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Abstract 

Intense rainfall events combined with high tide levels frequently result in urban floods in riverine or coastal cities. Their 

increasing variability and uncertainty demand urgent but sustained responses. Thus, resilience-driven approaches are 

emerging in contrast to the traditional technical-economic frameworks, as urban resilience reflects the overall capacity of 

a city to survive, adapt and thrive when experiencing stresses and shocks. This paper presents a simplified index-based 

methodology for the evaluation and quantification of urban resilience to flooding, based on the works developed in the 

EU H2020 RESCCUE project. A set of five indicators are proposed to compute the Integrated Urban Resilience Index 

(IURI), allowing to classify resilience according to a proposed range of rankings. This methodology considers 

simultaneously a multisectoral approach, reflecting services interdependences, and a sectorial approach, applying 1D/2D 

computational modelling of the urban drainage network. It was applied to the study case of Lisbon downtown, involving 

the analysis of interdependencies between 124 infrastructures of 10 urban services. Two scenarios were considered, 

respecting the current and future situations, considering climate changes. Results enhance the usefulness, practicability, 

and potential of the proposed approach, and improvement opportunities were also identified for future developments. 

Keywords: City Resilience; Cascade Effects; Urban Flooding; Resilience Assessment; 1D/2D Drainage Modelling. 

 

1. Introduction 

City resilience reflects the overall capacity of a city (individuals, communities, institutions, businesses and 

systems) to survive, adapt and thrive no matter what kinds of chronic stresses or acute shocks they experience [1]. 

This capacity may be acquired through adopting structural and non-structural solutions and/or introducing knowledge 

and intelligence in the management of city infrastructures [2]. 

In recent years, society has become increasingly aware of the climate-related risks. Climate changes increase the 

pressure posed by these risks, namely due to sea level rise, irregularity in rainfall frequency and intensity, droughts, 

and heat waves [3]. This pressure demands a rapid but also informed, sustainable and cohesive response from several 

stakeholders. In fact, the growing diversity of hazards, increasing complexity of cities, and uncertainty associated with 

climate changes, globalization and rapid urbanization have contributed to introduce urban resilience into a critical 

agenda [1], reinforcing the need to make cities and human settlements more inclusive, safe, resilient and 

sustainable [4]. 
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Furthermore, there is a need to increase the knowledge on urban services interconnectedness and to have models 

and tools capable to reliably assess its behaviour. This demand requires multisectoral approaches, considering the city 

as a system of systems, in order to increase city’s sustainability and resilience [5].  

Under the scope of climate changes and urban resilience, urban flooding poses a current challenge for riverine or 

coastal settlings, with high potential for worsening, increasing the urgency of analyzing this issue and finding 

methodologies that can support decision makers [6]. Several multidimensional and multisectoral urban resilience 

assessment frameworks have been developed considering climate change, mainly in the last decade, although 

stormwater systems, as urban service, have been poorly addressed [7, 8]. Other works have been developed at a more 

sectorial level, mainly by using 1D or 1D/2D modelling to simulate the performance of the sewerage network, in the 

first case, or of the sewerage network and surface flows, in the second case. These works highlight the usefulness of 

using dynamic modelling to quantify the resilience of urban drainage systems through sets of more or less complex 

indicators, which also enable to compare different adaptation strategies (for example [9-13]). Although urban 

resilience requires a comprehensive overview of the cities and its services as a whole [1], sectorial approaches are of 

utmost importance as they provide sectorial expertise contributions to this broad theme. These different approaches, 

i.e., holistic vs. sectorial, are part of the current scientific discussion regarding urban resilience and the choice of one 

or another generally reflects the scope of the institution and authors developing the assessment approaches [1]. 

the present paper is based on the works developed in the project Resilience to Cope with Climate Change in Urban 

Areas (RESCCUE), funded by EU’s Horizon 2020 Programme [14]. The paper proposes a straightforward index-

based approach to evaluate city resilience in flooding scenarios, based on the evaluation of five indicators. 

Additionally, a simplified and innovative process to integrate the inlets efficiency in the simulation process is 

developed. After this introductory chapter, the proposed methodology is described on Chapter 2, and applied to a 

study case in Lisbon downtown on Chapter 3. Conclusions and improvement suggestions are presented on Chapter 4. 

