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Abstract 

Sand is a major component of soils. It is widely used in manufacturing and construction. In geomechanics, one 
characterizes sand according to various aims. This paper investigates, for local sands, the effect of grain size and granular 
distribution on the mechanical behavior in terms of strength and stress-strain relationship. For this purpose, dune sands of 
the great Occidental Erg, from Algeria, are analyzed, according to the Mohr-Coulomb criterion. The study uses three 
kinds of sands. Every kind is divided into three sizes classes. Then, the experimental program conducts a set of direct 
shear tests, under various vertical stresses, using the small shear box (60 × 60 mm). The results show that the particle size 
and distribution have a direct effect on the mechanical behavior of the dune sand. Then, the dominant size class governs 
the natural sand behavior. Moreover, the peak shear strength increases as particle size increases. This indicates that there 
is an increase in peak friction angle with the increase of particles size and the sands consider as a purely cohesionless 
material. In addition, the experimental analysis shows that density and confinement stress is not sufficient to interpret the 
mechanical behavior. Indeed, mineralogy and surface state can influence the shear strength. These conclusions lead to 
the relevance of the sand genesis and the importance of the local materials thematic. 

Keywords: The Great Occidental Erg; Dune Sands; Grain Size; Direct Shear Test; Shear Strength; Mohr-Coulomb Criterion; Soil 
Behavior; Local Materials. 

 

1. Introduction 

Arid and semi-arid areas cover thirty percent of the world’s land surface [1]. The second largest erg in northern 
Algeria, after the Great Oriental Erg, is the Great Occidental Erg also known as the Western Sand Sea. It covers 
approximately an area of 100,000 km2 [2].The sand dunes in the erg are formed by the wind, and can be up to 120 
meters high [3]. Due to its abundance, it can be employed as a raw material in various engineering applications. The 
latter has been adapted to environmental issues by applying naturally available sands in building and industry. For 
some others applications, sands are treated with a special process. Many studies have investigated the aeolian sands to 
several targets as, geotechnical characterization [4], operating in pavement and concrete [5, 6], and soil reinforcement 
with sands [7, 8]. 

In this context, the direct shear test has served over the past 50 years in geotechnical engineering. Applications’ 
owing to it is simplicity, repeatability, and necessity in soil characterization and work design [9]. The most important 
data obtained from a direct shear test for cohesionless materials are peak and residual strength and the friction angle 
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corresponding to these two stress states [10]. Most of the geotechnical laboratories used the direct shear box (DSB) to 
measure the shear strength parameters (cohesion c, and friction angle φ) [11]. The Mohr-Coulomb theory uses these 
parameters to analysis the shear strength, in the frame of the limit equilibrium analysis [12]. The parameters 
cohesion and friction angle are relevant to the type of sand, grain form and size, and water or clay content [13]. 

The theoretical approach [14] indicates that strength characteristics are influenced by grain size and their 
distribution during the plastic deformation of granular materials. Many studies have investigated the effects of particle 
size on (stress-strain, friction angle, and cohesion) and volumetric strain behaviour. Indeed, according to Fredrick [15], 
particle size affects the macroscopic response of sands. Kolbuszewski and Frederick [16] reinforced soil by ballotini 
(glass beads) and reported that maximum porosity decreases and compressibility increase with particle size. Zolkov 
and Wiseman [17] found that the angle of shearing resistance increases as particle size increases. The study of 
Kirkpatric [18], showed the opposite, the friction angle decreases with an increase in particle size of two cohesionless 
materials. This was confirmed by Marsal [19] and Zelasko [20]. 

Wang and Wan Li [21] noticed that the particle crushing of soil in the process of loading would seriously affect the 
mechanical deformation performance of soil. Wang et al. [22] conducted tests to study the effect of particle size 
distribution, including the median particle diameter. The results demonstrate that the friction angle is increasing with 
increasing of the median particle diameter. Kara et al. [23] concluded that peak friction angle increases when the size 
of particles increases. Grains size does not have a significant influence on internal friction angle. In the conclusion of 
Alias et al. [24], the effective internal friction angle can be dependent on particle size and tests with larger size 
particles produce higher effective internal friction angle and develop high shear strength. Zhang and Tahmasebi [25] 
also concluded that the deformation declines with the decrease in particle size.  

