors. In general, bus routes with the following characteristics were 

considered:  

 Routes with high patronage bus stops: data for bus routes with relatively higher patronage was provided by 

consulted WMATA Officials.  

 Routes with bus stops with longer headways: Routes can have several bus stops that accumulate larger groups of 

patrons boarding or alighting buses. Such stops can account for higher dwell time of buses along the route. 

 Routes with bus stops near metro rail stations: Bus stops near metro rail stations usually have a high number of 

patrons since they provide patrons access to bus services and vice versa. 

Based on the criteria, the following bus routes were selected for the study: 

1. Route 70 (Georgia Avenue Line) 

2. Route 32 (Pennsylvania Avenue Line) 

3. Route 52 (14th Street Line) 

4. Route 42 (Mount Pleasant Line) 

5. Route D4 (Ivy City-Franklin Square Line) 

6. Route S1 (16th Street-Potomac Park Line) 

N
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Figure 3 represents the operation paths of the selected routes. 

 

Figure 3. Map of operation paths of selected routes 

2.2. Data Extraction 

The ANN models were developed based on AVL (Automatic Vehicle Location) and APC (Automatic Passenger 

Counters) data. Six (6) months (January 2019 – June 2019) worth of AVL and APC data for buses operating in the DC 

area were used for this research. Excel sheets obtained from WMATA database containing the data from the first week 

of every month were filtered to obtain only the necessary information required for the analysis. Based on the 

significance of their impact on travel time of transit buses (from the previous literature), the following independent 

variables for a bus trip were extracted for each week and for the selected routes from the data: 

 Departure and Arrival Times (Event Time) 

 Length of Routes 

 Passengers Loading/ Unloading 

 Dwell Time 

 Travel Time 

 Location of the bus 

The information obtained was used in the Neural Network training. The descriptions of the variables included in the 

ANN Model are as follows: 

 Number of Served Bus Stops Between Origin and Destination (X1) 

N 
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A bus can “serve” a stop if there are passengers entering or exiting at that stop. Hence, for the purpose of this 

research, X1 is denoted as the number of bus stops between any two “origin” and “destination” points along a bus 

route. Hence, if a bus serves Stop 1 and Stop 2, X1 = 0. If a bus serves Stop 1 and Stop 5, X1 = 3.  

 Length of Route between Bus Stops (X2) 

The data provided by WMATA had the odometer readings of all the buses along a route. Hence, X2 was obtained 

by taking the difference of the odometer readings between any two served bus stops.  

 Average Number of Passengers in the Bus (X3) 

Automatic Passenger Counting (APC) systems installed on all the WMATA buses count the number of passengers 

getting in and out of the bus from the front and the rear doors. At any point, the number of passengers will be the sum 

of passengers already on the bus (excluding the origin bus stop) and the number of patrons boarding the bus minus the 

number of patrons alighting the bus at any stop. The average number (X3) can be found by taking the mean of the 

number of passengers on the bus between any two particular served bus stops.  

 Average Dwell Time of served Bus Stops (X4) 

The dwell time is the period during which the front and the rear doors of a bus at a bus stop remained open to serve 

patrons. Average dwell time (X4) for the analysis is the mean of dwell times of the served bus stops between and 

origin and destination point. 

 Number of Intersections between Bus Stops (X5) 

Field data observations were conducted to determine the number of intersections (un-signalized and signalized) 

between any two served bus stops along a route (X5). 

Since traffic characteristics depend on the time of the day, separate ANNs models were developed for AM Peak 

(7:00 AM - 9:30 AM), PM Peak (4:00 PM - 6:30 PM) and Mid-Day Peak (10:00 AM – 2:30 PM) periods. The general 

form of the matrix containing the different independent variables and the dependent variable (travel time) used for the 

neural network analysis is presented in Table 1. For this study, a minimum sample size of 500 origin to destination 

trips of multiple transit buses on a route were extracted for each peak period from the 6-month AVL/APC data 

obtained from WMATA. Thus, a minimum sample of 1,500 origin to destination trips were extracted and exported 

into a Comma Separated Values (CSV) file for analysis of the three peak periods for each bus route. 

Table 1. Sample peak period ANN data matrix model for a bus route 

Trip ID 
No. of SERVED Bus 

Stops (SBS), X1 

Length of 

Route (L), X2 

Average Number of 

Passengers (P), X3 

Average Dwell 

Time (DT), X4 

No. of Intersections 

(IT), X5 

Travel Time 

(TT), Y 

1 A D G J M P 

2 B E H K N Q 

3.. C F I L O R 

… - - - - - - 

500 S T U V W X 

2.3. Data Analysis 

Neural Designer software was used for the neural network analysis. The software that incorporates data science and 

machine learning techniques which helps to build, train and deploy neural network models. Analysis for the project 

involved the following steps. 

2.3.1. Descriptive Statistics 

Descriptive statistics including the mean, median and standard deviation were computed for the bus travel times as 

well as the other predictor or independent variables. The averages of predictors such as dwell times and number of 

passengers per peak periods were also obtained. 

