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Abstract 

Self-Compacting Concrete (SCC) is a relatively new type of concrete with high workability, high volume of paste and 

containing cement replacement materials such as slag, natural pozzolana and silica fume. Cement replacement materials 

provide a wide variety of benefits such as lower cost, reduced consumption of natural resources, reduced carbon dioxide 

emissions and improved fresh and hardened properties. SCC is used in many applications such as sections with 

congested reinforcement and high rise shear walls and there is a need for the prediction of the performance of SCC used. 

Artificial Neural networks (ANN) are widely used in civil engineering for the prediction of the performance of some 

engineering materials such as compressive strength and durability. However, currently, studies on SCC containing silica 

fume are very rare. In this paper, an artificial neural networks (ANN) model is developed to predict the compressive 

strength of SCC with silica fume using the Levenberg-Marquardt back propagation algorithm based on a database from 

366 experimental studies. The model developed was correlated with a nonlinear relationship between the constituents 

(input) and the compressive strength of SCC (output). To evaluate the predictive ability and generalize the developed 

model, other researchers’ experimental results were compared with the model prediction and good agreements are found. 

A parametric study was conducted to study the sensitivity of the ANN proposed model to some parameters such as 

water/binder ratio and superplasticizer content. The model developed in this study can potentially be used for SCC 

compressive strength prediction with very acceptable results and a high correlation coefficient R2=0.93. The developed 

model is practical, easy to use and user friendly. 
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1. Introduction  

Concrete is the most used material worldwide in civil engineering structures because of its many advantages such 

as ease of molding, availability of constituent materials, high compressive strength and durability if well designed [1]. 

Self-Compacting Concrete (SCC) as a relatively new type of concrete has excellent deformability and passing ability 

under its own weight without any segregation. SCC differs from conventional concrete by its high fines content, high 

workability and higher water requirements and hence the prediction of its compressive strength is different than that of 

conventional concrete. Since its development in Japan in the late 1980's, significant progress has been made in SCC 

research and development. SCC is a solution to enhance the concrete workability as well as its strength. Mechanical 

properties, such as compressive strength, require selection of blend ratios, blend design specifications and economics 
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of the cementitious materials used [2]. Compressive strength of concrete is widely used for the quality control of 

concrete on site. Compressive strength is generally obtained by testing concrete specimen after a standard curing of 28 

days (Neville 1996).This property can be influenced by the use of alternative cementitious materials in concrete [3]. 

The use of supplementary cementitious materials (SCM) such as slag, natural pozzolana, fly ash (FA) and silica 

fume (SF) in the production of SCC is gaining widespread as it provides greater sustainability in construction projects 

by reducing CO2 emission and reducing energy and cement consumption and hence  lowering its environmental impact 

[4]. In addition, SCM improve the rheological properties at the fresh state and the strength and durability at the 

hardened state at long term. Silica fume is composed of very fine vitreous particles, which is a by-product of the 

smelting process in the silicon and ferrosilicon industry and is one of the most available SCM [5, 6]. The use of SF can 

produce both chemical and physical effects, which cause meaningful changes in the micro-structure of concrete such 

as reducing its permeability and increasing its compressive strength [5]. Compressive strength of SCC and other types 

of concrete with different cement replacement materials have been widely investigated. The compressive strength of 

SCC with silica fume and fly ash at different curing regimes was reported and the need for long term water curing 

proved [7]. Fly ash and slag have been found to significantly increase the compressive strength of SCC mixtures and 

that the presence of mineral admixtures improves the resistance to sulphate attack [8]. 

The compressive strength of SCC is a highly nonlinear function of the proportions its ingredients and there are no 

theoretical relationships between mixture proportioning and SCC strength and hence the need to use appropriate tools 

for their prediction based on its constituents at the time of design. Artificial neural network could be a good tool for 

this prediction. Artificial Neural Networks (ANN) is soft computing techniques developed to mimic the neural system 

of human being in learning from training patterns or data [9]. ANN modelling is getting more popular and has been 

commonly used in engineering tasks. ANN models can provide more accurate predictions of concrete properties and at 

the same time reduce the experimental work at the laboratory and on site. The main advantage of ANN is that no 

specific equation is needed as it relies only on the learning of input–output relation for any complex problem. The 

technique of neural networks automatically manages the relationships between variables and adapts its parameters 

based on the data used for their training [10]. This potential of ANN has been harnessed for wide applications in the 

field of civil engineering. ANN was used to estimate the main parameters needed in the design of concrete such as the 

compressive strength of hydrated lime cement concrete [11]. ANN was also used to evaluate the sulphate expansion of 

different types of cement using water/binder, cement content, FA or SF, C3A, and exposure duration as input 

parameters [12]. Compressive strength and other properties of limestone filler concrete were also predicted using 

ANN modelling [7]. The concrete mix design incorporating natural pozzolans has also been modelled [13]. ANN 

models for some durability indicators such as  carbonation depth and other properties of fly ash ordinary concrete and 

SCC was also studied [14, 15].  

Many authors have proved that artificial neural networks are reliable computational models for the prediction of 

concrete strength. Saridemir [16]. Siddique et al. [17] developed an ANN model for a reasonable accurate predictions 

of the compressive strength of concrete with bottom ash as partial replacement of fine aggregates at different ages 

using eight input parameters. Chou and Fam [18] reported that combining two or more models produces the highest 

prediction performance of compressive strength of high performance concrete (HPC). It has been demonstrated that 

artificial neural networks and fuzzy logic approaches can be successfully used for the prediction of compressive 

strength of concrete with metakaolin in relatively short time and with little error rate. The 28 days compressive 

strength of no-slump concrete (NSC) was predicted using neural networks and found more feasible than the traditional 

regression models [19]. Neural network and fuzzy logic have also been proved as an alternative approach for the 

predicting of compressive strength of silica fume concrete [20]. ANN was also used to predict with reasonable 

accuracy the 28-days compressive strength of a normal and high strength SCC as well as high performance concrete 

(HPC) containing high volume fly ash over a wide range of compressive strengths of concrete from about 30 to 60 

MPa [21].  