This study sets up an experimental program to analyze the effect of particle size and granular distribution on sands' 
shear strength and behaviour. The material subject of analysis is the local dune sand drawn from Bechar district, 
Algeria. This allows, first, to contribute to the characterization of the Great Occidental Erg sands as local resources. 
Second, geomechanical engineering uses directly the results in the design of geotechnical structures in various works 
of the district. In addition, several studies have been concerned with the use of the dune sand as a stabilization addition 
of expansive clay [26] and in high performance-high strength concrete manufacturing [27]. Also, the determination of 
the mechanical behaviour and associated parameters acts as data entries in numerical modelling of geotechnical 
problems [28].  

Actually, in the research area, we focus our interest on similar questions through parallel research in finite element 
simulation of hydromechanical coupling in soil-structure-environment [29] and the simulation of soil-structures 
interfaces [30] that need numerical data of soils materials. Particularly, direct shear is a simple and inexpensive test to 
characterize the mechanical properties of interfaces in soil-structure interaction. That is, our fundamental hypothesis in 
conducting the present research is to confirm that the interface parameters depend –among other effects- on the 
granular distribution and the particles sizes at the interface.    

2. Materials and Methods 

2.1. Tested Materials 

In the present study, the three tested soils are all based on sand obtained from the Great Occidental Erg, BECHAR 
region. The site locations are shown on the map (Figure 1.). 

Gouray Sand  

The grain size distribution according to [NF P94-056] is shown in Figure 2. According to the Unified Soil 
Classification System (USCS), the sand is classified as poorly graded sand (SP) with a dominant particle size of 0,125 
mm and contains 2,54 % of fines. 

Kenadsa Sand  

The sand is taken from Kenadsa road situated 22 km west of BECHAR. Grain size distribution is shown in Figure 
2. According to USCS, the sand is classified as poorly graded sand (SP) with a dominant particle size of 0,315 mm 
and contains 0, 96 % of fines. 

Taghit Sand  

Taghit city is situated 93 km south-east of BECHAR. The grain size distribution is shown in Figure 2. The USCS, 
class the sand as poorly graded sand (SP) with a dominant particle size of 0,16 mm and contains 0,69 % of fines. The 
microscopic observations were made on this sand. 
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Figure 1. The sites locations 
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Figure 2. Grain size distribution 

The physical properties of the three sands are tabulated below (Table 1.). The table demonstrates that the densities 
vary in the order of 3 % around the typical density of sand which is close to that of Gouray sand. It also displays that 
Taghit and Kenadsa are characterized as sandy soil, while Gouray sand contains silt according to VBS. 

Table 1. Granular properties of the sample 

Sand Origin w % UC CC D10 (mm) D30 (mm) D50 (mm)  (g/cm3) s (g/cm3) ES (%) VBS (%) 

Taghit 0.2 1.6 1.16 0.125 0.17 0.19 1.52 2,51 93.33 <0.4 

Gouray 0.4 1.37 1.00 0.117 0.137 0.148 1.43 2.53 68 <1.2 

Kenadsa 0.1 1.6 1.23 0.225 0.315 0.34 1.48 2.50 98.33 <0.6 

2.2. Experimental Setup 

All tests are conducted in the laboratory of technology at the Tahri Mohammed University of Bechar, Algeria. An 
advanced automated direct shear testing apparatus (SHEARMATIC EmS) is used for direct/residual shear testing. It is 
based on the conventional direct shear test apparatus used by Taylor [31] and, Skempton and Bishop [32], which 
includes an upper and a lower shear box (Figure 3), and the sample is sheared along the interface plane by pushing the 
lower half shear box, horizontally, while a constant normal (vertical) load acts on the upper half shear box. Figure 4 
presents a general view of the setup showing the direct shear box and the data acquisition system. According to 
SHEARMATIC EmS Manuel, the axial transmission of the horizontal force is accurately ensured by a straight 
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connection between the shear box, shaft and load cell. The digital controller reads and processes the vertical and 
horizontal forces and vertical and horizontal displacements readings and drives the motor accordingly for the proper 
automatic test execution under closed loop PID control. The maximum particle size of the soil determines the DSB 
shapes and sizes [33, 34]. The DSB width must be 10 times the maximum particle size, and the initial specimen 
thickness must be 6 times the maximum particle size of the tested soil [NF P94-071-1]. 

 

Figure 3. Scheme of direct shear apparatus 

        

Figure 4. View of experimental device 

3. Direct Shear Test 

3.1. Shear Rate Determination 

In the unsaturated soils testing, the shear rate is chosen in order to dissipate any pore water pressure feedback. 
Then, the shear rate should be determined according to the soil permeability coefficient [35]. At first, two shear rates 
of 0.5 and 1 mm/min are tested out, using constant normal stress σ of 100 kPa. The results presented in Figure 5, 
indicate that peak shear stress is higher when a lower shear rate is used. Therefore, we use in the next tests, the 
constant horizontal displacement rate of 0.5 mm/min. 