2. Research Methodology 

2.1. General Description 

The proposed methodology focuses on evaluating urban resilience to flooding, in result of extreme precipitation 

events and high tide levels, on a multisectoral approach, considering services’ interdependences and cascading effects, 

and is developed four main steps. Figure 1 presents the main methodology steps and required data for its application. 

These four steps are described in the following paragraphs. 

 

Figure 1. Proposed methodology steps, main data required and procedures 

Data 

collection

• Extents and characteristics of the urban drainage catchments of interest.

• Urban drainage infrastructures registry (at least, sewers’ diameters, materials and depths and

manholes’ bottom elevation and maximum depth, and inlet/outlet depths).

• Main urban services and infrastructures within these catchments and respective

procedures/characteristics.

• Data required for 1D/2D drainage models (digital terrain models, rainfall and tidal data and boundary

conditions).

Data 

treatment 

and 

analysis

• Contact and involve key stakeholders, such as, municipal departments, urban services providers (both

at steering and operational levels), research centres and universities and civil associations).

• Define interdependencies between critical urban services/infrastructures, i.e., what happens to a given

service/infrastructure when another fails.

• Estimate redundancies between infrastructures, i.e., capacity of keeping service provision through

non-affected infrastructures.

Results

• Calculate urban resilience to flooding indicators and the Integrated Urban Resilience Index.

• Define urban resilience rate to flooding according to the obtained (IURI).

• Assess improvement opportunities and compatible measures/strategies.

Step 1

Definition and 

characterisation of the 

study area

Step 2

Definition and 

characterisation of the 

study area

Step 3

Application of dynamic 

1D/2D drainage models, 

quantification of impacts 

and cascading effects

Step 4 

Urban resilience 

evaluation

Methodology steps Main data requirements and procedures

• Run dynamic 1D/2D drainage models.

• Assess drainage system performance (such as overflowed volumes and duration) and flooding hazard

(water depth and velocities at surface).

• Analyse hazard impacts on urban services (The infrastructures/services are affected? Does this

affection compromise service provision partially or totally, and how long?).
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2.2. Step 1 - Definition and Characterisation of the Study Area 

The definition of the study area constitutes an initial phase that aims to provide a base point from which the study is 

developed. As the main purpose of this study is to evaluate urban resilience in flooding scenarios, the definition of the 

study area is delimited by the drainage catchments most susceptible to floods. 

The characterisation implies the definition of critical infrastructures and services. This stage also includes the study 

of operating procedures, during normal and extraordinary conditions, and physical or human resources that can be 

activated in an emergency situation to restore the normal state of operation. The number of critical infrastructures 

should neither be excessive nor too scarce, allowing a realistic analysis of the system without an increasing degree of 

complexity that might compromise the results. A special focus should be placed on the characteristics of the drainage 

system and on the collection of data to be used on dynamic 1D/2D drainage models.  

2.3. Step 2 - Identification of Interdependencies and Redundancies 

Considering the selected services and infrastructures, interdependencies and redundancies between services and 

infrastructures should be identified. The involvement of stakeholders is fundamental at this stage. Cross-functional 

workshops and interviews must be held involving diverse stakeholders, including political administration, managerial 

senior officers and technical operators, from different services. These workshops intend to define resilience objectives, 

interdependencies between services and infrastructures, redundancies between infrastructures, as well as the 

operational routines of response to a given disruptive event. In this phase the average recovery time of the services 

after the occurrence of a given disruptive event should also be established. 

The proposed cross-functional workshops also enable the identification of potential improvements and facilitates 

the definition of crisis management protocols. The main objective is to break down the barriers between the different 

actors responsible for urban metabolism (e.g., public or private companies, institutions) and arise critical issues, which 

ultimately should lead to a sounder management of the city as a system of interconnected systems.  

2.4. Step 3 - Application of Dynamic 1D/2D Drainage Models, Quantification of Impacts and Cascading Effects 

Dynamic 1D/2D models were developed and used to simulate the drainage system behaviour, estimating the impact 

of extreme rain events with different return periods. The models identify the surcharge nodes, quantify the runoff 

volumes and contribute to delimitate the flooded areas and the height of accumulated water at the surface, thus 

allowing a further analysis on the impacts of each event. 