Early evaluation of the compressive strength of SCC is important for design and application purposes in 

construction sites and ready mixed concrete plants. As strength is usually determined experimentally by destructive 

and non-destructive tests which are costly and time consuming, the prediction of compressive strength through 

mixture proportions by an ANN model can be useful for the concrete industry. Some work has been done for the 

prediction of the compressive strength of SCC but although SF is extensively used in SCC and ultra-high performance 

concrete, there are very limited investigations to predict the compressive strength from its constituents for SCC with 

SF.  

The aim of this investigation is to develop a user friendly ANN model for predicting the compressive strength of 

SCC incorporating silica fume. After a brief description of the neural network model used, the database collection and 

analysis was described.  Then, the training of the ANN model was carried out on a set of experimental data considering 

several parameters such as water/binder ratio, binder content, silica fume, sand content (S), gravel content (G), 

superplasticizer (Sp) and curing age (A). These parameters were used as experimental input variables while the 
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experimental compressive strength (CS) property was used as an output. The validity of the model was then checked. 

Finally, a parametric analysis and comparison were carried out between the experimental and the ANNs predicted 

results for performance evaluation of the ANNs model. 

2. Description of Neural Network Models  

ANN is a very powerful computational tool for modelling complex non-linear relationships inspired by biological 

neural networks [10]. There is an  increasing number of different types of ANN and learning algorithms such as deep 

learning with convolutional neural networks [22] and the most used and well-known training algorithms for the 

multilayer perceptron is the back-propagation multi-layer perceptron (BPMLP). The technique is based on a gradient 

descent technique. It is used for minimizing the error for a particular training pattern by adjusting the weights by a 

small amount at a time [15, 23]. This technique is widely used in civil engineering applications [15]. In a BPMLP, the 

arrangement of neurons or nodes is in the form of one input layer, one output layer and hidden layers. All the neurons 

in each layer have connections to all the neurons in the next layer as depicted in Figure1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical neural network architecture 

At each neuron, the weights are values that express how much effect the input will have on the output. The total 

number of nodes in the input and output layers represent the number of input and output variables. The ideal number of 

nodes in the hidden layer is determined by trial and error as there is no known rule for selecting the number of nodes in 

a hidden layer, which is a network dependent [15]. The activation function determines the output value of each neuron. 

A non-linear activation function is generally used for all neurons with full connection that maps the weighted inputs to 

the output of each neuron. Two non-linear sigmoid activation functions are used as presented in Figure1 [16, 23]. 

 

 

 

 

 

 

 

 

 

Figure 2. Tan-Sigmoid and logistic Transfer function 

The first is a hyperbolic tangent function that ranges from -1 to 1, while the second is a logistic, with similar shape 

but ranges from 0 to 1. The output of the neuron is y and x is the weighted sum of the input connections. To train the 

network, a training algorithm is used allowing the ANN to develop a relationship between the inputs and outputs [23]. 

The training is an iterative process that stops when a designed error is reached by adjusting the network weights. The 
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training related parameters such as the learning rate, momentum and stopping time are the most important parameters 

that should be selected during the training in order to increase the model speed convergence and prevent it from over 

fitting.  

The network performance is determined by the root mean square error (RMSE) and the absolute fraction of 

variance (R2) using respectively Equations 1 and 2. In addition, Equation 3 determines the mean absolute percentage 

error (MAPE): 

ὙὓὛὉЍὓὛὉ
ρ

ὖ
ᶻ ὸ έ  (1) 

 (2) 

ὓὃὖὉ
ρ

ὖ

έ ὸ

έ
ρππ (3) 

Where tj is the target value of jth pattern (corresponds to predicted result in this work), oj is the output value of jth 

pattern (corresponds to experimental results in this work), and P is the number of patterns.  The network is able to give 

the output for any other input not included in the database when the training process is complete [23].  

3. ANN-based Prediction Model of SCC Compressive Strength and Validation 

The main purpose of this study is to develop ANN models for predicting the compressive strength based on 

mixture proportioning of SCC with SF. The development process of this ANN model was divided into three main 

sections. The first section concerns the collection and analysis of data on SCC with silica fume. The second is devoted 

to selecting suitable ANN architectures and optimal training parameters including performance function, learning 

algorithm and execution time. In the third and last section, a comparison with other existing experimental data was 

carried out to validate the proposed ANN models and assess their performances. The research methodology is 

summarized in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of research methodology 

3.1. Database Collection and Analysis 

The database of compressive strengths of SCC with SF was assembled from different research projects. A total 

number of 366 SCC compositions (Table 5) were collected from 25 sources published between 2004 and 2020 (Figure 

4) for building the ANN model (training testing and checking).  
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Figure 4. Frequency of sources in different date of publication 

During the evaluation and selection of the data, some of the mixes were ignored due to inaccurate or insufficient 

information or due to special curing conditions and larger than 20 mm size aggregates. The variables of the data base 

are quantities for one cubic meter of concrete mix constituents (binder content, silica fume, fine aggregates, coarse 

aggregates, superplasticizer) and age of testing as input dataset with the corresponding compressive strength value at 

different ages as output dataset. The compressive strengths tests were performed on cubic specimens of (10×10×10) 

cm and (15×15×15) cm, and cylindrical specimens of (10×20) cm and (15x30) cm. All of compressive strength results 

were converted into equivalent 15x30 cylindrical using the following empirical formulas (Equations 4 and 5) [24]. 
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Where fα is the cube compressive strength, α is the cube size, f10 and f15 are 10 cm and 15 cm cube compressive 

strength respectively, fcyl is the cylinder compressive strength. 

Table 1, shows the boundary values for input and output variables used in the ANN model. Table 2 shows that the 

input parameters are distributed in different ranges in a homogeneous form for training the mode l. 

Table 1. Boundary range of inputs and output of model 

 
Minimum  Maximum Average 

Inputs variables 
   

Water to binder ratio "W/B" 0.22 0.51 0.38 

Binder "B" (kg/m³) 359 600 702 

Silica fume (kg/m³) 0 250 46 

Fine aggregate (kg/m³) 680 1166 903 

Coarse aggregate (kg/m³) 595 1000 817 

Superplasticizer (kg/m³) 1.30 15.00 7.21 

Age of specimen (days) 1 270 
 

Outputs variable 
   

Compressive strength (MPa) 21.12 106.60 54.01 
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Table 2. Distribution of inputs in the data base 

Water/binder Binder Silica fume Fine aggregate Coarse aggregate Superplasticizer 

Rang Freq. 
  Rang 

(kg/m³) 
Freq. 

