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Abstract 

Understanding the influence of various variables on surface water quality is extremely important for protecting 

ecosystem health. The principal aim of this study is to assess the direct (DE), indirect (IE) and total effects (TE) of socio-

economic, terrestrial and hydrological factors on surface water quality via path analysis through the lens of 15 sub-basins 

located on Indus basin, Pakistan. Four path models were selected based on Comparative Fit Index (CFI) = 0.999 value. 

First path model showed that rangelands having low population density decline river runoff which decreases instream 

Electrical Conductivity (EC) because of lower anthropogenic activities. Second path model depicted that croplands 

having higher population density enhance river runoff due to irrigation tail water discharge which decline instream EC 

because of dilution. Third path model showed that croplands with higher population density enhance river runoff which 

increases instream NO3 concentration because of unscientific application of irrigation water. Fourth path model unveiled 

that croplands enhance Gross Domestic Product (GDP) which enhance river runoff and instream NO3 concentration. To 

protect ecosystem health, Best Management Practices (BMPs), precision farming and modern irrigation techniques 

should be adopted to reduce irrigation tail water discharges containing pollutants entry in Indus River. 
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1. Introduction 

Catchment hydrology is mainly influenced by watershed topography which includes catchment area, shape, and 

slope [1-4]. Study on Xiangxi River revealed that 26% instream water quality variations was caused by topographic 

features [4]. Watershed slope has positive relationship with nutrients (Total Phosphorous (TP) and Total Nitrogen 

(TN)), suspended solid, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) [5]. Elevation and 

mean slope have a positive linkage with dissolved oxygen (DO) while negative correlation with dissolved phosphorus, 

turbidity, EC, COD, water temperature, TN, TP and NO3-N [4, 6]. Some studies reported that standard deviation of 
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slope enhance the contaminant concentration in surface waters [7, 8]. Literature shows that elevation and mean slope 

speed up soil erosion which pollute surface waters [4, 9].  

Dynamics of land use, socioeconomic activities and fertilizer application causes spatiotemporal variation in surface 

water quality [10].  Fertilization and irrigation have strong consequences on water-land use relationship [11]. Under 

and over fertilization have strong effects on surface water quality and soil nutrition [35]. Water quality deterioration 

(nutrients and fecal indicator bacteria) is linked with animal grazing which threatens human health and the 

environment [12]. Population density, animal farming and dissolved phosphorous has high influence on GDP, EC, TP, 

and turbidity [3, 13]. Total suspended solids, NO3+NO2, Cu, Zn, oil and grease have strong linkage with human 

population density [3, 14, 15]. Intense anthropogenic activities and fertilizer applications for high crop yield badly 

impacts river water quality [16]. Therefore, it will be significant to reveal the possible complex terrestrial, 

socioeconomic and hydrologic impacts on surface water quality.  

Surficial geology in addition to anthropogenic biomes is primary factors which should be considered in land 

management policies formulation [17]. Land use-surface water quality relationship has been extensively evaluated by 

researchers [18, 19, 20]. Intense agricultural activities and urban sprawl has severely affected the aquatic ecosystem 

health i.e., high overland flow, considerable trace elements and nutrients loads [3, 21]. These relationships suggest the 

unavailability of safe water for human consumption in near future [4, 9]. 

Precipitation and irrigation tail water discharges fuel the problem of water quality impairment from nonpoint 

sources of croplands [19]. NH4-F and NOX-F have strong correlation with cropland biomes [22]. Literature shows that 

agriculture lands enhance nutrients concentration in surface water bodies which is mainly attributed to irrigation tail 

water discharges and precipitation overland flow which sweeps all kinds of pollutants especially fertilizer remaining’s 

from the top fertile soil layer to nearby water bodies [5, 23].  

Rangelands play key role in controlling nonpoint source pollution. Dissolved organic carbon and NOX-F are 

negatively associated with rangeland biomes [24]. Rangeland’s biomes have lower human interference as well as good 

nutrients retention capacity which help in water environment protection [25-27]. Degradation of rangeland leads to 

degradation of water environment [28, 29].  