In the current study, this goal is achieved by combining two existing simulation tools: Storm Water Management 

Model (SWMM), developed by the United States Environmental Protection Agency (US EPA) [15], and Basic 

Simulation Environment (BASEMENT), developed by the Laboratory of Hydraulics, Hydrology and Glaciology of 

the ETH Zürich [16]. A combined model SWMM+BASEMENT (CMSB) was developed [17], integrating the results 

of both models, which takes into account the efficiency of the stormwater interception devices (inlets). An efficiency 

parameter was defined (α parameter), reflecting the catchment average inlet efficiency. This parameter acts on the 

useful precipitation (Puseful) hyetograph, resulting in an attenuated precipitation hyetograph which is introduced on 

SWMM to simulate the drainage system. The remaining useful precipitation hyetograph is converted to surface runoff 

and simulated on BASEMENT. Additionally, the volumes resulting from overflows in the SWMM nodes are also 

considered as flow input on BASEMENT. The overall concept of this combined model is shown in Figure 2. 

 

Figure 2. Conceptualisation and procedure of the application of the CMSB [17] 
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2.5. Step 4 - Urban Resilience Evaluation 

The city performance to flooding may be evaluated considering the proposed dimensionless indicators presented on 

Table 1 [17]. These indicators are simple and can be computed considering the outputs of 1D/2D models, for rainfall 

events with different return periods.  

Table 1. Proposed urban resilience to flooding indicators [17] 

Indicator Description Computation 

I1 - Volume overflowed 
Measures the degree of affectation of the drainage system 

and its contribution to the aggravation of the urban flood. 
𝐼1 =

 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
 

I2 - Flooded Area 
Measures the extent, in area, of public space that is affected 

by flood. 
𝐼2 =  

𝐹𝑙𝑜𝑜𝑑𝑒𝑑 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
 

I3 - Flood Duration 
Measures the extent, in time, of public space that is affected 

by flood. 
𝐼3 =

 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡 
 

I4 - Buildings Affected Measures the extent of potentially affected buildings. 𝐼4 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠
 

I5 – Services Affected 
Measures the extent of services potentially affected by 

flooding. 
𝐼5 =

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
 

Considering these five resilience indicators, an integrated urban resilience index (IURI) can be determined using 

Equation 1: 

𝐼𝑈𝑅𝐼 = 1 −
∑ 𝐼𝑖

𝑛
𝑖

𝑛
 (1) 

Where 𝐼𝑖  is the value of the indicator 𝑖 (dimensionless) and 𝑛 the total number of indicators. 

The IURI index allows the evaluation of city resilience accordingly to the following criteria: 

 For IURI higher than 0.90, the urban resilience is considered excellent. 

 For IURI between 0.75 and 0.90, the urban resilience is considered good. 

 For IURI between 0.50 and 0.75, the urban resilience is considered acceptable. 

 For IURI between 0.30 and 0.50, the urban resilience is considered insufficient. 

 For IURI lower than 0.30, the urban resilience is considered unacceptable. 

Whilst a greater IURI represents a better resilience, the indicators refer to undesirable situations and are computed 

inversely, i.e., the greater the indicator value, the worse the situation. 

3. Lisbon Downtown Study Case 

3.1. Study Area 

The proposed methodology was applied to a critical area of Lisbon, Portugal. The study area is defined by two 

main catchments, J (Avenida da Liberdade) and L (Avenida Almirante Reis), which drain high level zones to the 

lower riverside catchment (KJL), located in Lisbon downtown. These catchments have more than 600 ha, 140 km of 

combined sewers with limited capacity and serve almost 76 400 inhabitants [18] and  were selected since they 

comprise areas that register an average of 5 to 8 flooding events per decade [19]. Historically critical prone to flooding 

areas are Rossio, located at downstream of both avenues, and Terreiro do Paço, located in the river side. The study 

case area (Figure 3) represents nearly 7.5% of the municipality and concentrated, in 2011, about 14% of its 

inhabitants, 68% of tourist accommodations, 30% of buildings and monuments of public interest and 30% of 

commercial activities [20]. 
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Figure 3. Lisbon study area: drainage catchments J, L and JKL 

The list of services and infrastructures considered for the analysis is presented in Table 2. Water, power, mobility, 

waste, telecommunication, environmental and social sectors were included, and the total number of analysed 

infrastructures is 124. The services directly affected by floods are located within the flooded areas. However, other 

services might be affected due to interdependencies and, therefore, should be considered. An example of these are the 

services that require overland transports that might be partially compromised by the traffic interruptions related to 

floods. 