Rang 

(kg/m³) 
Freq. 

Rang 

(kg/m³) 
Freq. 

Rang 

(kg/m³) 
Freq. 

Rang 

(kg/m³) 
Freq. 

0.20-0.25 1 350–400 8 0–30 43 650–750 5 550–650 11 0–3 7 

0.26–0.30 4 401–450 26 31–60 29 751–850 22 651–750 21 3.1–6 20 

0.31–0.35 17 451–500 15 61–90 17 851–950 48 751–850 14 6.1–9 61 

0.36–0.40 57 501–550 43 91–120 10 951–1050 14 851–950 49 9.1–12 9 

0.41–0.52 21 551–600 8 121–250 1 1051–1166 11 951–1050 5 12.1–15 3 

3.2. ANN Architectures and Training Parameters 

In this research, to provide an ANN model with good generalization capability, the databases were randomly 

divided into three datasets: 70 % of input values are considered as training, 15 % as validating, and the remaining 15 % 

as testing. In order to achieve the optimum data division in this study, several random combinations of the training, 

testing, and validation sets were tried until three consistent datasets were obtained as shown in Table 3. 

For conducting ANN model, a MatLab program was implemented using neural network toolbox functions 

(R2016b). The back-propagation algorithm was employed to train and test the ANN model consisting of three adjacent 

layers: one input layer, one hidden layer, and one output layer and each layer is composed of a number of neurons. The 

number of neurons in input and output layers corresponds to variables of data and target output respectively. The 

number of hidden layers and their size were selected after several attempts in order to achieve the desired result since 

there is yet no theory or rule for determining the number of hidden layers to construct the network [13]. Subsequently, 

seven (07) neurons in the input layer representing the variables of data, three (03) neurons in the hidden layer and one 

(01) neuron in the output layer corresponding to the compressive strength at different ages were selected for the ANN 

model. The  following  variables  were  used  as input  parameters  to  build  and  train  the  model  namely:  amount  of 

the water-to-binder ratio (W/B), binder content (B), silica fume (SF), fine aggregates (FA), coarse aggregates (CA), 

superplasticizer (SP) and age of curing. The corresponding model is given graphically in Figure. 5. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Structure of the developed ANN model 

After different combinations of the two proposed nonlinear activation function, the nonlinear activation function 

“tansig” of MATLAB's was used for all neurons as shown in Equation 6. 
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number of epochs (learning cycles) were reached. All the training parameters for each ANN model including learning 

rate, momentum rate, training epoch and mean square error are summarized in Table 3. 

Table 3. The values of ANN parameters models used in this research 

ANNs parameters  

Train function Trainlm (Levenberg–Marquardt) 

Transfer function Tansig "tan-sigmoid" (no linear function) 

Performance function MSE (mean square error)   

Train epochs 1000     

Error after learning 0.001     

Divide function Dividerand     

Learning rate 0.100     

Momentum rate 0.001     

Goal 0.001     

Show 5     

The criterion to select the optimal architecture and the best learning parameters of ANN models developed in this 

research, involves minimizing the error, maximizing the correlation and conducting a parametric analysis for exploring 

the most influential factors of SCC mixtures on the ANN model prediction. Accordingly, the prediction results are 

compared with the experimental data showing high correlation and providing high estimation accuracy (Figure. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Correlation cohered between experimental and predicted compressive strength for SCC (a) Validation, (b) Testing 
set, (c) Training set, (d) All sets 
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3.3. Checking Validity of the ANN Model 

In this section, the generalization performance of the well-trained ANN model was evaluated in order to check its 

predictive ability and accuracy with unseen data within the range of the input parameters used in the training process. 

Therefore, additional experimental results obtained from other researchers excluded from the training data were 

considered. A total of 19 SCC mixtures collected from three different sources [25-27] were presented to the ANN 
model developed and the network was required to predict the compressive strength associated with each mixture. 

Moreover, in table 4, the accuracy was measured based on the mean absolute percentage error (%) as a potential 
solution to improve the interpretability of the results prediction using Equation 7 [25]: 

ὉϷ ὃὄὛ
ὕ ὕ

ὕ
ρππ (7) 

Where OExp is the experimental result, OANN is the predicted result calculated by the developed model. 

According to table 4, the average relative errors between the predicted and the experimental results were quite low 

(4.94 %) though slightly higher than that reported for the prediction of compressive strength of concrete with natural 

pozzolana [23]. From figure 5 and table 4, it can be concluded that the predicted results obtained from the ANNs 

model are in agreement with those of the measured experimental results.  

The comparison between the obtained results by the developed ANN model and the validation of new data records 

is shown in Figure 6 and in Table 4. According to Figure 7, the testing data points (experimental results) are located 

along the equity line within the cluster formed by training data points (predicted results), with perfect correlation 

(R2=0.93).This is comparable to the coefficients of correlation reported for the prediction of  the compressive strength 

of concrete with natural pozzolana which was 0.93 for the hybrid system and 0.83 for the ANN model [23] and for the 

compressive strength of SCC with fly ash  which was 0.95 [15]. A correlation coefficient of 0.919 was achieved for 

the prediction of 28 days compressive strengths using ANN for SCC containing bottom ash as partial replacement of 

fine aggregates [17]. Accordingly, the compressive strength of SCC containing silica fume is predicted with very 

satisfactory results using the proposed ANN model in this research. The results of the developed model are also 

comparable to other artificial intelligence methods such Multivariate Adaptive Regression Splines (MARS) and Gene 

Expression Programing (GEP) which were used for the prediction of the compressive strength of SCC with SF using 

117 datasets where the comparison between the predicted compressive strength and the experimental results showed a 

correlation coefficient of 0.98 and 0.83 for MARS and GEP methods respectively [28].  

