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Abstract 

A steel frame with a semi-rigid connection is one of the most widely used structural systems in modern construction. 

These systems are cheap to make, require less time to construct and offer the highest quality and reliable construction 

quality without the need for highly skilled workers. However, these systems show greater natural periods compared to 

their perfectly rigid frame counterparts. This causes the building to attract low loads during earthquakes. In this research 

study, the seismic performance of steel frames with semi-rigid joints is evaluated. Three connections with capacities of 

50, 70 and 100% of the beam’s plastic moment are studied and examined. The seismic performance of these frames is 

determined by a non-linear static pushover analysis and an incremental dynamic analysis leading finally to the fragility 

curves which are developed. The results show that a decrease in the connection capacity increases the probability of 

reaching or exceeding a particular damage limit state in the frames is found. 
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1. Introduction 

The actual behavior of connections is conventionally ignored in steel frame. In reality, structural analysis of steel 

frames is usually performed assuming that the connections meet the perfect conditions of a pinned or rigid connection. 

Consequently, the calculations are somewhat simplified but the structural model does not show the actual structural 

response. Available experimental data [1-3] show that, on one hand, joints commonly considered to be hinges often 

exhibit quite high stiffness and rotational resistance. On the other hand, the joints which are generally considered to be 

stiff can develop bending deformation. These behavioural characteristics largely affect the frame response. In fact, in 

conventionally pin- joint frames, the real stiffness of the joint results to a more favourable distribution of bending 

moments in the beams, whereas the true deformability of the joint in nominally stiff frames influences negatively the 

frame vulnerability to second order effects [4].  

In contrary, experimental research shows that the actual behaviour of connections is found in between of that 

perfectly pinned joint and completely rigid joint: these joints are named semi-rigid joints [5]. The simple models used 

in the current design procedure are clearly effective in analysing a large number of structures, but in many cases the 

correct assessment of the structural reliability requires the semi-rigid behaviour of joints to be accounted for. This is 

expected to improve the reliability of the structural response prediction, allowing it to benefit from the actual 
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behaviour of the joints. In fact, many studies [6-8] pointed out the economic benefits that can result from a design 

considering the real behaviour of beam-to-column joints. De Alvarenga (2020) [9] suggested new numerical 

formulation that integrates the behaviour of the plastic zone finite element model for semi-rigid steel frames. 

However, Astaneh and Nader (1992) and Mazzolani and Piluso (2012) [10, 11] have provided some attempts to codify 

the semi rigidity for seismic steel structures, and the evidence of the positive effect of semi-rigid joints in such 

structures is continuously increasing. 

According to the new generation of European seismic codes, e.g., the ECCS Manual and Eurocode 8 [12, 13], a 

clear distinction is made between dissipative and non-dissipative structures. Non dissipative structures must resist to 

the most severe seismic movement within the elastic range, while dissipative structures are designed by allowing 

deformation to occur in predefined zones. During an earthquake, these zones must dissipate energy through hysteretic 

ductile behaviour in the plastic range. The formation of an appropriate dissipative mechanism is related to the 

topology of the structure and proper dimensioning.   

Unbraced frames are used quite widely in areas affected by strong earthquakes for low and medium height 

buildings due to their high ductility. They generally provide a good energy dissipation capacity as a result of the 

hysterical ductile behaviour of the beams elements composing these frames. It is also possible for inelastic cyclic 

deformations to occur in other elements, such as connections .However, although the reputation of steel frames is well 

established, the vulnerability of unbraced frames became apparent during the powerful El Centro1940, Northridge 

1994 and Kobe 1995 earthquakes, through brittle failures detected at the connections beams to columns of the 

structures [14]. Other studies include, the monotonic, cyclic, and dynamic behaviors of several types of semi-rigid 

joints were explored in Nader et al. (1996) [15]; and it was claimed that these joints are able to dissipate energy due to 

their relatively enlarged moment rotation hysteresis loops, which work as damping mechanism in steel frame. 