2.3.2. ANN Model Development 

The purpose of developing an ANN model in this research is to determine the travel time of the bus on a route 

using approximation technique in Neural Designer Software. In the approximation technique, the neural network 
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learns from the input-target examples provided by the user. It should be noted that the objective of approximation is to 

produce a neural network which performs well in generalization and makes good prediction for unseen data (good fit) 

rather than capturing specific details in the data set (overfitting). The software was used to split the data into a training 

set (75%) and a testing set (25%). The training dataset was used to train and develop the model while the testing 

dataset was used to validate the model.  

Training was conducted through an iterative process of feed forward and errorback propagations until the gradient 

normalization goal or the stopping criterion of a 1,000 epochs (iterations) was met. The following adjustments were 

made prior to performing the neural network analysis. 

Perceptron Layers 

The training of the model was done using a Multilayer Perceptron (MLP). Perceptron layers are important layers 

that enable the neural network to learn. Numerical values are inputs (X1,…,Xn) for the perceptron neurons in a 

network to produce a numerical output y (travel time). The result of the output is also affected by the combination of 

bias (b) and the sum of individual weights of independent variables (w1,…,wn).  

The MLP used for this research consisted of three layers: input layer, hidden layer, and output layer. A typical 

ANN architecture is presented in Figure 4. 

 

Figure 4. ANN architecture 

Data Standardization 

The inputs in the data sets did not have the same ranges. Hence, an automatic scaling layer was applied to make the 

values of all the independent variables comparable. The scaled outputs were unscaled back to the original units using 

the un-scaling layer on the perceptron layers. 

Training Strategy 

The training strategy refers to the procedure to carry out the learning process which is applied to neural network. It 

is done to obtain the minimum possible error in the loss index. The loss index evaluates the performance of a neural 

network by assessing its parameters. Minimizing the error can be done by finding a set of parameters that fit the neural 

network to the data set. At the lowest value of the loss index, the gradient is zero. The optimization algorithm enables 

the capability of varying the parameters to obtain the ideal value for each training iteration or epochs, which gradually 

decreases the loss. The optimization algorithm stops during training after specific conditions or criteria have been met. 

Quasi-Newton optimization algorithm was used for training the data sets of all peak periods of the 6 bus routes. The 

algorithm yields a function with low loss and higher accuracy. The algorithm is the default optimization method in 

Neural Designer and is also recommended for training medium sized data sets (10-1,000 variables, 1,000-1,000,000 

instances). 

Model selection in the Neural Designer software program refers to finding the optimal network architecture with 

the best generalization properties. Order selection was performed to achieve the best selection model that generated 

the adequate fit to the data provided. The incremental order selection process was used to obtain the optimal order, 

training and selection errors. Following the order selection, the models were trained to reduce the errors. 
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2.3.3. Mathematical Equations, Model Testing and Evaluation 

Neural Designer was also used to obtain the mathematical equations for approximation of travel times for different 

peak periods. The errors obtained from conducting the neural network analyses were also documented. 

After training the network for the required number of epochs, the models are tested using the set-aside test dataset. 

Normalized Squared Error (NSE), which is the default error term used when solving approximation problems, was 

used to evaluate the models. The prediction of data can yield a value between 0 (perfect prediction) and 1 (predicting 

on basis of the mean). It can be represented by using the following: 

NSE =
∑(O − T)2

𝑁𝐶
 (1) 

Where; 

NSE = Normalized Squared Error 

O = Outputs 

T = Targets 

NC = Normalized Coefficient 

The Mean Percentage Error (MPE) was also obtained for all the models for each peak period to determine the 

accuracy. MPE represents the error made in the predicted values as compared to the observed values. It can be 

represented as 

MPE =
1

𝑛

∑|A − P|

𝐴
∗ 100 (2) 

Where; 

A = Observed values 

P = Predicted values 

n = Number of observations 

3. Results 

This section provides the findings of the research. 

3.1. Summary Statistics  

The distribution of data points that were used to develop the models is presented in Figure 5. An overview of the 

data of 6 study routes for the AM, PM and Mid-Day Peak hours has been represented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Total number of collected data points per peak period  

7190, 38%

5185, 27%

6800, 35%

Number of Data Points per Peak

AM PEAK Mid-Day PM Peak
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From Figure 5, a total of 7,190, 5,185 and 6,800 data points were used to develop the neural network models 

respectively for the AM, Mid-Day and PM Peak periods.  

A summary of the average travel time of the buses based on the number of bus stops served during each peak 

period is presented in Table 2. The descriptive statistics of data sets are presented in Table 3. 