 

Figure 7. Comparison between the ANN results and experimental results 
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Table 4. Relative errors of the predicted results of ANN model and experimental researcher's results 

Author  Year Age (day) Exp. ANN E (%) 

Tahwia et al [25] 2018 

7 29.70 29.60 0.34 

7 34.20 29.03 15.12 

7 37.80 27.67 26.80 

28 43.20 43.61 0.95 

28 45.90 47.00 2.40 

28 50.40 49.18 2.42 

90 55.80 54.72 1.94 

90 59.40 61.21 3.05 

90 63.00 66.88 6.16 

Dinesh et al [26] 2017 

28 46.77 47.70 1.99 

28 48.62 49.30 1.40 

28 49.53 50.70 2.36 

28 50.31 51.90 3.16 

28 51.05 52.80 3.43 

28 53.34 53.50 0.30 

Syed., A. [27] 2009 

28 36.77 37.00 0.63 

28 39.93 38.30 4.08 

28 45.20 40.00 11.50 

28 39.39 41.70 5.86 

  
Average error 4.94% 

4. Parametric Analysis of ANN Developed Model 

A parametric study was conducted to evaluate the effect of the operating parameters affecting SCC compressive 

strength as this allows the developed ANN model to be used as an effective prediction tool. The sensitivity of the 

compressive strength predicted by the ANN model as output parameters to variations of some of the main input 

parameters was evaluated by examining the effect of changing one parameter whereas all others were kept constant. 

Consequently, this yields functional relations between the compressive strength and the other mix design parameters 

(water-to-binder ratio, amount of binder, silica fume, fine aggregates, coarse aggregates, superplasticizer and curing 

age ). The simulation results and discussion are shown as follows. 

4.1. Effect of Water-binder Ratio and SF Content on Compressive Strength at Different Ages 

The water-binder (w/b) ratio is the basic parameter that governs the SCC compressive strength. Fig. 8 shows the 

influence of the w/b (0.30, 0.35 and 0.45) on the compressive strength of SCC with increasing amounts of SF (from 0 

to 40%) at different ages (3, 7, 28, 90, 180 and 365 days). As seen from these curves, the values of compressive 

strength decrease with increasing w/b ratio at all ages with different dosages of SF. A similar trend was reported 

earlier by other researchers [29-32] in which this negative effect can be explained by an increase of the volume of 

capillary pores leading to a reduction in compressive strength [33]. On the other hand, at early-age (3 and 7 days), the 

compressive strength decreases with increasing SF content. The compressive strength of the control SCC (SF = 0.0 %) 

is always higher than that of SCC with different dosages of SF.  Similar results have been reported by other authors 

[33-35]. The loss of the compressive strength increased from 20 % to 35 % with increasing SF from 0 % to 40 %. This 

could be caused by the dilution effect resulting from the addition of silica fume and the multiplication of the pseudo 

crystals of Portlandite. However, the pozzolanic reaction takes place very quickly, and consumes the Portlandite 

produced by the nucleation hydrogen [35, 36]. As shown in Figures 8 and 9, at the age of 28, 90, 180 and 365 days, 

the values of compressive strength of all SCC increased with increasing SF content. For example, at 0.35 w/b ratio, 

when varying SF content from 0 to 40%, compressive strength increases by about 9 to 18% compared to that of 

control concrete at 90 days. The increase in compressive strength of SF mixtures could be explained by the higher 

pozzolanic activity of the silica fume [37, 38]. 

4.2. Effects of Superplasticizer on the Compressive Strength  

Superplasticizer (SP) is an essential ingredient in the production of the SCC. Although, superplasticizers are  added 

to concrete mainly to provide a better workability by the dispersion of agglomerated cement particles without 
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increasing the water content, they can be used as water reducing admixtures and hence improve the compressive 

strength and durability of concrete [39]. The variation of the compressive strength at different ages with 

superplasticizer dosages (from 0 to 9 kg) for different dosage of SF is shown in Figure 10. According to this figure, it 

should be noted that increasing the content of superplasticizer has a positive effect on compressive strength at all ages, 

as reported earlier by Neville [40]. 

5. User Interface Development of the ANN Model  

Designers in the laboratory or on site need software and computing tools that are more robust and user friendly, for 

easy applications by non-specialist engineers. In this study, considerable effort and time were devoted to make the 

model easy to use, user friendly and with visual interface by using the MATLAB based (R2016b). Numerical values 

of water/binder ratio, amount of binder, silica fume, aggregates, and superplasticizer and the age of test can be entered 

as shown in Figure 11. The compressive strength of SCC is then displayed directly by clicking the predict button. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Effect of w/b ratio on ANN prediction of the compressive strength of SCC with different amounts of SF at various  

ages of (a) 3 days, (b) 7 days, (c) 28 days, (d) 90 days, (e) 180 days and (f) 365 days 
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Figure 9. Effect of age on the compressive strength at different wïb ratios w/b = 0.3, w/b = 0.35, w/b = 0.45 
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Figure 10. Effect of superplasticizer content on SCC compressive strength for various ages at SF content of (a) 0.0%, (b) 

10%, (c) 30% and (d) 40% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. ANN interactive graphical user interface 

6. Conclusions  

In this study, an artificial neural network model was built to predict with good accuracy the SCC compressive 

strength with silica fume as cement replacement material. For this model, feed-forward Backpropagation network 

trained by Levenberg–Marquardt algorithm was used. The results obtained from this paperled to the following 

conclusions: 

¶ The SCC compressive strength model based on the ANN using the back-propagation algorithm is more accurate 

than the model based on other ANN training algorithms. The proposed model gave very acceptable results with a 

high correlation coefficient R2 equal to 0.93; 

¶ The predicted results coincide well with the experimental values in all phases of training, testing and validation 

clarifying the accuracy of the proposed ANNs model; 

¶ The developed model was able to evaluate the effect of all SCC constituents (binder, SF content, fine aggregates, 

coarse aggregates and superplasticizer) as well as water/binder ratio on the compressive strength of SCC with 

SF. The simulation results are in agreement with previous literature findings; 

¶ The proposed ANN model is a very convenient mix design method that for concrete mix designers to estimate 

the compressive strength of SCC based only on its constituents at the time of design. The simulation of 

experiments reduces time and cost; 
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¶ An improvement in compressive strength of SCC with the use of SF as a partial replacement of cement is shown 

based on  ANN model. The model prediction results demonstrate that it is feasible to use SF to produce normal 

strength SCC; 