One of the first experimental studies on the seismic behaviour of semi-rigid steel frame was published by Elnashai 

et al. (1998) [16]. It was shown that, when correctly designed, semi-rigid joints can perform similarly or even better 

than their fully rigid counterparts under a variety of loading conditions. Aksoylar et al. (2011) [17] studied the 

behaviour of structures with energy dissipation zones in semi-rigid joints designed in high seismicity locations and 

their seismic response was estimated analytically with various connection capacities. By using semi-rigid energy 

dissipating joints, it eliminates the necessity of the weak beam from the strong column and allows the use of more 

economical column sections. Razavi and Abolmaali (2014) [18] examined semi-rigid and rigid connections in high-

rise steel construction, and observed that semi-rigid frames were more efficient than fully rigid frames. Faridmehr et 

al. (2017) [19] studied the seismic response of steel frames with semi-rigid joints and found that the more flexible the 

semi-rigid joint, the more the base shear demand decreases during the earthquake. Moussemi et al. (2017) [20], based 

on free vibration analysis, found the dynamic parameters of a two-story frame, in which the beam-column joints were 

modeled using semi-rigid connections. 

Recently, Koriga et al. (2019) [21] studied the dynamic response of rigid and semi-rigid joints of steel frame under 

dynamic loads. The novelty introduced in the nonlinear model is to consider a unique bar element that represents the 

semi-rigid connection. Thus, there is no need to discretize the structural element (member) in the computer program 

where nonlinearity is taken into account by a flexibility factor in the stiffness matrix. Mahmoud and Elnashai (2013) 

[22] worked on a new hybrid system-level simulation application for seismic evaluation of steel frames with 

TSADWA connections. Sharma et al. (2021) [23] studied in detail the effects of semi-rigid joints using a variety of 

response parameters for a set of far-field and near-field earthquakes with directivity and flutter step employing 

nonlinear time history analysis. Hassan et al. (2020) [24] worked on the seismic response of semi-rigid steel frames 

exposed to actual main and aftershock ground motion with different connection capacities. Kiani et al. (2016) [25] 

developed fragility curves for three- and five-story building models composed of unbraced frames with masonry infill 

walls. Finally, Guettafi et al. (2021) [26] developed an equation to assist engineers in the design and response of soil-

pile-structure interaction. The results of this formula allowed harmonization with the results of the fragility curves. 

In this research study, the seismic response of steel frames with semi-rigid joints is estimated. Three semi-rigid 

moment-resisting frames with bolted connection with capacities of 50, 70 and 100% of the beam plastic moment are 

studied and examined. The seismic performance of these frames is determined by a non-linear static pushover analysis 

and an incremental dynamic analysis leading finally to the establishment of fragility curves. 

2. Model Description   

This study examines three frames with bolted joints at the ends representing 50, 70 and 100% of the beam's plastic 

moment capacity. The frames consist of five, seven, and ten stories with three spans of 4 m width and 3 m height, 

respectively. A similar elevation of frame is shown in Figure 1. It should be noted that the loads used is a dead load of 

30 KN/m including the dead weight of the frame. The same gravity loads are considered for all floors. The structural 

steel used in this research is type S235 for the beams and columns. 
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(a) (b) (c) 

Figure 1. View of the sample steel frames (a) 5 stories (b) 7 stories (c) 10 stories 

To model the joint, the standard nonlinear software SAP2000 [27] is employed. In this software, a multi-linear 

plastic connection element with zero length joints is applied. The joint shows kinematic hysteresis behaviour. The 

moment-rotation behavior curve of the joint is shown in Figure 2(a). 

 

  

(a) (b) 

Figure 2. Hysteresis curves for (a) Flexural default plastic hinges [23] (b) flexural plastic hinges used [27] 

Material nonlinearity in steel frames is modeled as plastic hinges concentrated at the end of flexural hinges. Here, 

the standard plastic hinges contained by default in SAP2000, in accordance with the guidelines of Eurocode 3 [28], are 

used to capture the material nonlinearity. Type M3 and type P-M3 hinges are used for beams and columns, 

respectively, and are inserted at an equal absolute value of 0.05 of the member end length. Three limits states, namely 

"IO" immediate occupancy, "LS" life safety and "CP" collapse prevention for the default hinges are being considered 

[29], Figure 2(b) shows hysteresis curve for flexural plastic hinges used in this work study. Table 1 shows the details 

for the sections used in the frame and acceptance criteria.  
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Table 1. Dimensions of beam and column and acceptance criteria of rotation and translation displacement 