Literature shows that researchers linked socioeconomic, topographic, terrestrial, and hydrological determinants 

with surface water quality separately [30]. The novelty of the current study is that it simultaneously assesses the DE, 

IE and TE of the aforementioned determinants on surface water quality. The major focus of this study is to evaluate 

the complex DE, IE and TE of terrestrial, socioeconomic and hydrologic variables on surface water quality in Indus 

basin using path analysis approach. Generally, path analysis is used to assess anthropogenic DE and IE on instream 

water quality. Furthermore, the notion of the current hypothetical model is completely based on literature that how 

does watershed socioeconomic, terrestrial and stream characteristics interact with each other?  

2. Study Area, Data Collection and Methods 

2.1. Study Area 

Indus river basin is stretched over four countries with total covered area of 1.12 million Km2 in which Pakistan, 

India, China, and Afghanistan covers 47, 39, 8 and 6% area. Indus river basin spreads over 520000 km² which covers 

65 % territory of Pakistan. Annual precipitation varies geographically from 100 to 500 mm in low elevated areas and 

2000 mm in high elevated areas. The flow regime is mainly governed by snowfall at higher altitudes. Indus basin 

climate varies greatly.   

The present study is based on Indus river basin, Pakistan. This study covers fifteen water quality monitoring sites 

which include Barasin, Draband, Bisham Qila, Bunji, Dadu Moro Bridge, Gunji Bridge, Kachura, Khairabad, 

Kharmong, Mandori, Massan, Partab Bridge, Rikot, Shatial Bridge, and Sehwan as demonstrated by Figure 1.  
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Figure 1. Study area map demonstrating the monitoring stations 

2.2. Data Collection 

2.2.1. Water Quality and Hydrological Data 

Both discharge and water quality data were obtained from Water and Power Department (WAPDA) Pakistan for a 

period of (1963-2009). The current study covers fifteen monitoring stations which include Barasin, Draband, Bisham 

Qila, Bunji, Dadu Moro Bridge, Gunji Bridge, Kachura, Khairabad, Kharmong, Mandori, Massan, Partab Bridge, 

Rikot, Shatial Bridge, and Sehwan. This study is based on twenty-fundamental water quality variables which includes 

Cl, HCO3, Ca, Mg, Na, K, SO4, NO3, CO3, F, Total Cations and Anions, SiO2, Fe, B, D.S by Evaporation, EC ×106 at 

250C, pH, Residual Carbonate  me/l, and Sodium Adsorption Ratio  (SAR) ).  

2.2.2. Socioeconomic Data 

Digital Elevation Model (DEM) data, downloaded from Shuttle Radar Topography Mission (SRTM), was used for 

delineating sub-watersheds. For the delineated sub-watersheds, population density data was extracted from 

Socioeconomic Data and Applications Center (SEDAC) [31]. GDP data was obtained from the provincial economies 

report [32]. Moreover, provincial level GDP data were assigned to the delineated sub-watersheds. 

2.2.3. Terrestrial Determinants Data 

Anthropogenic biomes are classified in six main groups which are demonstrated by (Figure 2). Socioeconomic 

Data and Applications Center (SEDAC) source was used for downloading anthropogenic biomes data. In addition, 

surficial geology data that includes silt, sand, clay, and gravel was collected from the World Harmonized Soil 

Database (HWSD). 
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Figure 2. Anthropogenic biomass of Indus river basin 

2.3. Methods 

2.3.1. Watershed Modeling 

The Digital Elevation Model (DEM) was utilized for delineating sub-watersheds using monitoring points as outlet 

via spatial analysis tool of Geographical Information System (GIS). DEM data was extracted for the study area as 

obvious from the (Figure 3). Land use, soil and population data was extracted using GIS. The extracted variables were 

linked with water quality parameters using path analysis technique. Flowchart demonstrating the methodology of the 

research is obvious from Figure 5. 