Table 2. Services and Infrastructures analysed, located within the study area 

Sector Service Infrastructure Nr 

Water 

Water Distribution  District Metering Areas 37 

Urban Drainage  
Wastewater Pumping Stations 1 

Overflows 3 

Power  Power Distribution Power substation 31 

Mobility  

Subway 

Subway stations 15 

METRO Power Substation 2 

Control Room 1 

Bus Bus Routes 19 

Traffic Management  Traffic Control Room 1 

Waste  Municipal Solid Waste Collection Routes 13 

Telecommunication  
Mobile Telecom (analysed only 
as a service provider) 

- - 

Environmental  Receiver Waters Tagus River 1 

Social Citizens - - 

3.2. Interdependencies and Redundancies 

For the establishment of the interdependencies in the study area, an effort was placed to produce results at 

infrastructure level, when possible. Therefore, practical results and acknowledgments about the services can be 

inferred from this assessment. This approach allowed to extrapolate the results, at service level, to Lisbon City. 

Figure 4 shows the interdependencies between the services analysed (A → B implies that when service A fails, a 

failure of some degree is triggered on service B).  
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Figure 4. Services interdependencies in the case study area 

Redundancies were found in the services which infrastructures are organized as a mesh/network, namely, power 

distribution, water distribution and buses. Redundancy is an important property that allows infrastructures of a given 

service to ensure service continuity when another infrastructure fails. 

3.3. CMSB Application 

The CMSB was applied considering the Portuguese design hyetograph with a duration of 4 hours [9], for a 10-year 

return period rainfall. Two scenarios were considered: 

 Current situation (CS): maximum tide level of 1.95 m [18], and intensity-duration-frequency (IDF) curve 

estimated for IGIDL rainfall station [21]. 

 Climate changes at the end of the century (CC): maximum tide level aggravated of 2.81 m [22] and IDF curve 

magnified 15% [23]. 

Figure 5 presents the IDF curves and design hyetographs considered for each scenario. 

 

Figure 5. IDF curves (left) and design hyetograph (right) for 10-year return period rainfall for current situation (CS) and 
climate changes (CC) scenarios 

The α parameter was established to reflect as faithfully as possible the real interception capacity of the drainage 

system inlets (including curb, gutter, and combination inlets). A set of α parameters was defined for each sub-

catchment, throughout the duration of the rainfall event, considering a uniform distribution of inlets in each sub-

catchment. Figure 6 presents the different α parameter values for the Current situation’s 10-year return period rainfall, 

for the sub-catchments analysed. As observed, the inlets’ capacity decreases with the increase of the precipitation 

intensity. 



Civil Engineering Journal         Vol. 7, No. 02, February, 2021 

203 

 

 

Figure 6. α parameter values for a 10-year return period precipitation event in the sub-catchments considered 

Figure 7 illustrates the CMSB results, focusing on the downtown area (Rossio and Terreiro do Paço). The 

stormwater accumulated on the surface results from the low efficiency of inlet devices and from the drainage system’s 

lack of capacity to properly convey the incoming flows (mainly due to downstream constraints caused by high tide 

levels). The latter results in surcharge of the sewers and manholes’ overflow. In both scenarios, the most critical 

situation occurs approximately 2h40 after the rain event start, coinciding with the highest tide level and precipitation 

intensity. The results denote a significant surface water accumulation leading to floods in the downtown area, as 

expected. For the current situation, water heights of about 60 cm and 20 cm are observed in Rossio and Terreiro do 

Paço, respectively. Considering the climate changes scenario, with aggravated precipitation intensity and tidal levels, 

the situation is slightly worse, mainly in the streets located between Rossio and Terreiro do Paço (flat streets) and in 

Terreiro do Paço, with the enlargement of flooded areas and water heights. 

 

Figure 7. CMSB results for 10-year return period rainfall: current situation (left) and considering climate changes (right) 

3.4. Cascade Effects Resulting from Flooding  

The cascading effects resulting from flood events can be determined taking into account the services 

interdependencies and its reactions during the event: which services/infrastructures will fail, in what degree, and how 

long will it take for its recovery, if proper measures are taken. The potential services and infrastructures affected were 

selected based on past events, data collected on workshops and results from CMSB. It should be pointed out that the 

location of infrastructures within the flooded areas is not a sufficient criterion. The degree to which infrastructures are 

potentially affected depends on its physical properties (such as flood gates and walls, existence of pumping systems, 

raised positioning of vulnerable assets, among others), and on the flood severity, mainly regarding water depths.  