Story Components 
Connection 

Capacity (%) 
Sections Hinge 

Moment 

plastic 

Acceptance Criteria 

IO LS CP 

5 Story 

Column 

100 HE 240A P + M3 225.36 0.001 0.005 0.005 

70 HE 220A P + M3 171.82 0.001 0.005 0.005 

50 HE 180A P + M3 98.31 0.001 0.005 0.005 

Beam 

100 

IPE 270 

M3 146.41 0.008 0.072 0.088 

70 M3 102.49 0.007 0.063 0.077 

50 M3 73.2 0.007 0.063 0.077 

7 Story 

Column 

100 HE 260A P + M3 278.30 0.001 0.005 0.005 

70 HE 240A P + M3 225.36 0.001 0.005 0.005 

50 HE 200A P + M3 129.77 0.001 0.005 0.005 

Beam 

100 

IPE 300 

M3 189.97 0.007 0.063 0.077 

70 M3 132.98 0.007 0.063 0.077 

50 M3 94.98 0.007 0.063 0.077 

10 Story 

Column 

100 HE 320A P + M3 492.47 0.001 0.005 0.005 

70 HE 240A P + M3 225.36 0.001 0.005 0.005 

50 HE 200A P + M3 129.77 0.001 0.005 0.005 

Beam 

100 

IPE 300 

M3 189.97 0.007 0.063 0.077 

70 M3 132.98 0.007 0.063 0.077 

50 M3 94.98 0.007 0.063 0.077 

3. Research Methodology  

The flowchart of the research and characterization methodology is depicted in Figure 3 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the research study 

3.1. Nonlinear Static Pushover Analysis  

Pushover analysis is an approach method in which the frame is exposed to monotonic increasing lateral force with 

an unchanging height-width partition until a target displacement is achieved. Hence, the method consists of a variety 

of sequential elastic analyses, overlaid to approach the force-displacement curve of the global structure. A two- or 

three-dimensional model comprising of bilinear or trilinear load-deformation diagrams of all lateral force withstanding 

elements is first generated and the gravity loads are initially applied [30]. The pushover analysis method is shown in 

Figure 4. 
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Figure 4. Pushover analysis method [31] 

3.2. Ground Motions used in the Dynamic Analysis 

The selection of an appropriate parameter that reflects the intensity of ground motion is a difficult operation in the 

analysis of the probability of the seismic potential. This parameter should not only express the gravity of an 

earthquake, but should also be related to the damage to structures and elements. The ideal measures must satisfy 

several recognized criteria: satisfaction, practicability, calculability and effectiveness [32]. In one term, a selected 

intensity value must make engineering sense and be independent of ground motion characteristics with a total variety 

of structural response for IM in a reasonable range for different types of structures. 

An appropriate set of ground motions is necessary to execute the incremental dynamic analysis. As suggested by 

Eurocode 8 and by Bommer and Scott (2000) [33], a minimum of seven ground motions should be used to represent 

the behavior of a building. However, for mid-rise buildings, ten to twelve ground motions are needed to obtain a 

reliable evaluation of the seismic demand [34]. FEMA P695 [35] recommends a minimum of twenty ground motions 

to realize incremental dynamic analysis and elaborate fragility curves. The ground motions can be necessary selected 

from real earthquake records or artificially generated. In fact, real earthquakes are more realistic because they include 

all the ground motion information’s, such as duration, energy content, frequency, amplitude, phase and number of 

cycles [36]. Accordingly, twenty earthquake records from many regions were employed to perform the incremental 

dynamic analysis. Details of the 20 record of ground motion which were selected are presented in Table 2. 