Table 2. Average travel time by number of served bus stops 

 
Average Travel Time (in seconds) 

Number of Served Bus Stops AM Peak Period Mid-Day Peak Period PM Peak Period 

0 87.74 104.64 101.54 

1 189.21 221.32 218.95 

2 287.27 334.10 333.84 

3 389.17 447.58 451.05 

4 489.92 562.17 571.99 

5 590.48 676.73 686.69 

6 690.10 791.78 802.48 

7 791.66 907.42 919.30 

8 885.84 1023.47 1037.80 

9 988.84 1140.49 1160.04 

Table 3. Descriptive Statistics  

 

Mean Standard Deviation 

AM Peak Mid-Day Peak PM Peak AM Peak Mid-Day Peak PM Peak 

SBS (X1) 3.92 3.94 3.94 2.70 2.71 2.71 

L (X2) 6718.90 6734.20 6016.89 5817.77 5663.62 5186.32 

P (X3) 15.58 12.96 16.92 9.38 6.57 9.71 

DT (X4) 13.81 16.08 17.54 9.92 12.10 17.71 

IT (X5) 15.72 16.71 15.67 10.26 10.88 10.39 

TT (Y) 481.64 556.68 562.78 324.42 486.29 401.39 

It can be observed from Table 2 that the travel times generally increased over time of the day for all the number of 

bus stops served (0-9) along the route. The mean and standard deviation of all the variables (dependent and 

independent) that were used in all three peak periods are presented in Table 3. 

3.2. Neural Network Training  

This section presents results of the neural network trainings on models to predict the bus Travel Times using Neural 

Designer software. Matrices for all three peaks were analyzed using the Quasi-Newton algorithms with 2, 3 and 5 

number of perceptron layers, separately. The inputs used for all Quasi-Newton Analysis were scaled using the 

automatic scaling method. The size of the scaling layer was 5 (number of inputs). The scaled outputs were unscaled 

back to the original units using the unscaling layers on the perceptron layers for all peak periods. Unscaling method 

for the output layer was performed by using the minimum and maximum method. 

Order selection was performed to achieve the best selection model that generated the adequate fit for all the peak 

periods. The details of the results obtained from neural network analysis using Quasi-Newton algorithm are discussed 

in the following subsections. 

3.2.1. Two-Perceptron Layers 

Neural networks were developed for all three peak periods using 2 perceptron layers and analyzed using the Quasi-

Newton optimization algorithm. The activation functions of the first layer were set to a hyperbolic tangent while those 

of second layer were set as linear. Table 4 shows the results of training for all peak periods. 
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Table 4. Quasi-Newton method results of all peak periods for two perceptron layers (after order selection) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 7.670 60.580 48.390 

Final Training Error 0.138 0.052 0.218 

Initial Selection Error 8.250 46.510 51.460 

Final Selection Error 0.145 0.041 0.230 

Epochs Number 615 336 308 

Elapsed Time (min:sec) 00:03 00:01 00:01 

Stopping Criterion Gradient Norm Goal Gradient Norm Goal Gradient Norm Goal 

It can be observed from Table 4 that for the AM Peak period, the initial training error value of 7.67 decreased to 

0.138 after 615 epochs. The initial value of the selection error for the AM Peak period was 8.25, and the final value 

after 615 epochs decreased to 0.145. For the Mid-Day Peak period, the initial training error of 60.58 decreased to 

0.0518 after 336 epochs. Similarly, after 336 epochs, the initial value of selection error for the Mid-Day Peak period 

decreased from 46.51 to 0.0405. For the PM Peak period, initial training error decreased from 48.39 to 0.218 after 308 

epochs and the initial selection error decreased from 51.46 to 0.2295. 

The highest final training and selection errors were observed for the PM Peak model while the Mid-Day Peak 

model had the lowest final training and selection errors. The selection error for the Mid-Day Peak period had the 

greatest change in error (99.913%) while the lowest change in error (98.243%) was obtained for the selection error of 

the AM Peak model after order selection. 

3.2.2. Three-Perceptron Layers 

Neural networks for all three peak periods having 3 perceptron layers were also modeled and analyzed using the 

Quasi-Newton Optimization Algorithm. The activation functions of the first two layers were set to hyperbolic tangent 

while those of third layer of each peak period were set to linear. Table 5 shows the results of training for all peak 

periods. 

Table 5. Quasi-Newton method results of all peak periods for three perceptron layers (after order selection) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 16.170 93.280 18.000 

Final Training Error 0.145 0.053 0.205 

Initial Selection Error 16.080 72.120 18.320 

Final Selection Error 0.154 0.042 0.229 

Epochs Number 812 404 1,000 

Elapsed Time (min:sec) 00:04 00:01 00:06 

Stopping Criterion Gradient Norm Goal Gradient Norm Goal 
Maximum number of 

iterations 

It can be observed from Table 5 that for the AM Peak period, the initial training error value of 16.17 decreased to 

0.145 after 821 epochs. The initial value of the selection error for the AM Peak period was 16.08, and the final value 

after 821 epochs decreased to 0.154. From Table 5 it can also be observed that for the Mid-Day Peak period, the initial 

training error of 93.28 decreased to 0.0532 after 404 epochs. Similarly, after 404 epochs, the initial value of selection 

error for the Mid-Day Peak period decreased from 72.12 to 0.0415. For the PM Peak period, initial training error 

decreased from 18.00 to 0.205 after 1,000 epochs and the initial selection error decreased from 18.32 to 0.229. 

The highest final training and selection errors were observed for the PM Peak period while the Mid-Day Peak 

period had the lowest final training and selection errors. The selection error for the Mid-Day Peak had the greatest 

change in error (99.942%) while the lowest change in error (98.75%) was obtained for the selection error of the PM 

Peak period after order selection. 