3.2. Sample Preparation 

To investigate the effect of particle size, two types of samples are selected: natural sample and sieving sample 
(particles passing sieve opening). Nine (9) samples (Figure 6.) are considered, which can be divided under three 
headings according to Magnan [36]. The maximum diameters of the examined sand particles varied within the 
boundaries of 0.063 and 2.0 mm. Size distribution defines three sand fractures identified by [NF P94-056] performing 
usual sieve analysis: Fine Sand (0.063 mm, 0.200 mm), Medium Sand (0.200mm, 0.630 mm), and Coarse Sand (0.630 
mm, 2.00 mm). The material is placed in the shear box in three equal layers. Each layer is compacted with constant 
compaction energy [37].  
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Figure 5. Results of shear tests with different shear rates 
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Figure 6. Samples used in Test 

3.3. Test Procedure 

In order to analyze the effect of grain size on the soil behavior, shear failure envelop accordingly determines 
cohesion and friction angle. A set of experimental direct shear tests (DST) are conducted on the natural sand and its 
sieving samples (Figure 7). Three to five tests were conducted at each stress level to check repeatability. The DST 
box dimensions are 60×60×20 mm. For each test, five normal stresses (σn) of 50, 100, 200, 500, and 1000 kPa are 
used. The constant horizontal displacement rate is 0.5 mm/min, with a maximum displacement reaching up to 10.0 
mm or until certain signs of failure appear on the load cell. When the same operator, performs the direct shear test, 
under the same conditions, the results are so highly reliable [38]. The minimal number of tests should be from 2 to 4. 
However, processing data on 2–4 tests end in the large distribution of strength properties, which finally results in a 
significant reduction of characteristic shear strength parameters [39]. Such quantity of tests allows avoiding the 
influence of the magnitude factor of the vertical load, for determining shear strength parameters [40]. 

4. Results and Discussion 

The results of the direct shear tests include shear stress versus shear displacement curves, peak shear strengths, and 
residual shear strengths of natural Gouray, Kenadsa, and Taghit sands and their sieving specimens. 

4.1. Effect of Stress Levels on Shear Behaviour 

Figures 8 to 10 show the shear stress-shear displacement average curves for natural sands, medium and fine 
particles. To ensure the repeatability of the tests, two to four tests were conducted for the natural, and sieving 
specimens at each stress level. 

Figure 8 shows the case of Gouray sands. The shear stress-shear displacement curves for Gouray sands include the 
natural sample, medium particles, and fine particles. It is found that the shear stress increases with the increase of the 
normal stress. The shear stress gradually increases to a peak during the testing and then decreases to residual stress at 
large displacement. The increase in normal stress makes the sands denser and the peak shear strengths higher than that 
of lower normal stress. In Figure 8 the curves show that the peak shear strengths and residual shear strengths for both 
the natural sample and medium particles are very similar. It is explained by the effect of medium particle’s which is 
considered as the highest particles in the natural sample. The peak shear stresses of fine sand are lower than that of 
natural and medium specimens in all stress levels 
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Figure 7. Flowchart of methodological research 

Figure 9 shows the plots of shear stress versus shear displacement for Kenadsa natural sands, medium and fine 
aggregates. The peak-shear strength increases with the increase of the normal stress. The shear stress of tested sand 
increases from zero to a peak value and then gradually decreases and reaches an ultimate or residual value. It is clear 
that some of the displacement–stress relationship (especially under smaller applied stress, such as 50 kPa) tends to 
soften, and another displacement–stress relationship (especially under larger applied normal stress, such as 500 kPa) 
tends to harden. The curves of Kenadsa natural sands show a denser behavior comparing with that of medium and 
fine particles at 500 and 1000 kPa. The peak shear stresses and residual shear strengths of Kenadsa natural sands are 
larger than that of medium and fine particles at 50, 100, 200, and 500 kPa. It is also noted that this difference 
becomes smaller at 1000 kPa. 