¶ The developed model is characterized by being practical, accurate, user friendly and easy to use; 

¶ The developed model is limited to SCC with SF and further work is needed to investigate the  effect of fiber 

reinforced SCC as well as the workability (slump flow, the V-funnel time and the L-box ratio), elasticity 

modulus and  durability indicators such as water and oxygen permeability of SCC with silica fume.    
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Appendix I: Data sources 

Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplasticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

Benaicha et al. [41] 2015 0.37 520 0 890 900 7.80 1 29.2 

  
0.37 520 0 890 900 7.80 1 29.6 

  
0.37 520 0 890 900 7.80 1 30.0 

  
0.37 520 0 890 900 7.80 1 28.6 

  
0.37 520 0 890 900 7.80 1 29.5 

  
0.37 520 25 890 900 7.80 1 35.6 

  
0.37 520 25 890 900 7.80 1 34.8 

  
0.37 520 25 890 900 7.80 1 34.6 

  
0.37 520 25 890 900 7.80 1 34.6 

  
0.37 520 25 890 900 7.80 1 34.0 

  
0.37 520 47 890 900 7.80 1 32.6 

  
0.37 520 47 890 900 7.80 1 32.0 

  
0.37 520 47 890 900 7.80 1 32.4 

  
0.37 520 47 890 900 7.80 1 32.8 

  
0.37 520 47 890 900 7.80 1 32.0 

  
0.37 520 68 890 900 7.80 1 32.0 

  
0.37 520 68 890 900 7.80 1 31.2 

  
0.37 520 68 890 900 7.80 1 31.0 

  
0.37 520 68 890 900 7.80 1 30.8 

  
0.37 520 68 890 900 7.80 1 31.3 

  
0.37 520 87 890 900 7.80 1 31.2 

  
0.37 520 87 890 900 7.80 1 30.0 

  
0.37 520 87 890 900 7.80 1 30.4 

  
0.37 520 87 890 900 7.80 1 32.0 

  
0.37 520 87 890 900 7.80 1 29.4 

  
0.37 520 104 890 900 7.80 1 30.4 

  
0.37 520 104 890 900 7.80 1 30.6 

  
0.37 520 104 890 900 7.80 1 29.9 

  
0.37 520 104 890 900 7.80 1 30.8 

  
0.37 520 104 890 900 7.80 1 30.4 

  
0.37 520 120 890 900 7.80 1 30.4 

  
0.37 520 120 890 900 7.80 1 30.6 

  
0.37 520 120 890 900 7.80 1 29.9 

  
0.37 520 120 890 900 7.80 1 30.8 

  
0.37 520 120 890 900 7.80 1 30.4 

  
0.37 520 0 890 900 7.80 7 33.6 

  
0.37 520 0 890 900 7.80 7 34.0 

  
0.37 520 0 890 900 7.80 7 33.2 

  
0.37 520 0 890 900 7.80 7 32.8 

  
0.37 520 0 890 900 7.80 7 33.0 

  
0.37 520 25 890 900 7.80 7 44.0 

  
0.37 520 25 890 900 7.80 7 44.2 

  
0.37 520 25 890 900 7.80 7 46.2 

  
0.37 520 25 890 900 7.80 7 44.8 

  
0.37 520 25 890 900 7.80 7 44.0 

  
0.37 520 47 890 900 7.80 7 45.0 

  
0.37 520 47 890 900 7.80 7 45.8 

  
0.37 520 47 890 900 7.80 7 45.0 

  
0.37 520 47 890 900 7.80 7 45.4 

  
0.37 520 47 890 900 7.80 7 45.0 

  
0.37 520 68 890 900 7.80 7 46.8 

  
0.37 520 68 890 900 7.80 7 46.4 

  
0.37 520 68 890 900 7.80 7 48.2 

  
0.37 520 68 890 900 7.80 7 48.2 

  
0.37 520 68 890 900 7.80 7 49.2 

  
0.37 520 87 890 900 7.80 7 49.8 

  
0.37 520 87 890 900 7.80 7 49.6 

  
0.37 520 87 890 900 7.80 7 49.0 

  
0.37 520 87 890 900 7.80 7 49.0 

  
0.37 520 87 890 900 7.80 7 48.6 

  
0.37 520 104 890 900 7.80 7 50.2 

  
0.37 520 104 890 900 7.80 7 48.6 

  
0.37 520 104 890 900 7.80 7 48.8 
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Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplasticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