3.2.3. Five-Perceptron Layers 

Neural networks for all three peak periods having 5 perceptron layers were also modeled and analyzed using the 

Quasi-Newton Optimization Algorithm. The activation functions of the first four layers were set to hyperbolic tangent 

while those of last layer of each peak period were set to linear. Table 6 shows the results of training for all peak 

periods  
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Table 6. Quasi-Newton method results of all peak periods for five perceptron layers (after order selection) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 96.800 59.490 61.080 

Final Training Error 0.150 0.094 0.235 

Initial Selection Error 96.640 56.440 65.750 

Final Selection Error 0.159 0.106 0.257 

Epochs Number 1,000 1,000 927 

Elapsed Time (min:sec) 00:05 00:03 00:05 

Stopping Criterion Maximum number of iterations Maximum number of iterations Gradient Norm Goal 

  

It can be observed from Table 6 that for the AM peak period, the initial training error value of 96.80 decreased to 

0.150 after 1,000 epochs. The initial value of the selection error for the AM Peak period was 96.64, and the final value 

after 1,000 epochs decreased to 0.159. From Table 6, it can also be observed that for the Mid-Day Peak period, the 

initial training error of 59.49 decreased to 0.094 after 1,000 epochs. Similarly, after 1,000 epochs, the initial value of 

selection error for the Mid-Day Peak period decreased from 56.44 to 0.106. For the PM Peak period, initial training 

error decreased from 61.08 to 0.235 after 1,000 epochs and the initial selection error decreased from 65.75 to 0.257. 

The highest final training and selection errors were observed in the PM Peak model while the Mid-Day Peak period 

had the lowest final training and selection errors. The training error for the AM Peak period had the highest change in 

error (99.845%) while the lowest change in error (99.638%) was obtained for the selection error of the PM Peak 

period after order selection. 

3.3. Errors and Error Statistics 

This section presents the comparison of Normalized Squared Errors and the error statistics after performing neural 

network training. 

3.3.1. Normalized Squared Error 

The normalized squared errors were obtained for all the instances which evaluated the model for each use. Table 7 

presents the normalized squared errors for the training, selection and testing instances that were obtained from the 

model for all number of perceptron layers.  

Table 7. Normalized squared errors for training, selection and testing instances (2 layer quasi-newton method) 

Two Perceptron Layers 

 
AM Peak Mid-Day Peak PM Peak 

Training Error 0.138 0.052 0.218 

Selection Error 0.145 0.041 0.229 

Testing Error 0.147 0.053 0.257 

Three Perceptron Layers 

Training Error 0.145 0.053 0.205 

Selection Error 0.154 0.042 0.229 

Testing Error 0.163 0.055 0.254 

Five Perceptron Layers 

Training Error 0.150 0.094 0.212 

Selection Error 0.159 0.106 0.225 

Testing Error 0.169 0.119 0.258 

 

It can be observed from Table 7 that the lowest testing errors were obtained for the Mid-Day Peak model. Figures 6 

through 8 present the NSE obtained for the training, selection and testing errors for AM, Mid-Day and PM Peak 

periods, respectively. 
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Figure 6. Normalized squared errors obtained for AM peak period neural network analyses 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Normalized squared errors obtained for Mid-Day peak period neural network analyses 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Normalized squared errors obtained for PM peak period neural network analyses 
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From the graphs, it can be observed that the highest NSE for the training, selection and testing errors of all peak 

models were generally obtained for the models with 5 perceptron layers. The models with 2 perceptron layers 

undergoing Quasi-Newton method for the AM and Mid-Day Peak periods produced the lowest NSE for training, 

selection and testing sets.  

3.3.2. Error Statistics 

The Mean Absolute Errors (MAE) and Mean Percentage Errors (MPE) were also obtained for the models during 

the neural network analyses. MAE and MPE are a measure of errors and computed average of percentage errors 

between paired observations which can be used as a determination of model’s accuracy. Figure 9 represents the MAE 

and MPE for all the 3 peak period models. 

The Mean Absolute Error parameter measures the difference between two continuous variables. The prediction 

error, i.e. the difference between the observed and predicted value, is converted to positive to give the absolute error 

[18]. The mean (average sum) of all recorded absolute errors (MAE), gives an idea of the average error to expect from 

the prediction model. However, the MAE does not provide the relative size of the error especially when comparing 

several models. The Mean Percentage Error (MPE) allows for the computation of the mean error in percentage terms. 

This determines how big or small an error is and provides a better means of comparing the various models [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Mean absolute and mean percentage errors obtained after neural network analyses 

It can be observed from Figure 9 that the lowest Mean Absolute Errors for the AM and Mid-Day Peak periods were 

obtained in the Quasi-Newton model with 2 layers whereas the lowest MAE for the PM Peak period was obtained in 

the Quasi-Newton model with 5 layers. The models with 5 layers displayed the highest overall Mean Percentage 

Errors 

Since lower training error corresponds to overfitting, it may not be a good validation of the predictive model. 