Table 2. Ground Motions used in the dynamic analysis 

No. Year Earthquake M Country PGA 

1 1976 Friuli 6.5 Italy 0.25 

2 1961 Hollister 5.6 USA 0.17 

3 1979 Imperial Valley 6.5 USA 0.38 

4 1995 Kobe 6.9 Japan 0.212 

5 1999 Kocaeli 7.5 Turkey 0.358 

6 1992 Landers 7.3 USA 0.42 

7 1983 Trinidad 5.8 Trinidad and Tobago 0.33 

8 1994 Newhall 6.7 USA 0.605 

9 1994 Santa Monica 6.7 USA 0.228 

10 1979 Elcentro 6.5 USA 0.40 

11 1979 Array-06 6.5 USA 0.43 

12 1989 Corralitos 6.9 USA 0.483 

13 1987 Lacc North 5.9 USA 0.25 

14 1989 Lexington 6.9 USA 0.4 

15 1994 Sylmar 6.7 USA 0.578 

16 1992 Lucerne 7.3 USA 0.60 

17 1992 Petrolia 7.2 USA 0.18 

18 1992 Yermo 7.3 USA 0.154 

19 1989 Oakland_Outher 6.9 USA 0.42 

20 1988 Pomona 7.5 USA 0.34 
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Figure 5 shows the result the simulation of twenty acceleration records in the form of response spectrum curves 

and the target response spectrum. To match these ground motions, the Seismo-Match software [37] is used. This 

software program can adjust the ground motion records to match a particular target response spectrum [37]. 

  

Figure 5. Matched spectrums by Seismo-match 

Table 3 shows the value of fundamental period and the different acceleration projection on spectrum acceleration 

with variation in connection capacity (50, 70, and 100%) 

Table 3. The values of the fundamental periods and their corresponding acceleration 

 
5 Story 7 Story 10 Story 

100% 70% 50% 100% 70% 50% 100% 70% 50% 

Period Tf 1.43 1.55 1.90 1.73 1.84 2.21 2.23 2.64 3.17 

Ag (Tf) (g) 0.17 0.15 0.13 0.14 0.13 0.10 0.10 0.07 0.05 

3.3. Incremental Dynamic Analysis IDA 

IDA is a method of computer analysis employed to evaluate structures subjected to increasing seismic loads. In 

this approach, the seismic risk for this structure is estimated by a probabilistic seismic analysis [38]. The IDA allows 

for multiple nonlinear time history analysis of the structure being studied by applying a set of specified ground 

motions. Each earthquake is scaled to generate a specific seismic intensity. Nonlinear dynamic analysis is achieved by 

applying each ground motion record many at various scales. The scaling is performed that the structure is subjected to 

a wide range of behaviours, from elastic to inelastic, and eventually to a global dynamic instability represented by a 

total collapse. Figure 6 shows the IDA method. 

 

Figure 6. Incremental dynamic analysis method [35] 
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The analysis discussed in this section focuses on the three limits states, namely the immediate occupancy, life 

safety, and collapse prevention. In order to quantify the level of damage corresponding to each of these three states, 

the inter story drift ratio was considered as a non-cumulative damage index as mentioned by FEMA356 [39]. The 

values of the maximum inter-story drift ratios used to evaluate damage are 0.5, 1.5, and 2% for the immediate 

occupancy, life safety, and collapse prevention states, respectively. 

Nonlinear time history analysis by means of SAP 2000 software was performed on each structure using some 

ground motion with maximal ground acceleration, PGA scaled incrementally to 1.0g using a 0.1g step. The maximum 

inter-stage drift ratio was determined for each PGA, which represents a point on the IDA curve. The points of this drift 

ratio result from the various PGA values form the complete IDA curve for a specific ground motion. The procedure 

was iterated for the 20 ground motions employed in this study. All curves of IDA for these 20 ground motions 

characterize the seismic performance of a specific structural model. 

3.4. Fragility Function 

Fragility curves represent the probability of structural damage from earthquakes as a function of different ground 

motion indices. In the present paper, the fragility curves are established in terms of acceleration. It is supposed that the 

fragility curves can be represented as a two-parameter lognormal distribution functions [40]. Based on this theory, the 

cumulative probability of damage occurrence, equal to or higher than damage level D, is given by the following 

equation. 

𝑃(𝐼𝑀 = 𝑥) = Φ [
ln(𝑥/𝜇)

𝜎
] (1) 

where P(IM=x) is the probability that a ground motion with IM = x will cause the structure to collapse, Φ is the 

standard normal cumulative distribution function (CDF), µ is the median of the fragility and σ is the standard 

deviation. 

4. Results and Discussions 

The assessment of the frames is conducted using static pushover analysis, and non-linear IDA and fragility curve. 