In fact, most of the services analysed in the study case do not fail completely due to flooding but may have their 

routine operations affected. The direct impacts identified on the services/infrastructures are presented in Table 3. The 

recovery times mentioned, meaning the time needed for the service to fully recover, are indicative and will vary if 

other rainfall events and tide levels are considered. When services do not fail completely but are affected at some 

degree, it was assumed that the recovery time might vary between 1 and 3 hours (average reported times), the time the 

flood takes to reach a water level compatible with the routine operation. As observed with the results presented in 

chapter 3.3, flooding severity is not substantially aggravated by the climate changes scenario considered. Thus, direct 

impacts and cascade effects are presented in an aggregate form for both scenarios studied. 
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Table 3. Direct impacts and cascade effects for flooding events in the study area 

Direct Impacts Cascade effects 

Sector Service Infrastructure Description Services 

Water 
Urban 

Drainage 

Wastewater 
Pumping 

Stations 

Pumping systems’ storage capacity is exceeded. For this reason, 

combined sewer overflows (CSOs) are activated, and the stormwater is 
discharged into the Tagus River. Manholes’ overflow can be aggravated. 

Recovery time was estimated at 2h after the rainfall ending due to the 
possible need for maintenance or repair works. 

→ Receiver water 

→ Citizens 

Mobility 

Subway Subway stations 

Most of the subway stations have retaining walls near the entrances, but 

there is a tendency for the superficial runoff to flow through the entrance 
stairs, possibly flooding the station atriums and platforms. The recovery 

time was estimated at 3h after the rainfall ending due to the possible need 

of evacuation, maintenance, and repair works. 

→ Citizens 

Bus Bus Routes 
Buses must find alternative routes to avoid high water heights. The 

recovery time was estimated at 1.5h, after the rainfall peak. 
→ Citizens 

Waste 

Municipal 
Solid Waste 
Collection  

Routes 

Comparably to buses, when the water level reaches a certain height, the 

waste collection vehicles do not collect the waste at flooded areas. The 
recovery time was estimated at 1.5h, after the rainfall peak. 

→ Receiver water 

→ Citizens 

Social Citizens - 

Citizens are affected by floods mainly due to constraints in its mobility 

(pedestrian or vehicular) and due to hazard posed by water depth and 
velocity. 

(none) 

To summarize, the considered rainfall events result in urban flooding that affect mostly "end of the chain" services, 

i.e., services that are mainly dependent on others and which service is addressed directly to the citizens. For this 

reason, significant cascade effects are not expected. However, the following considerations are highlighted: 

 The performance of the drainage system results in the direct discharge of untreated effluents into the receiving 

waters and on flooding due to overflows. 

 The mobility sector does not trigger cascade effects since it provides services directly to the population, 

resulting in the decrease of daily-life comfort and constraints in mobility of the citizens. 

 Likewise, waste collection services might be temporarily affected but present no strong repercussions for other 

services. Ultimately, it can affect the population by reducing urban hygiene conditions. 

 In the power sector, no significant cascading effects are expected due to the high service redundancy already 

installed. Additionally, in the study area, the power supply entity has already undertaken some measures to 

improve its capacity to ensure service continuity, namely, the reinforcement of pumping systems in 

underground facilities and the raising of flood protection walls near surface air circulation grids. If a 

disturbance occurs, it would be at a small-scale level, affecting temporarily services such as traffic lights or 

commercial activities (not directly considered in the current analysis). 

3.5. Urban Resilience Evaluation 

Accordingly to the proposed methodology, five urban resilience indicators were determined considering the outputs 

of 1D/2D models, for a 10-year return period rainfall, both for the present situation and for an aggravated scenario, 

considering climate changes. The Integrated Urban Resilience Index was also determined, as presented in Table 4. In 

the current study case, a minimum water depth threshold of 0.10 m was set to define flooded areas. 

Table 4. Urban resilience evaluation for the study area 

Indicator Current situation Climate changes 

I1 - Volume overflowed 0.08 0.17 

I2 - Flooded Area 0.12 0.13 

I3 - Flood Duration 0.94 0.96 

I4 - Buildings Affected 0.07 0.08 

I5 - Services Affected 0.60 0.60 

Integrated Urban Resilience Index 0.64 0.61 
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In the current situation, about 8% of the flow that is captured by inlets is overflowed through manholes, enhancing 

the lack of transport capacity of the drainage system. This situation is worsened when considering the climate changes 

scenario, with about17% of the affluent flows being surcharged though manholes. Regarding the flooded areas and 

flood’s duration, their similarity between scenarios is explained by the concentration of the flooded areas in Lisbon 

downtown and by the consideration of a synthetic hyetograph with the same duration. Consequently, the percentage of 

buildings and the percentage of services directly affected by flood are also similar. In fact, 6 of the 10 analysed 

services are potentially affected by the occurrence of a 10-year return precipitation event, for both scenarios. In 

general, it can be concluded that the capacity of the drainage systems and the topography of the city are the most 

conditioning factors for the occurrence of floods. 