Overfitting leads to inaccuracy in predicting the correct output from unseen data while testing. Hence, testing error 

was analyzed for all the models to evaluate the accuracy of approximation. The mean absolute error and the mean 

percentage error were compared to test the quality of the predictive models. It could be observed that the models 

trained using Quasi-Newton Algorithm having 2 perceptron layers had the lowest normalized squared errors (testing) 

followed by training models having 3 perceptron layers. Mid-Day Peak models had the lowest overall errors for both 

training algorithms. 
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3.4. Mathematical Expressions  

Table 8 presents the mathematical expressions that were obtained from the neural network analysis for all peak 

models undergoing Quasi-Newton Analyses. 

Table 8. Neural network analysis output equations 

Travel Time Equation 

AM 0.5*(scaled_YAM+1.0)*(1976)+2 

Mid-Day 0.5*(scaled_YMid-Day+1.0)*(5174)+6 

PM (scaled_YPM+1.0)*(2739)+21 

Table 8 represents general equations for all three peak periods for the different analyses (with multiple perceptron 

layers). It should be noted that the scaled values of YAM, YMid-Day and YPM change with different analysis. The 

mathematical expressions for the scaled Y outputs that were obtained from the neural network analysis for all peak 

models undergoing Quasi-Newton Analysis can be represented as: 

 Two Perceptron Layers 

scaled_YAM = (-0.403933+ (tanh (0.266595+ (sA_ X1*0.159083)+ (sA_ X2*1.38412) + (sA_ X3*0.773302)+ (sA_ 

X4*-0.10047)+ (sA_ X5*-1.5879))*-0.827554)+ (tanh (0.763357+ (sA_X1*0.282538)+ (sA_X2*-0.321875)+ 

(sA_X3*-0.425407)+ (sA_X4*-0.076593)+ (sA_X5*-0.562577))*0.475845)+ (tanh (-0.773348+ (sA_X1*-0.104466)+ 

(sA_X2*-0.524453)+ (sA_X3*0.331032)+ (sA_X4*0.0637511)+ (sA_X5*0.78019))*1.51826)+ (tanh (-0.731044+ 

(sA_X1*-1.3292)+ (sA_X2*0.174948)+ (sA_X3*-0.603121)+ (sA_X4*-0.132371)+ (sA_X5*1.4993))*0.184144)+ 

(tanh (-0.702817+ (sA_X1*-0.8047)+ (sA_X2*1.77398) + (sA_X3*-0.152839)+ (sA_X4*0.245255)+ (sA_X5*-

0.334036))*-0.241722)+(tanh (-0.61739+ (sA_X1*0.152483)+ (sA_X2*-0.725123)+ (sA_X3*0.380162)+ 

(sA_X4*0.0446854)+ (sA_X5*0.548037))*-1.17179)+ (tanh (-0.26219+ (sA_X1*0.0512189)+ (sA_X2*1.25502)+ 

(sA_X3*-1.05877)+ (sA_X4*0.0268656)+ (sA_X5*-0.638987))*0.385873)+ (tanh (-0.508739+ (sA_X1*-0.225638)+ 

(sA_X2*-1.86452)+ (sA_X3*-0.810278)+ (sA_X4*0.075467)+ (sA_X5*1.91736))*-0.688366)+ (tanh (-0.0139338+ 

(sA_X1*-0.0619438)+(sA_X2*-0.703159)+(sA_X3*0.699206)+(sA_X4*-0.0176063)+ sA_X5*0.224042))*0.695668)+ 

(tanh (-0.0315544+ (sA_X1*0.132696)+ (sA_X2*0.19984)+ (sA_X3*0.0444743)+ (sA_X4*0.0152423)+ (sA_X5*-

0.129342))*2.37657)) 

scaled_YMid-Day = (-0.208024+ (= tanh (-0.0899416+ (sM_X1*-0.902712)+ (sM_X2*0.773495)+ (sM_X3*-

0.213636)+ (sM_X4*-0.0126037)+(sM_X5*0.312714))*-0.159253)+ (tanh (1.09159+ (sM_X1*0.335772)+ (sM_X2*-

0.346538)+ (sM_X3*0.052857)+ (sM_X4*-0.0197632)+ (sM_X5*-0.00913458))*-1.66349)+ (tanh (1.68263+ 

(sM_X1*0.646806)+ (sM_X2*-0.783611)+ (sM_X3*-0.00646778)+ (sM_X4*-0.0243315)+ 

(sM_X5*0.0401995))*0.801582) + (tanh (-0.0188228+ (sM_X1*0.051862)+ (sM_X2*0.0738155)+ 

(sM_X3*0.00713647)+ (sM_X4*-0.0134423)+ (sM_X5*0.032604))*1.1423)); 

scaled_YPM = (-0.109188+ (tanh (-0.125552+ (sP_X1*-0.330932)+ (sP_X2*1.98228)+ (sP_X3*-0.210823)+ 

(sP_X4*0.12685)+(sP_X5*-1.17731))*1.08879)+ (tanh (0.42971+ (sP_X1*-0.113247)+ (sP_X2*1.63058)+ (sP_X3*-

0.0563956)+ (sP_X4*0.0776343)+ (sP_X5*-1.27139))*-2.69854)+ (tanh (0.892756+ (sP_X1*-0.13717)+ 