Figure 10 shows the plots of shear stress versus shear displacement for Taghit natural sands, medium and fine 
particles. The effect of normal stress on the stress–displacement behavior can be observed by comparing the test 
results of the five different stresses. An increase in normal stress, leads to an increase in horizontal shear for Taghit 
natural sands, medium and fine particles. Both of Taghit natural sands and medium particles curves show instability in 
elastic behavior at 500 and 1000 kPa. Taghit natural sands, medium and fine particles possess similar behaviors at 50, 
100, and 200 kPa. However, the results of shear stress versus shear displacement still clearly show that peak shear 
stress of Taghit natural sands is not distinct from the medium and fine particles. 

As Ziaie Moayed et al. [41] notice that the general forms of shear stress–shear displacement curves, for large 
normal stress, are similar to the dense sand behavior. On the other hand, for weak normal stress, the force-
displacement peak is missed or not marked. This is typically the behavior of loose sand. 
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Figure 8. Results of the shear-displacement, Gouray sands 
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Figure 9. Results of the shear-displacement, Kenadsa sands 
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Figure 10. Results of shear-displacement, Taghit sands 
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4.2. Effect of Grain Size and Distribution on Shear Behaviour 

Gouray Sand 

Shear–displacement curves for natural, medium and fine Gouray sand, that have been loaded in five normal stress 
(50, 100, 200, 500, 1000 kPa) are presented in Figure 11 respectively. It can be noticed that for each range of size 
particle, the horizontal displacement at failure is variable. The results show that both natural and medium particles 
have peak shear strength, but for fine sand, it appears, even flat, with 200 and 1000 kPa normal stress only. One sees 
that the peak shear stress, in medium sand, is higher than the fine sand. This is in agreement with the previous studies 
of Nakao and Fityus [42], Islam et al. [14]. The results show that the residual shear strength in all tests is not 
significantly affected by particle size. Also, one observes, that the mechanical behaviour of natural sand displays 
peak shear strength typical than that of fine and medium particles, due to the distribution of particle range in natural 
samples (Table 2.). The whole tests show that, the natural sand reaches early the ultimate state compared to the 
medium one. Finally, fine sand shows a non-smooth shear strength-displacement curve, until the normal stress of 200 
kPa. For the last normal stress, there are several failures and instabilities states. 
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Figure 11. Shear-displacement curves for Gouray sands 
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Table 2. Density of Gouray samples 

Gouray Sand  (g/cm3) s (g/cm3) 

Natural 1.43 2.51 

Medium 1.40 2.52 

Fine 1.42 2.54 

Kenadsa Sand 

Shear–displacement curves for natural, medium and fine Kenadsa sand, that have been loaded in five normal stress 
(50, 100, 200, 500, 1000 kPa) are presented in Figure 12 respectively.The shear-displacement relationship of the three 
range particles of Kenadsa sands exhibits well-defined peak softening behaviour (Figure 12.). The shear stress reaches 
the peak value within small horizontal displacement. It can be seen that the shear curves of fine sand, for 50, 100, 200 
and 500 kPa are below the shear curves of medium sand. The results show that the peak shear strength increases as 
particle size increases. Similar results were obtained by Kara et al. [23], Alias et al. [24]. In high normal stress of 1000 
kPa, natural, medium and fine Kenadsa sand have globally, the same behaviour. Although, medium sand exhibits this 
normal stress level some local instabilities. The natural sand specimens show similar behaviour as medium ones in 100 
kPa. While it presents a higher strength in 200 and 500 kPa. Results show that the peak shear stress of the natural 
sample corresponds to high density (Table 3.), because of the combination of the various particles size ranges. 
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Figure 12. Shear-displacement curves for Kenadsa sands 
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Table 3. Density of Kenadsa samples 

Kenadsa Sand  (g/cm3) s (g/cm3) 

Natural 1.48 2.5 

Medium 1.45 2.54 

Fine 1.42 2.6 

Taghit Sand 

Shear–displacement curves for Taghit natural sand, and their sieving specimens that have been loaded in five 
normal stress (50, 100, 200, 500, 1000 kPa) are plots in Figure 13 respectively. Note that all of the tested specimens 
exhibit hardening behaviour. As shown in Figure13, peak stress is affected by the particle size of the specimen. In 
general, the specimen with larger particles tends to have a higher peak of shear stress. From Figure 13, it can be seen 
that the shear displacement curves of fine sand for almost the normal stress 100, 200, 500 and 1000 kPa are below 
the corresponding curves for medium sand. The results show a direct relation between particles size and peak shear 
strength, as is previously noted by Wang et al. [22], Zhang and Tahmasebi [24]. The strength response for natural 
Taghit sand defines stress shear gradually increasing up to the peak, and then being constant at large horizontal 
displacement. The curve of the specimen with a single size range of particles is not identical comparing with the 
natural specimen that has a typical curve of «strain-softening. Several instabilities characterize the shear curves for 
natural and medium sand under 500 and 1000 kPa. 
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Figure 13. Shear-displacement curves for Taghit sands 
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Table 4. Density of Taghit samples  