  
0.37 520 104 890 900 7.80 7 49.8 

  
0.37 520 104 890 900 7.80 7 49.0 

  
0.37 520 120 890 900 7.80 7 50.2 

  
0.37 520 120 890 900 7.80 7 48.6 

  
0.37 520 120 890 900 7.80 7 48.8 

  
0.37 520 120 890 900 7.80 7 49.8 

  
0.37 520 120 890 900 7.80 7 49.0 

  
0.37 520 0 890 900 7.80 28 52.0 

  
0.37 520 0 890 900 7.80 28 51.0 

  
0.37 520 0 890 900 7.80 28 51.0 

  
0.37 520 0 890 900 7.80 28 50.2 

  
0.37 520 0 890 900 7.80 28 50.0 

  
0.37 520 25 890 900 7.80 28 62.0 

  
0.37 520 25 890 900 7.80 28 60.4 

  
0.37 520 25 890 900 7.80 28 60.0 

  
0.37 520 25 890 900 7.80 28 62.1 

  
0.37 520 25 890 900 7.80 28 61.4 

  
0.37 520 47 890 900 7.80 28 62.8 

  
0.37 520 47 890 900 7.80 28 62.0 

  
0.37 520 47 890 900 7.80 28 61.6 

  
0.37 520 47 890 900 7.80 28 61.8 

  
0.37 520 47 890 900 7.80 28 62.1 

  
0.37 520 68 890 900 7.80 28 65.8 

  
0.37 520 68 890 900 7.80 28 66.2 

  
0.37 520 68 890 900 7.80 28 66.8 

  
0.37 520 68 890 900 7.80 28 66.4 

  
0.37 520 68 890 900 7.80 28 66.2 

  
0.37 520 87 890 900 7.80 28 70.0 

  
0.37 520 87 890 900 7.80 28 70.4 

  
0.37 520 87 890 900 7.80 28 70.2 

  
0.37 520 87 890 900 7.80 28 69.8 

  
0.37 520 87 890 900 7.80 28 70.1 

  
0.37 520 104 890 900 7.80 28 80.2 

  
0.37 520 104 890 900 7.80 28 79.8 

  
0.37 520 104 890 900 7.80 28 79.0 

  
0.37 520 104 890 900 7.80 28 78.4 

  
0.37 520 104 890 900 7.80 28 78.6 

  
0.37 520 120 890 900 7.80 28 80.2 

  
0.37 520 120 890 900 7.80 28 79.8 

  
0.37 520 120 890 900 7.80 28 79.0 

  
0.37 520 120 890 900 7.80 28 78.4 

  
0.37 520 120 890 900 7.80 28 78.6 

Wongkeo et al. [42] 2014 0.30 600 0 1084 595 7.14 3 76.0 

  
0.30 600 30 1072 595 7.98 3 73.7 

  
0.30 600 60 1059 595 8.58 3 78.3 

  
0.35 514 0 1131 621 8.24 3 63.4 

  
0.35 515 26 1120 621 7.71 3 65.5 

  
0.35 515 26 1120 621 8.24 3 63.4 

  
0.35 514 51 1110 621 9.00 3 70.8 

  
0.40 450 0 1166 640 8.10 3 56.8 

  
0.40 451 23 1157 640 8.57 3 55.6 

  
0.40 450 45 1147 640 9.45 3 59.8 

  
0.30 600 0 1084 595 7.14 7 79.3 

  
0.30 600 30 1072 595 7.98 7 81.6 

  
0.30 600 60 1059 595 8.58 7 84.5 

  
0.35 514 0 1131 621 8.24 7 75.2 

  
0.35 515 26 1120 621 8.24 7 77.6 

  
0.35 514 51 1110 621 9.00 7 81.2 

  
0.40 450 0 1166 640 8.10 7 65.6 

  
0.40 451 23 1157 640 8.57 7 65.8 

  
0.30 600 0 1084 595 7.14 28 84.0 

  
0.30 600 30 1072 595 7.98 28 95.3 
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Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplasticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

  
0.30 600 60 1059 595 8.58 28 100.5 

  
0.35 514 0 1131 621 8.24 28 83.0 

  
0.35 515 26 1120 621 8.24 28 85.3 

  
0.35 514 51 1110 621 9.00 28 91.6 

  
0.40 450 0 1166 640 8.10 28 72.4 

  
0.40 451 23 1157 640 8.57 28 75.3 

  
0.40 450 45 1147 640 9.45 28 79.0 

  
0.30 600 0 1084 595 7.14 90 88.3 

  
0.30 600 30 1072 595 7.98 90 99.0 

  
0.30 600 60 1059 595 8.58 90 106.6 

  
0.35 514 0 1131 621 8.24 90 85.4 

  
0.35 515 26 1120 621 8.24 90 90.9 

  
0.35 514 51 1110 621 9.00 90 100.4 

  
0.40 450 0 1166 640 8.10 90 80.4 

  
0.40 451 23 1157 640 8.57 90 82.4 

  
0.40 450 45 1147 640 9.45 90 86.1 

Abib [43] 2004 0.38 500 0 794 725 15.00 7 34.0 

  
0.40 525 25 794 725 15.00 7 36.0 

  
0.40 525 25 794 725 15.00 7 36.0 

  
0.36 525 25 794 725 15.00 7 40.7 

  
0.32 525 25 794 725 15.00 7 42.5 

  
0.36 525 25 794 725 15.00 7 40.7 

  
0.36 525 25 794 725 10.00 7 43.5 

  
0.36 525 25 794 725 5.00 7 40.0 

  
0.40 500 0 794 725 7.50 3 28.3 

  
0.40 500 0 794 725 7.50 7 35.8 

  
0.40 500 0 794 725 7.50 14 43.0 

  
0.40 500 0 794 725 7.50 28 45.0 

  
0.40 500 0 794 725 7.50 90 49.5 

  
0.36 525 25 794 725 10.00 3 32.8 

  
0.36 525 25 794 725 10.00 7 39.3 

  
0.36 525 25 794 725 10.00 14 48.5 

  
0.36 525 25 794 725 10.00 28 56.3 

  
0.36 525 25 794 725 10.00 90 60.3 

Güneyisi et al. [44] 2010 0.32 550 0 728 935 8.43 28 80.9 

  
0.32 550 28 724 930 9.56 28 80.4 

  
0.32 550 55 720 925 10.67 28 85.7 

  
0.32 550 83 716 920 12.00 28 84.4 

  
0.32 450 23 823 865 4.88 28 60.7 

  
0.32 450 45 819 861 5.20 28 58.5 

  
0.32 450 68 816 858 7.76 28 71.1 

  
0.32 550 28 724 930 9.56 90 91.1 

  
0.32 550 55 720 925 10.67 90 99.2 

  
0.32 550 83 716 920 12.00 90 96.7 

  
0.32 450 23 823 865 4.88 90 71.2 

  
0.32 450 45 819 861 5.20 90 76.1 

  
0.32 450 68 816 858 7.76 90 74.8 

Güneyisi et al. [45] 2015 0.35 550 0 688 688 5.50 28 47.8 

  
0.35 550 28 684 684 6.40 28 53.0 

  
0.35 550 55 680 680 6.40 28 54.0 

  
0.35 550 0 688 688 5.50 56 52.0 

  
0.35 550 55 680 680 6.40 56 55.5 

  
0.35 550 55 680 680 6.40 56 58.5 

Güneyisi et al. [46] 2012 0.35 550 28 684 684 6.40 28 53.0 

  
0.35 550 55 680 680 6.40 28 54.0 

 Gesoglu et al. [47] 2009 0.44 451 23 823 865 4.90 28 71.2 

  
0.44 450 45 819 861 5.20 28 76.1 

 Gesoglu and Ozbay [48] 2007 0.32 550 0 728 935 8.53 28 80.9 

  
0.32 550 28 724 930 9.56 28 80.3 

  
0.32 550 55 720 925 10.67 28 85.6 

  
0.32 550 83 716 920 12.00 28 84.4 
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Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplaciticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