(sP_X2*0.114125)+ (sP_X3*-0.114468)+ (sP_X4*-0.0215025)+ (sP_X5*-0.472637))*-0.551765)+ (tanh (0.339223+ 

(sP_X1*-0.0539536)+ (sP_X2*-0.784304)+ (sP_X3*-0.0873344)+ (sP_X4*-0.0322945)+ (sP_X5*0.837868))*-

2.13805)+ (tanh (-1.13634+ (sP_X1*0.161904)+ (sP_X2*-2.72193)+ (sP_X3*0.244611)+ (sP_X4*-0.113411)+ 

(sP_X5*1.99965))*-0.937324)+ (tanh (1.35152+ (sP_X1*0.0724538)+ (sP_X2*-1.50671)+ (sP_X3*-0.0274335)+ 

(sP_X4*-0.0893173)+ (sP_X5*1.62717))*1.2105)); 

The scaled values of independent variables are provided in Table 9. 

Table 9. Scaled values of independent variables 

AM Peak Mid-Day Peak PM Peak 

sA_X1 = (X1-3.92349)/2.70379; sM_X1 = (X1-3.94118)/2.71125; sP_X1 = (X1-3.94118)/2.71119; 

sA_X2 = (X2-6718.9)/5817.77; sM_X2 = (X2-6734.2)/5663.62; sP_X2 = (X2-6016.89)/5186.32; 

sA_X3 = (X3-15.5805)/9.37685; sM_X3 = (X3-12.9582)/6.56694; sP_X3 = (X3-16.9162)/9.71334; 

sA_X4 = (X4-13.8079)/9.92248; sM_X4 = (X4-16.0783)/12.0996; sP_X4 = (X4-17.5412)/17.7121; 

sA_X5 = (X5-15.7173)/10.2624; sM_X5 = (X5-16.7128)/10.8819; sP_X5 = (X5-15.6674)/10.3884; 
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 Three Perceptron Layers 

scaled_YAM = (0.215174+ (tanh (-0.536023+ (y_1_1*1.51243)+ (y_1_2*0.759729)+ (y_1_3*-1.32225))*-0.975811)+ 

(tanh (-1.94384+ (y_1_1*-0.396438)+ (y_1_2*-1.70619)+ (y_1_3*0.291821))*1.23331)+ (tanh (1.4332+ 

(y_1_1*0.702253)+ (y_1_2*0.251199)+ (y_1_3*1.03667))*1.12438)+ (tanh (0.0512586+ (y_1_1*-0.767183)+ 

(y_1_2*-0.512971)+ (y_1_3*-0.253243))*-1.60024)+ (tanh (0.756908+ (y_1_1*-0.150335)+ (y_1_2*0.819108)+ 

(y_1_3*1.99338))*-1.04541)+ (tanh(1.54649+ (y_1_1*0.116734)+ (y_1_2*-1.85288)+ (y_1_3*-1.35402))*1.33817)+ 

(tanh (0.0243083+ (y_1_1*0.374252)+ (y_1_2*0.328831)+ (y_1_3*0.181334))*0.271241)+ (tanh (-0.125053+ 

(y_1_1*-0.328579)+ (y_1_2*-0.256182)+ (y_1_3*0.590709))*-0.351073)+ (tanh (-1.88825+ (y_1_1*-1.69526)+ 

(y_1_2*0.331318)+ (y_1_3*1.16758))*1.20335)); 

    scaled_YMid-Day=(0.103787+ tanh (-0.536023+ (y_1_1*1.51243)+ (y_1_2*0.759729)+ (y_1_3*-1.32225))*1.6249)); 

    scaled_YPM = (0.684445+ (tanh (0.45443+ (y_1_1*2.68585)+ (y_1_2*0.0347495)+ (y_1_3*-0.817478))*1.35074)+ 

(tanh (-0.108927+ (y_1_1*-0.713266)+ (y_1_2*0.417959)+ (y_1_3*1.17019))*-1.28872)+ (tanh (-0.322299+ 

(y_1_1*-1.97763)+ (y_1_2*0.308789)+ (y_1_3*1.17455))*2.40162)+ (tanh (-0.587322+ (y_1_1*-1.8385)+ (y_1_2*-

0.587654)+ (y_1_3*-1.136))*1.26585)+ (tanh (2.47199+ (y_1_1*-0.100312)+ (y_1_2*0.0381556)+ (y_1_3*-

2.21539))*-1.08219)+ (tanh (0.550239+ (y_1_1*1.09962)+ (y_1_2*0.698722)+ (y_1_3*1.51868))*1.46912)+ (tanh 

(1.43996+ (y_1_1*-0.139531)+ (y_1_2*-1.19197)+ (y_1_3*-1.27155))*-0.888777)+ (tanh (-2.5035+ (y_1_1*-

2.03767)+ (y_1_2*1.91548)+ (y_1_3*2.29532))*-1.32063)+ (tanh (-0.283164+ (y_1_1*-1.63158)+ 

(y_1_2*1.42752)+ (y_1_3*1.34363))*-0.494677)+( tanh (-2.36089+ (y_1_1*-2.65308)+ (y_1_2*1.56991)+ 

(y_1_3*2.56494))*1.01097)); 

The scaled values of y_x_x for all peak periods are provided in Table 10. 