Taghit Sand  (g/cm3) s (g/cm3) 

Natural 1,52 2,51 

Medium 1,52 2,52 

Fine 1,51 2,56 

4.3. Failure Envelope 

For each sand, three curves are drawn. Mohr–Coulomb criterion can be applied to express interface shear 
strength: τ = c + σ tan φ, where c is the interface apparent adhesion, φ is the interface friction angle, and R2 is the 
correlation parameter of the envelope curves [43]. Table 5 gathers the values of the friction angle and cohesion, for 
all samples. 

Gouray Sand 

The strength envelopes of natural, medium, and fine sand are presented in Figure 14. The friction angles are 
computed by considering the linearity of failure envelopes. The peak shear stress represents the best mobilization in 
medium particles. In Figure 14, test results show a good linear relationship between peak shear stress and normal 
stress with a relatively high correlation coefficient R2 (R2 0.9999). In Gouray natural, medium and fine sand the 
apparent adhesion (c) are 17.45, 8.86, and 6.76 kPa, respectively, and the friction angles (ϕ) are 36°, 37,17°, and 
34,53°, respectively. It can be noticed that there is an increase in peak friction angle with the increase of particles size 
37,17◦ and 34,35◦ for medium and fine sand respectively. In this testing, the Gouray dune sand has quite larger 
cohesion than expected 17, 45 kPa for natural sample (contains Silt) which is 96.9% higher than that in the medium 
particles. The failure envelope does not pass through the origin while it can be explained by the quantity of fine sand 
which covers more than half of the natural sample. 

 

Figure 14. The strength envelopes of Gouray sand 

Kenadsa Sand 

Pure Kenadsa sand and its sieving specimen’s failure envelopes are exhibited in Figure 15. test results of Kenadsa 
sieving particles show a good linear relationship between peak shear stress and normal stress with a relatively high 
correlation coefficient R2 (R2 0.99). One exception is the relationship between the shear stress and normal stress in 
natural sands with a relatively low R2 of 0.97. This may be caused by abrupt particles breakages. The results from 
table II define that the sand does not have any cohesive characteristics. Natural and medium sand show almost 
identical friction angles 38,52° and 38,22°, respectively. The mechanical behaviour of natural sand can also be 
explained by its large grain size. 
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Figure 15. The strength envelopes of Kenadsa sand 

Taghit Sand 

 

Figure 16. The strength envelopes of Taghit sand 

Figure 16 demonstrates the Mohr-Coulomb failure envelopes for Taghit sand. The peak shear stress represents the 
best mobilization in medium particles. In Figure 14, test results display a good linear relationship between peak shear 
stress and normal stress with a relatively high correlation coefficient R2 (R2=0.99). It is noticed that the friction angle 
of medium sand is larger than that of fine sand; medium sand exhibits a maximum friction angle value of 37,86◦, 
whereas the fine sand friction angle is evaluated as 33,54◦. This difference in friction angle is due to the grain size of 
the particle. The results have pointed out that the cohesion parameter is equal to zero and the sand is considered as a 
purely cohesionless material. 
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Table 5. Friction angle and cohesion for specimens at peak 

τ = c + σ tan φ φ (degree) c (kPa) 

Gouray sand 

Natural 36 17,45 

Medium 37.17 8,86 

Fine 34.53 6,76 

Kenadsa sand 

Natural 38.52 0 

Medium 38.22 0 

Fine 37.02 0 

Taghit sand 

Natural 37.23 0 

Medium 37.86 0 

Fine 33.54 0 

5. Comparative Study  

In order to investigate the effects of grains size on the mechanical behaviour of soils, various studies were done. To 
analyse the shear strength of sand, they used the direct shear test in different sets of experimental procedures. Uniform 
particles of eight samples (0.075, 0.15, 0.212, 0.300, 0.600, 1.18, 1.72 and 2.76 mm) and graded particles of two 
samples (0.075-1.18 mm and 0.075-2.36 mm) from the Padma River Sand (Bangladesh) were analysed by Islam et al. 
[14]. Three sets of loading (0.05, 0.10 and 0.15 kN) were selected for each of eight particle sizes. Eighteen samples 
referred to above (one of actual Tergha sand (Algeria), seven samples with different particle size ranges and ten 
reconstituted samples with random percentages of particle size ranges) loading under five normal stresses (100, 
200,300,400 and 600 kPa) were analysed by Kara et al. [23]. Granular materials from Nilai quarry (Malaysia) were 
divided into two groups: particles passing the sieves with an opening size of 2.36 mm and particles passing the 
standard 20 mm sieves loading under 100, 200 and 300 kPa were analysed by Alias et al. [24].  