 

Figure 3. DEM of Indus river basin 
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2.3.2. Statistical Modeling 

Structural equation modeling (SEM) is a multivariate statistical framework which was used to compute 

direct and indirect complex linkages among social variables, terrestrial variables, river discharge and surface water 

quality parameters. A hypothetical model of interrelationships among social variables, terrestrial variables, 

hydrological and water quality parameters is demonstrated by Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Hypothesized direct and indirect linkage among social factors, terrestrial factors, river discharge and surface 

water quality parameters. Arrows show associations among hypothetical variables 

 

  

 

 

 

   

 

 

   

 

 

 

 

 

 

 

  

 

 

Figure 5. Flowchart demonstrating the methodology  

2.3.3. Data Analysis 

The current study is based on mean values of each variable of the conceptual hypothesized path model. Path 

analysis was carried out to model relationships (DE and IE) among social, terrestrial, hydrological and water quality 

parameters. The hypothesized model based on four attributes groups was selected as per the available literature. 

Variables with the probability of strong relationship with certain variables within each of the four groups were also 

selected based on the previous studies. Path analysis was carried out on a variety of hypothetical models to examine 

the relationship among various combinations of attributes variables and to choose small group of models that best 

explains linkage between the social, terrestrial, hydrological and water quality variables. Path coefficients 

(standardized) were derived from path analysis by simultaneously regressing a dependent variable on each 

independent variable immediately linked to it by an arrow in the hypothetical path model. Path coefficients were used 

to evaluate a dependent variable's effects (DE, IE and TE). Independent-dependent variable DE is equal to the 

corresponding path coefficient. Independent variable's IE was calculated by multiplying coefficients in every path 

from the independent variable across all of the mediating variables to the dependent variable, and then adding values 

for all indirect paths [33]. An independent variable's cumulative influence on a dependent variable is equivalent to the 

number of all DE and IE. The path analyses were performed using AMOS Version 19.0, a Structural Equation 
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Modeling (SEM) and path analysis program. The performance of various path models was assessed using 

Comparative Fit Index (CFI). CFI is preferred for small sample size studies. The CFI value ranges from 0 to 1. Path 

model having CFI > 0.9 is considered good fit [34]. 

3. Results and Discussion 

Statistical assessment of path models showed that all the four path models are characterized by acceptable CFI 

values. All the four path models have CFI = 0.999 which shows that modeled values are in close agreement with 

observed values. 

3.1. Path Model: EC as Output Variable 

Mean population and discharge are the significant determinants which cause variations in stream EC as obvious 

from (Figure 6). More specifically mean population has strong direct relationship with riverine flow regime. Pollutants 

including sediments and heavy metals (Zn, Cu, Pb, etc.) that enhance EC may be discharged to Indus River due to 

anthropogenic activities i.e. surface runoff, ground water discharge, industrial effluents, soil erosion etc. [35-38]. 

Mean population has negative linkage with rangelands because rangelands are thinly populated areas. Rangelands are 

negatively associated with riverine flow regime which may be due to high infiltration owing to its pervious surface 

area [22, 25-27]. Basin having higher ration of rangelands decline pollutants load in surface waters owing to lower 

elasticity value and higher pollutants retention capability. Conservation of rangelands at watershed scale can help to 

protect ecosystem health. Riverine flow regime has negative correlation with EC which might be due to dilution 

effects [22]. Moreover, 2/3 climate models demonstrated that annual average runoff would increase in future [17]. In 

conclusion the mean population has strongest direct increasing while riverine flow has direct decreasing effect on EC. 

The total effect of mean discharge on EC is greater than the mean population and rangelands as obvious from Table 1. 