Abdelgader et al. [49] 2014 0.38 450 0 918 918 8.10 7 30.4 

  
0.40 450 0 903 903 6.75 7 24.0 

  
0.45 450 0 873 873 3.60 7 32.5 

  
0.38 450 23 925 925 7.70 7 28.5 

  
0.40 450 23 911 911 6.41 7 33.0 

  
0.42 450 23 897 897 3.42 7 33.5 

  
0.45 450 23 882 882 3.42 7 29.5 

  
0.38 450 45 933 933 8.10 7 21.5 

  
0.40 450 45 920 920 6.89 7 28.0 

  
0.42 450 45 906 906 4.05 7 30.5 

  
0.45 450 45 893 893 4.05 7 26.0 

  
0.38 450 68 939 939 7.65 7 22.0 

  
0.40 450 68 927 927 6.50 7 29.0 

  
0.42 450 68 914 914 3.83 7 33.0 

  
0.45 450 68 901 901 3.83 7 27.5 

  
0.38 450 23 925 925 7.70 28 45.0 

  
0.38 450 0 918 918 8.10 28 43.0 

  
0.40 450 0 903 903 6.75 28 39.0 

  
0.42 450 0 888 888 3.60 28 40.5 

  
0.45 450 0 873 873 3.60 28 41.0 

  
0.40 450 23 911 911 6.41 28 44.5 

  
0.42 450 23 897 897 3.42 28 46.0 

  
0.45 450 23 882 882 3.42 28 44.0 

  
0.38 450 45 933 933 8.10 28 42.0 

  
0.40 450 45 920 920 6.89 28 49.5 

  
0.42 450 45 906 906 4.05 28 50.5 

  
0.45 450 45 893 893 4.05 28 46.5 

  
0.40 450 0 903 903 6.75 90 52.0 

  
0.42 450 0 888 888 3.60 90 54.0 

  
0.45 450 0 873 873 3.60 90 49.5 

  
0.38 450 23 925 925 7.70 90 56.5 

  
0.40 450 23 911 911 6.41 90 55.0 

  
0.45 450 23 882 882 3.42 90 52.0 

  
0.38 450 45 933 933 8.10 90 59.0 

  
0.40 450 45 920 920 6.89 90 56.0 

  
0.42 450 45 906 906 4.05 90 57.5 

  
0.45 450 45 893 893 4.05 90 54.5 

  
0.38 450 68 939 939 7.65 90 64.0 

  
0.40 450 68 927 927 6.50 90 62.5 

  
0.45 450 68 901 901 3.83 90 60.0 

Ahari et al. [4] (2015)  0.44 455 0 883 783 5.75 7 39.0 

  
0.44 455 18 880 778 6.70 7 40.6 

  
0.44 455 36 875 774 7.50 7 34.5 

  
0.44 455 55 870 771 8.00 7 35.5 

  
0.44 455 18 800 778 6.70 28 53.7 

  
0.44 455 36 875 774 7.50 28 64.0 

  
0.44 455 55 870 771 8.00 28 64.0 

  
0.44 455 0 883 783 5.75 90 51.5 

  
0.44 455 18 800 778 6.70 90 58.8 

  
0.44 455 36 875 774 7.50 90 64.6 

  
0.44 455 55 870 771 8.00 90 66.8 

Behfarnia,and 2013 0.38 444 0 1010 777 5.33 28 53.8 

Farshadfar,  [50] 
 

0.38 444 22 1002 777 5.33 28 63.0 

  
0.38 444 44 994 777 6.66 28 63.8 

  
0.38 444 66 986 777 6.66 28 72.1 

  
0.38 444 0 1010 777 5.33 90 57.0 

  
0.38 444 22 1002 777 5.33 90 68.0 

  
0.38 444 44 994 777 6.66 90 67.0 

  
0.38 444 66 986 777 6.66 90 71.5 

  
0.38 444 0 1010 777 5.33 180 59.0 

  
0.38 444 22 1002 777 5.33 180 71.8 

    0.38 444 44 994 777 6.66 180 75.8 
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Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplasticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