Table 10. Scaled y values for 3 perceptron layer analysis 

 Mid-Day Peak PM Peak 

y_1_1 = tanh (-0.528509+ 

(sA_X1*0.326117)+ (sA_X2*0.272163)+ 

(sA_X3*-0.161073)+ (sA_X4*-0.0182433)+ 

(sA_X5*-0.332747)) 

y_1_1 = tanh (1.26074+ (sM_X1*0.340538)+ 

(sM_X2*-0.388042)+ (sM_X3*0.0323315)+ 

(sM_X4*-0.0204073)+ (sM_X5*0.0650814)) 

y_1_1 = tanh (-0.251511+ 

(sP_X1*0.257925)+ (sP_X2*-1.10134)+ 

(sP_X3*0.122933)+ (sP_X4*-0.0966804)+ 

(sP_X5*0.802904)); 

y_1_2 = tanh (0.309257+ (sA_X1*-

0.087491)+ (sAX2*-0.489761)+ (sA_X3*-

0.0127571)+ (sA_X4*-0.0235167)+ 

(sA_X5*0.0684882)) 

y_1_2 = tanh (0.31964+ (sM_X1*0.13657)+ 

(sM_X2*0.0305903) + (sM_X3*0.0239318)+ 

(sM_X4*-0.0102187)+ (sM_X5*0.020976)) 

y_1_2 = tanh (0.149037+ (sP_X1*-

1.18999)+ (sP_X2*-0.0809956)+ (sP_X3*-

0.885189)+ (sP_X4*0.0770171)+ 

(sP_X5*0.677185)) 

y_1_3 = tanh (-0.292626+ 

(sA_X1*0.234084)+ (sA_X2*-1.68782)+ 

(sA_X3*0.00988481)+ 

(sA_X4*0.0292022)+ (sA_X5*1.51933)) 

y_1_3 = tanh (-1.69767+ (sM_X1*-0.570229)+ 

(sM_X2*0.803204)+ (sM_X3*0.0739754)+ 

(sM_X4*0.0383746)+ (sM_X5*-0.180737)) 

y_1_3 = tanh (0.0309167+ 

(sP_X1*0.278205)+ (sP_X2*-0.199602)+ 

(sP_X3*0.142916)+ (sP_X4*-0.0180635)+ 

(sP_X5*0.414978)) 

 

The scaled values of X1 to X5 used in the calculations for Quasi-Newton methods with 3 perceptron layers were same 

as the scaled values used for all peak period calculations with 2 perceptron layers. 

 Five Perceptron Layers 

scaled_YAM = (-0.154104+ (tanh (-0.0548965+ (tanh (0.0129885+ (y_2_1*0.0948825)+ (y_2_2*0.484642)+ 

(y_2_3*0.449509))*0.904467)+(tanh(0.158871+(y_2_1*-1.1456)+(y_2_2*0.627338)+ (y_2_3*0.588445))*1.32304)+ 

(tanh (0.12641+ (y_2_1*-0.0131531)+ (y_2_2*0.13634)+ (y_2_3*0.320951))*0.295127))*-1.67074)); 

scaled_YMid-Day = (0.217368+ (tanh (0.117475+ (tanh (0.406982+ (y_2_1*-1.36989)+ (y_2_2*0.220252)+ 

(y_2_3*0.415707))*1.27176)+ (tanh (0.206687+ (y_2_1*-1.42396)+ (y_2_2*-0.144306)+ (y_2_3*0.357474))*-

1.66689)+ (tanh (0.120252+ (y_2_1*0.87812)+ (y_2_2*-0.698861)+ (y_2_3*1.36139))*-1.6817))*2.53726)); 

scaled_YPM = (0.870799+ (tanh (-0.0324586+ (tanh (-1.18555+ (y_2_1*-3.3865)+ (y_2_2*2.00885)+ (y_2_3*-

0.6039))*0.642708)+ (tanh (-1.0163+ (y_2_1*-1.22273)+ (y_2_2*0.853594)+ (y_2_3*0.971635))*0.479974)+ (tanh 

(-1.02954+ (y_2_1*-0.0673815)+ (y_2_2*0.376433)+ (y_2_3*-1.03609))*-0.0206083))*-0.468192)+ (tanh (0.34681+ 

(tanh (-1.18555+ (y_2_1*-3.3865)+ (y_2_2*2.00885)+ (y_2_3*-0.6039))*0.587993)+ (tanh (-1.0163+ (y_2_1*-

1.22273)+(y_2_2*0.853594)+(y_2_3*0.971635))*-0.853453)+(tanh(-1.02954+(y_2_1*-0.0673815)+ 

(y_2_2*0.376433) + (y_2_3*-1.03609))*2.01037))*2.5343)); 
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The scaled values of y_x_x for all peak periods are provided in Table 11. 