The obtained values for the integrated urban resilience index (between 50 and 75) indicate that the urban resilience 

of the studied area is considered acceptable, according to the ranged presented in chapter 2.5. Climate changes 

contribute to a slight decrease of IURI in relation to the current scenario, without corresponding to a wort 

classification of the study area urban resilience.  

4. Conclusions 

This paper presents a methodology to assess urban resilience to flooding considering simultaneously a multisectoral 

approach, reflecting services interdependences and cascading effects, and a sectorial approach, applying 1D/2D 

computational modelling of the urban drainage network. Urban resilience to flooding is evaluated trough a set of five 

simple indicators, resulting in an Integrated Urban Resilience Index. Additionally, a simplified and innovative process 

to integrate the inlets efficiency in the simulation process was proposed and applied. 

The methodology enhances the need of a dual approach, comprising a comprehensive level, with the involvement 

of several city stakeholders and services managers, and a technical level, with the development of sectorial urban 

drainage models. It is of utmost importance that cities improve the availability, adequacy, and updateability of data to 

produce reliable results that are clear to disseminate to non-technical stakeholders and decision makers. The current 

work contributes with a simple methodology that can be applied at different spatial scopes (from a neighbourhood, to 

a large urban drainage catchment or a whole city) and recurring to free computational tools, as exemplified in the 

study case. 

The application of the proposed methodology to Lisbon downtown study case demonstrated its usefulness and 

potential of exploitation. Two scenarios were considered, the current situation (CS) and a climate changes scenario 

(CC). The IURI variability between these scenarios is small, although decreasing for the climate change scenario, and 

the resilience to urban flooding is classified as acceptable for both situations. Nevertheless, the application of this 

approach has arisen critical issues that contribute to a more sustainable management of the stormwater systems, 

guarantying that the remaining urban services, and the city, will maintain its essential functions when confronted with 

extreme rainfall events. In this context, Lisbon is already planning further approaches to implement important climate-

adaptation measures to increase the city resilience to flooding, namely, the construction of two drainage tunnels 

(Monsanto-Santa Apolonia and Chelas-Beato), an antipollution basin and several retention basins. In addition, the 

“Monitoring and warning system plan of Lisbon drainage network” is also being implemented. Although not 

considered in the current paper, a future scenario considering such adaptation strategies could be considered allowing 

to assess the resilience improvement by comparing the IURI results. 

The current work consists of an initial iteration regarding the proposed methodology, and the assessment of the 

results regarding its application to the study case allows to target improvements for future developments. Firstly, the 

small variability between scenarios enhances the need to adopt more detailed indicators. Although it is intended to be a 

simple and straightforward methodology, the consideration of different flooding severity levels (for instance, as 

function of water heights and flow velocities) shall allow to differentiate the hazards posed to urban 

services/infrastructures and citizens. It is also important to reflect the interdependencies at infrastructural level in the 

indicators, as the services directly affected by floods in a study area tend not to vary between scenarios. The inclusion 

of more services/infrastructures in the analysis is also recommended, namely, health care services (hospitals, health 

centers, nursing homes, etc.), emergency services (medical emergency response, fire brigades, civil protection, etc.), 

tertiary sector services (shops, restaurants, etc.) and, in the power sector, electric transformer stations (the most 

susceptible to flooding assets of the sector). This allows to expand the study of interdependencies and to better assess 

cascading effects. As previously mentioned, the consideration of scenarios regarding the implementation of adaptation 

strategies should be considered, allowing to compare different solutions on the perspective of resilience, instead of 

solely applying a traditional technical-economic evaluation. 

It is important to keep in mind that methodologies as the one presented, constitute a novelty framework that enables 

to have a deeper understanding not only of the physical systems behaviour, at infrastructural level, but also of the 

managerial and decision-making process. Ultimately, urban resilience approaches contribute to broadening consensus 

and maximizing benefits for all the urban actors. 
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