  
0.38 444 66 986 777 6.66 180 72.2 

  
0.38 444 0 1010 777 5.33 28 63.3 

  
0.38 444 22 1002 777 5.33 270 71.5 

  
0.38 444 44 994 777 6.66 270 73.8 

  
0.38 444 66 986 777 6.66 270 81.5 

Bingöl,.and Tohumcu, I [7] 2013 0.35 500 0 967 694 8.00 3 61.5 

  
0.35 500 0 967 694 8.00 7 75.0 

  
0.35 500 75 948 681 10.00 7 79.0 

  
0.35 500 0 967 694 8.00 28 78.5 

  
0.35 500 25 958 687 8.00 28 78.5 

  
0.35 500 50 954 685 9.00 28 82.5 

  
0.35 500 75 948 681 10.00 28 87.0 

Hassana et al. [51] 2012 0.40 450 50 921 891 5.83 28 41.3 

  
0.40 450 36 923 893 5.40 28 45.9 

  
0.40 450 23 926 896 5.15 28 41.9 

  
0.40 450 14 927 898 4.55 28 37.9 

Sabet et al. [52] 2013 0.32 500 100 935 656 12.00 3 37.0 

  
0.32 500 50 959 656 9.50 28 75.0 

  
0.32 500 100 935 656 12.00 28 79.5 

  
0.32 500 50 959 656 9.50 90 73.0 

  
0.32 500 100 935 656 12.00 90 79.5 

  
0.32 500 50 959 656 9.50 180 79.5 

  
0.32 500 100 935 656 12.00 180 87.0 

R'mili et al. [53] 2009 0.40 550 50 790 732 6.08 3 30.0 

  
0.38 440 40 906 839 5.07 3 24.0 

  
0.42 495 45 849 786 5.57 3 26.0 

  
0.37 550 50 791 733 6.08 3 30.3 

  
0.51 359 9 1002 927 2.16 7 24.0 

  
0.49 368 18 988 915 3.52 7 28.0 

  
0.45 385 35 964 892 4.56 7 31.5 

  
0.43 440 40 906 839 5.07 7 33.0 

  
0.41 495 45 849 786 5.57 7 36.0 

  
0.49 368 18 988 915 3.52 28 42.5 

  
0.45 385 35 964 892 4.56 28 48.5 

  
0.43 440 40 906 839 5.07 28 50.0 

  
0.41 495 45 849 786 5.57 28 55.5 

  
0.40 550 50 790 732 6.08 28 60.3 

  
0.42 495 45 849 786 5.57 28 52.5 

  
0.37 550 50 791 733 6.08 28 61.0 

Asteris and Kolovos [54] 2017 0.33 600 30 900 750 12.00 28 80.4 

  
0.32 600 60 900 750 12.00 28 79.2 

  
0.35 500 150 900 600 7.35 28 48.9 

  
0.35 500 200 900 600 6.21 28 42.2 

  
0.35 500 250 900 600 5.00 28 35.1 

  
0.44 451 23 823 865 4.90 28 71.2 

  
0.44 450 45 819 861 5.20 28 76.1 

Safiuddin et al. [55] 2018 0.39 481 48 959 784 7.21 3 63.4 

  
0.45 421 42 992 812 4.21 3 45.5 

  
0.39 481 48 959 784 7.21 7 74.5 

Vivek et al. [56] 2017 0.40 600 0 810 660 13.80 7 35.0 

  
0.40 600 30 810 660 13.11 7 34.0 

  
0.40 600 60 810 660 12.42 7 32.0 

  
0.40 600 90 810 660 11.73 7 31.0 

  
0.40 600 0 810 660 13.80 28 63.0 

  
0.40 600 30 810 660 13.11 28 60.1 

  
0.40 600 60 810 660 12.42 28 58.1 

  
0.40 600 90 810 660 11.73 28 55.3 

  
0.40 600 120 810 660 11.04 28 51.4 

  0.40 600 150 810 660 10.35 28 45.1 

Khodabakhshian et al. [57] 2018 0.45 400 0 793 1000 1.30 7 46.0 

  0.45 400 10 791 1000 1.45 7 48.0 

    0.45 400 20 788 1000 1.45 7 48.0 
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Author  Year 
Ratio 

W/B 
Binder 

Silica 

fume 

Fine  

aggregate 

Coarse  

aggregate 

Superplasticizer 

(SP) 

Age  

(day) 

Compressive 

strength (MPa) 

  
0.45 400 10 791 1000 1.45 28 59.0 

  
0.45 400 20 788 1000 1.45 28 60.0 

  
0.45 400 40 784 1000 1.60 28 66.0 

  
0.45 400 0 793 1000 1.30 56 55.0 

  
0.45 400 10 791 1000 1.45 56 65.0 

  
0.45 400 20 788 1000 1.45 56 66.0 

  
0.45 400 40 784 1000 1.60 56 68.0 

  
0.45 400 0 793 1000 1.30 90 60.0 

  
0.45 400 10 791 1000 1.45 90 68.0 

  
0.45 400 20 788 1000 1.45 90 71.0 

  
0.45 400 40 784 1000 1.60 90 74.0 

  
0.45 400 0 793 1000 1.30 180 62.0 

  
0.45 400 10 791 1000 1.45 180 71.0 

  
0.45 400 20 788 1000 1.45 180 73.0 

  
0.45 400 40 784 1000 1.60 180 77.0 

Turk et al. [58] 2010 0.36 450 23 990 735 8.00 3 36.2 

  
0.38 450 45 990 735 8.00 3 33.2 

  
0.40 450 68 990 735 8.00 3 30.9 

  
0.40 450 90 990 735 8.00 3 31.3 

  
0.36 450 23 990 735 8.00 7 43.9 

  
0.38 450 45 990 735 8.00 7 47.0 

  
0.40 450 68 990 735 8.00 7 40.9 

  
0.40 450 90 990 735 8.00 7 40.4 

  
0.36 450 23 990 735 8.00 28 58.0 

  
0.38 450 45 990 735 8.00 28 62.8 

  
0.40 450 68 990 735 8.00 28 68.0 

  
0.40 450 90 990 735 8.00 28 66.4 

Karatas et al. [59] 2010 0.36 450 23 932 793 8.00 28 36.5 

  
0.38 450 45 932 793 8.00 28 44.1 

Kennouche et al. [60] 2013 0.42 460 60 827 798 7.20 7 22.0 

  
0.42 460 60 827 799 6.00 7 25.0 

  
0.42 460 60 785 798 8.00 7 27.5 

  
0.42 460 60 827 798 7.20 14 31.0 

  
0.42 460 60 827 799 6.00 14 41.0 

  
0.42 460 60 785 798 8.00 14 33.5 

  
0.42 460 60 827 798 7.20 28 40.0 

  
0.42 460 60 827 799 6.00 28 43.5 

  
0.42 460 60 785 798 8.00 28 41.5 

Zende, and Khadiranaikar 

[61] 

2019 0.26 575 86 833 700 2.93 7 43.8 

 
0.24 575 86 833 700 3.42 7 47.2 

  
0.22 575 86 833 700 3.81 7 51.0 

  
0.26 575 86 833 700 2.93 28 55.1 

  
0.24 575 86 833 700 3.42 28 60.0 

Gholhaki et al. [62] 2018 0.37 400 40 1069 766 3.45 7 38.0 

  
0.37 400 80 1062 761 5.37 7 40.0 

  
0.37 400 0 1085 778 5.75 28 38.0 

  
0.37 400 40 1069 766 3.45 28 54.0 

  
0.37 400 80 1062 761 5.37 28 57.5 

Faez et al. [63] 2019 0.44 385 35 960 920 2.76 7 21.1 

  
0.44 385 35 960 920 2.76 28 26.1 

  
0.44 385 35 960 920 2.76 90 29.3 

Choudhary et al. [64] 2020 0.33 550 0 970 722 7.70 7 39.1 

  
0.33 550 28 970 722 8.25 7 44.1 

  
0.33 550 28 970 722 8.25 28 58.2 

  
0.33 550 0 970 722 7.70 90 56.8 

    0.33 550 28 970 722 8.25 90 59.9 

 