Table 1. Mean population, rangeland, and mean discharge DE, IE and TE on in stream EC 

Dependent variable 
Mean population Rangeland Mean discharge 

DE IE TE DE IE TE DE IE TE 

Rangeland -0.287   -0.287             

Mean discharge 0.674 0.085 0.759 -0.295  -0.295    

EC 0.97 -0.511 0.459 0.024 0.196 0.22 -0.664   -0.664 

 

Figure 6. Social, terrestrial, and hydrological variables DE and IE influence on surface water EC 

Mean population and riverine flow are the significant determinants which cause variations in stream EC as obvious 

from (Figure 7). More specifically mean population has strong direct relationship with riverine EC. Pollutants 

including sediments and heavy metals (Zn, Cu, Pb, etc.) that enhance EC may be discharged to Indus River due to 

anthropogenic activities i.e. surface runoff, ground water discharge, industrial effluents, soil erosion etc. [35-39]. 

Mean population has positive linkage with croplands because Indus is the largest basin in Pakistan where people live 

and grow crops. Riverine flow regime has negative linkage with EC which might be due to dilution effects [24]. 

Moreover, 2/3 climate models demonstrated that annual average runoff would increase in future [17]. Croplands are 

negatively associated with instream EC which may be due to irrigation tail water discharges which enhance riverine 

flow, causing dilution effect, owing to unscientific application of irrigation water in the Indus basin [40-42]. In 

conclusion the mean population has strongest increasing while riverine flow has decreasing effect on EC. The total 

effect of mean discharge on EC is greater than the mean population and croplands as obvious from (Table 2). 
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Wu et al (2015) found that path model having EC as outcome variable demonstrated that road density, population 

density and base flow ratio causes variation instream EC. The impacts of human population density on EC are 

positively and negatively mediated by road density and base flow ratio respectively. Results of the current study are 

supported by the aforementioned research work [14]. 

Table 2. Mean population, cropland, and mean discharge DE, IE and TE influence on instream surface water EC 

Dependent variable 
Mean population Cropland Mean discharge 

DE IE TE DE IE TE DE IE TE 

Cropland 0.37   0.37             

Mean discharge 0.759  0.759       

EC 1.036 -0.578 0.459 -0.168   -0.168 -0.679   -0.679 

 

Figure 7. Social, terrestrial, and hydrological variables DE and IE influence on surface water conductivity 

3.2. Path Model: Total Nitrogen as Outcome Variable 

Mean population and river runoff are the significant determinants which cause variations in NO3 concentration as 

obvious from (Figure 8). River runoff has the strongest direct impact on riverine NO3 concentration. Mean population 

has positive linkage with croplands because Indus is the largest basin in Pakistan where people live and grow crops. 

Riverine flow regime has positive linkage with NO3 because nitrogen flux substantially increases with precipitation 

[24]. Pakistan lies in the temperate climate zone, generally arid climate, characterized by cold Winters and hot 

Summer, where the sensitivity of riverine flow to precipitation and snowmelt is higher which fuels the top soil erosion 

which enhances riverine NO3 concentration.  Similarly mean population has increasing effect on riverine NO3 which 

may be due to high anthropogenic activities in Indus basin. Areas with high population density intensify nitrogen loads 

in riverine waters [5, 23, 28, 43-48] which may be due to intense human activities and low retention capacity in such 

areas [49]. Intense storms increase overland flow which sweeps domestic sewage and nutrients to nearby water bodies 

[19]. Croplands are negatively associated with instream NO3 concentration which may be due to irrigation tail water 

discharges which enhance riverine flow, causing dilution effect, owing to unscientific application of irrigation water in 

the Indus basin [40-42]. The total effects of riverine flow regime on NO3 concentration overweighs mean population 

in Indus basin as obvious from (Table 3). This study indicates that streams in this landscape will obtain more 

contaminants from various human activities [40-42]. It is utmost important to focus on the possible adverse 

consequences of high nitrogen rates. Various BMPs such as vegetated buffer strips [50, 51] or nitrogen reducing 

bioreactors should be adopted in such conditions [51, 52]. 