  

Figure 17. Effect of Normal Load in well graded samples Padma River Sand [14] 

    

  Figure 18. Results of direct shear test on Tergha sand [23]  Figure 19. Shear stress versus normal stress, Nilai quarry sand [24] 
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Figure 17 shows that with the increase of normal load shear strength increase in well graded samples and this were 
the same for uniform particles. Figure 18 shows an increase in the peak shear with the increase of normal stress on 
Tergha natural sand. The shear stress for the specimen sheared under normal stress of 300 kN/m2 is higher than the 
sample sheared under normal stress of 200 and 100 kN/m2 in the sieving particles of Nilai quarry sand (Figure 19.). 
This has confirmed our results in the 4.1 section. 

 

Figure 20. Comparison between peak friction angles 

In the results obtained by Kara et al. [23], it is noted that there is an increase in peak friction angle with the 
increase of particles size (Figure 20.). They concluded that if we know the size of particles of marine sand we can 
deduce directly the value of peak friction angle. Alias et al. [24] found that the peak shear of particles passing the 
sieves with an opening size of 2.36 mm is lower than the particles passing the standard 20 mm sieves. These results 
are in agreement with our sands results which clearly present in Figure 20. 

6. Conclusion 

The study explores sand’s grain size and distribution effects on mechanical behaviour. The tested Gouray, 
Kenadsa, and Taghit dune sands are obtained from the Algerian Great Occidental Erg. Natural and Fine (0.063 mm-
0.200 mm), Medium (0.200 mm - 0.630 mm) and Coarse (0.630 mm - 2.00 mm) Sands have been loaded in five 
normal stresses (50, 100, 200, 500, 1000 kPa). The tests are performed with the small shear box (60 × 60 mm). 

We summarize the main results as follows. The shear strength shows elastoplastic behaviour. The initial response 
is elastic within a very limited range of shear displacement. After that, the interface connection begins to brake 
slowly. When the strength reaches a peak, the damage of the cohesive stress along the sheared interface is total. 
Hence, the strength falls slowly and tends towards the residual strength for large displacement. Therefore, in the 
range of large displacement, the shear strength is due to frictional sliding. This is valid for large confinement or 
normal stress. When the normal stress is relatively weak, there is no peak in the strength-displacement relationship. 
This means that the interface cohesive stress is missing. Then, the shear tests define strain-softening behaviour, and 
the peak shear strength increases while increasing the normal stress in all tests. Between low and high normal stress, 
the sands react in a different way. For weak normal stress, the peak is missing, or flat. For large confining, the peak 
response is present. The various tests for the same sand, in natural, medium or fine class, show that the density is not 
sufficient to interpret the mechanical behaviour. Indeed, the mineralogy and the interface state can influence the 
results of the shear test. In addition, one concludes that the dominant size class governs the natural sand behaviour. 
The increase in the peak friction angle can be a result of the increase of particles size that favors the friction along 
with the interface particles.  

These conclusions suggest adding microscopic studies to characterize the surfaces of the physical grains. Due to 
the large surface covered by the Great Erg Occidental dune, the sand can present various shear strength parameters 
according to its physical characteristic (grain size and shape) and its mineralogical characteristic that requires more 
tests as geological and chemical investigations. Through this study, we recommend avoiding the generalization of the 
mechanical behavior, of the Great Erg Occidental sands, and to conduct testing and characterization for each 
particular site. This reveals the relevance of local material as a research thematic. On another side, the existence of a 
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peak in the stress-strain relationship is the indication that cohesive strength is acting at the sheared interface. Then, 
one concludes that dune sands from the Great Erg Occidental, can present a cohesive behaviour according to the 
confinement level. This relevant conclusion can be proved using the present results in numerical simulation. Indeed, 
the finite element method allows the modelling of the shear behaviour and helps to deduce the mechanical interface 
parameters, like stiffness, friction, or adherence coefficients, by fitting, optimization, or inverse algorithms. This is 
particularly useful in the simulation of soil-soil interfaces problems as in embankments, or the soil-structure 
interaction problems as in deep foundation and retaining wall. 
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