Table 11. Scaled y values for 5 perceptron layer analysis 

Values for y_2_x 

AM Peak Mid-Day Peak PM Peak 

y_2_1 = tanh (0.277517+ 

(y_1_1*1.31471)+ (y_1_2*-0.693054)+ 

(y_1_3*-0.345595)); 

y_2_1 = tanh (0.602469+ (y_1_1*1.60689)+ 

(y_1_2*1.75895)+ (y_1_3*-0.870177)); 

y_2_1 = tanh (-0.381238+ (y_1_1*-

0.989311)+ (y_1_2*-0.921348)+ 

(y_1_3*2.04451)); 

y_2_2 = tanh (-0.548299+ 

(y_1_1*1.04299)+ (y_1_2*1.14654)+ 

(y_1_3*-0.425578)); 

y_2_2 = tanh (0.200869+ (y_1_1*1.02723)+ 

(y_1_2*0.0400969)+ (y_1_3*-0.196134)); 

y_2_2 = tanh (-0.091402+ (y_1_1*-

0.388481)+ (y_1_2*-0.993532)+ 

(y_1_3*3.53479)); 

y_2_3 = tanh (0.293222+ 

(y_1_1*0.0230052)+ (y_1_2*0.651744)+ 

(y_1_3*0.0107091)); 

y_2_3 = tanh (0.420943+ (y_1_1*0.291185)+ 

(y_1_2*-0.53263)+ (y_1_3*-0.6235)); 

y_2_3 = tanh (0.0898576+ (y_1_1*-

0.527846)+ (y_1_2*-0.040224)+ 

(y_1_3*0.128471)); 

Values for y_1_x 

y_1_1 = tanh (-0.992594+ 

(sA_X1*0.173972)+ (sA_X2*0.0526949)+ 

(sA_X3*-0.288492)+ (sA_X4*-0.054571)+ 

(sA_X5*-0.518312)); 

y_1_1 = tanh (-0.843909+ (sM_X1*-

0.274577)+ (sM_X2*1.00172)+ 

(sM_X3*0.0866354)+ (sM_X4*-0.0624104)+ 

(sM_X5*-0.798224)); 

y_1_1 = tanh (0.126043+ 

(sP_X1*0.0549122)+ (sP_X2*0. 0487273)+ 

(sP_X3*0.0244436)+ sP_X4*0.00276169)+ 

(sP_X5*0.114946)); 

y_1_2 = tanh (0.0464584+ (sA_X1*-

0.00771148)+ (sA_X2*-0.0880088)+ 

(sA_X3*-0.0390799)+ (sA_X4*-

0.0136223)+ (sA_X5*-0.0669074)); 

y_1_2 = tanh (1.64865+ 

(scaled_X1*0.382326)+ (sM_X2*-1.53801) + 

(sM_X3*-0.400741)+ (sM_X4*0.160774)+ 

(sM_X5*1.66477)); 

y_1_2 = tanh (3.0596+ (sP_X1*2.37948)+ 

(sP_X2*-0.753125)+ (sP_X3*1.67366)+ 

(sP_X4*-0.14746)+ (sP_X5*-2.2107)); 

y_1_3 = tanh (-1.90315+ (sA_X1*-

0.843687)+ (sA_X2*2.99375)+ 

(sA_X3*0.307466)+ (sA_X4*0.0124248)+ 

(sA_X5*-2.3659)); 

y_1_3 = tanh (0.375072+ 

(sM_X1*0.0209689)+ (sM_X2*0. 197518)+ 

(sM_X3*0.0124373)+ (sM_X4*-0.0107245)+ 

(sM_X5*-0.0832514)); 

y_1_3 = tanh (0.394575+ (sP_X1*-

0.046241)+ (sP_X2*0. 791731)+ (sP_X3*-

0.0749282)+ (sP_X4*0.0879477)+ 

(sP_X5*-0.594842)); 

The scaled values of X1 to X5 used in the calculations for Quasi-Newton methods with 5 perceptron layers were 

same as the scaled values used for all peak period calculations with 2 perceptron layers. 

4. Conclusion 

Neural Network models were developed in this research which can be potentially helpful for transit agencies to 

improve bus travel time prediction. Delivering real time information pertaining to travel times of buses conveniently 

to the patrons will ensure the reliability of such transit services. Hence, improvement in the credibility and 

performance of the WMATA online NextBus Arrival service can increase ridership amongst patrons and decrease the 

dependency of private owned vehicles. The short and long-term benefits other than improvement in bus travel times 

include alleviation of traffic congestion, reduction of travel times for overall road users in urban areas like 

Washington, DC and decrease of vehicular emission. Moreover, the prediction models can serve as an excellent tool to 

build schedules for new bus routes in or around Washington, DC. The results of the analyses indicate that ANN 

models can effectively predict travel times of buses on selected routes with minimal percentage errors. From the 

results, it can be observed that the highest MPE was observed for the PM Peak model with 2 perceptron layers (4.9%). 

The value is lower than the lowest MPE value (8.19%) which was obtained in the study conducted by Yin et al. [6]. 

The ANN models could be incorporated into several other predictive models used by WMATA to provide patrons 

with travel time information online or at bus stops. These models could be adopted by transit agencies in other 

jurisdictions with similar characteristics to that of the Washington, DC area. 
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