Table 3. Mean population, cropland, and mean discharge DE, IE and TE on instream NO3 

Dependent variable 
Mean population Cropland Mean discharge 

DE IE TE DE IE TE DE IE TE 

Cropland 0.370  0.370       

Mean discharge 0.759  0.759       

NO3 0.030 0.223 0.252 -0.008  -0.008 0.297  0.297 
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Figure 8. Social, terrestrial, and hydrological variables DE and IE on surface water NO3 

GDP and river runoff are the significant determinants which cause variations in NO3 concentration as obvious from 

(Figure 9). But river runoff has the strongest direct impact on riverine NO3 concentration. GDP has positive linkage 

with croplands because Pakistan is an agricultural country where GDP mainly depend on agricultural products and 

Indus is the largest basin in Pakistan where people grow crops. Croplands are positively associated with riverine flow 

regime and negatively linked with NO3 concentration. The aforementioned association may be due to irrigation tail 

water discharges which enhance riverine flow, causing dilution effect, owing to unscientific application of irrigation 

water in the Indus basin [40-42]. Riverine flow regime has positive linkage with NO3 concentration because sensitivity 

of riverine flow to precipitation is higher in Pakistan which enhances nitrogen flux. Surface runoff sweeps and erodes 

the top fertile soil layer which increase riverine NO3 concentration [24]. GDP is positively linked with riverine NO3 

concentration which may be due to urbanization and agriculture activities in Indus basin. Economic growth enhances 

urban development and agriculture activities where domestic sewage and irrigation tail water discharges enhance 

riverine NO3 concentration [22]. This study indicates that streams in this landscape will obtain more contaminants 

from anthropogenic activities [40-42]. It is utmost important to focus on the possible adverse consequences of high 

nitrogen rates. Various BMPs such as vegetated buffer strips [50, 51] or nitrogen reducing bioreactors should be 

adopted in such conditions [51, 52]. 

Wu et al (2015) found that Path model having total nitrogen as outcome variable demonstrated that population 

density, riverine flow, % crop land causes variation instream nitrogen concentration. The influence of human 

population density on total nitrogen is positively mediated by riverine flow [14]. The findings of the aforementioned 

research work support our study results. 

Table 4. GDP, cropland, and mean discharge DE, IE and TE on instream NO3 

Dependent variable 
GDP Cropland Mean discharge 

DE IE TE DE IE TE DE IE TE 

Cropland 0.218   0.218             

Mean discharge 0.264 0.049 0.313 0.223  0.223    

NO3 0.23 0.072 0.302 -0.035 0.057 0.022 0.255   0.255 

 

Figure 9. Social, terrestrial, and hydrological variables DE and IE on surface water NO3 
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4. Conclusion  

Indus basin has complex socioeconomic, terrestrial, and hydrological conditions for which it can be difficult to 

identify all possible relationships and mechanisms which deteriorate surface water quality.  Here we assessed the DE, 

IE and TE of socioeconomic, terrestrial and hydrological variables on stream water quality. Instream water EC 

increases with croplands while decreases with rangelands. The results demonstrated that watersheds having rangeland 

biomes pose lower risk to instream water EC impairment as compared to cropland. Similarly, instream water NO3 

concentration increases with mean population, GDP, and river flow. The results implied that in stream NO3 

concentration is enhanced by anthropogenic activities and river flow. Goodness of fit statistics demonstrated that path 

models are stronger. Small number of parameters entered the models because of small sample size (15 monitoring 

sites). The variables were selected based on literature to quantify the principal cause and effect models. Difference in 

linkage of socioeconomic, terrestrial, and hydrological variables with water quality parameters indicated that different 

activities impact certain water quality parameter differently which should be addressed while formulating water 

policies. To control elevated level of NO3 concentration BMPs such as vegetative buffer strips, nitrogen reducing 

bioreactors should be adopted. Overall, the findings of the current study indicated that multiple adaptation strategies 

should be adopted to protect stream health.  
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