In this section, all the results are summarized, interpreted, and discussed. 

4.1. Pushover Results   

Figure 7 shows the lateral response of steel frame with connection capacity equal to 50, 70, and 100% of the 

plastic moment capacity of the respective beams for 5 story, 7 story and 10 story frames.  

   

a-5 Story    b-7 Story  c-10 Story 

Figure 7. Lateral load–displacement response with variation in connection capacity (50, 70 and 100%) and steel frame story 

The results show that the lateral capacity of model with connection capacity equal to 50%, 70%, decreases in 

comparison with rigid model (100%) with values of (63.7%, 28%) for 5 stories, (63%, 27%) for 7 stories and (84%, 

51%) for 10 stories. The results leading to that of the model with connection capacity 50, 70%, indicate that the 

ductility increases 16.4% and 29% for 5 stories, 32% and 9.7% for 7 stories and 98% and 11.6% for 10 stories 

compared to the rigid model. 

4.2. Incremental Dynamic Analysis 

Figure 8 shows the IDA results for steel frame with variation connection capacity of 50, 70, and 100% of the 

plastic moment capacity for the respective beams for five- story, seven- story and ten- story frames, respectively. 



Civil Engineering Journal         Vol. 7, No. 07, July, 2021 

1119 

 

   

a- 5 Stories - Capacity 50% b- 5 Stories - Capacity 70% c- 5 Stories - Capacity 100% 

   

a- 7 Stories - Capacity 50% b- 7 Stories - Capacity 70% c- 7 Stories - Capacity 100% 

   

a- 10 Stories - Capacity 50% b- 10 Stories - Capacity 70% c- 10 Stories - Capacity 100% 

Figure 8. Generated IDA for models with variation in connection capacity (50, 70, and 100%) and steel frame story 

It is observed that the behaviour of all steel frames is linear when the inter-story drift ratio is less than 0.5%. And 

when the capacity of the connection decreases, the spectral acceleration is decreased by 20 and 70 % for connection 

capacity equal to 50, 70% respectively. When the inter-story drift ration increases the spectral acceleration is increased 

compared to connection capacity equal to 50%.  

The increase in number of stories leads to a decrease of the spectral acceleration when compared to 5 stories, 10 to 

20%, for 7 stories, and 60 to 40% for 10 stories for connection capacity of 50, 70 and 100% respectively. This is due 

to the augmentation of period of structures. 

4.3. Fragility Curves  

Figures 9 shows the fragility curves for steel frame with five stories and variation in connection capacity (50, 70, 

and 100%).  
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Immediate occupancy Life Safety Collapse Prevention 

Figure 9. Fragility curves for steel frame of five stories and variation in connection capacity (50, 70, and 100%) 

The decrease of the value of connection capacity indicates that the probability of exceedance for each damage state 

is increased and is affected by different damage states. The five story steel frame with capacity connection of 50% is 

more vulnerable than 70 and 100%. The values of Sa (50%) of probability of damage of steel frame with connection 

capacity, gives a reduction compared to a connection capacity 100%. In order of 54, 62, 60% for connection capacity 

equal to 50% and 21, 25, and 20% for connection capacity equal to 70%; for all limit states due to the decrease in 

moment plastic.   

Figure 10 shows the Probability of Exceedance (POE) for five-story frame for different accelerations Ag(Tf) 

giving through projection the value of fundamental period on spectrum acceleration with variation in connection 

capacity (50, 70, and 100%) for different damage states (IO, LS, CP).  

 

Figure. 10. Probability of Exceedance (POE) for five-stories with Ag(Tf) 

The highest POE is provided by connection capacity of 50% in the order of 100% at 0.13g for all limit states. For 

connection capacity of 70% in the order of 100%, 5.28% and 2.8% at 0.15g for IO, LS CP respectively. Finally for 

connection capacity of 100% in the order of 100%, 1% and 0.05% at 0.17g for IO, LS CP respectively.  

Figure 11 shows the fragility curves for steel frame with seven stories and variation in connection capacity (50, 70, 

and 100%). The results for a seven-story steel frame give the same results as for a five-story steel frame, but with an 

increase in the value of acceleration for the probability of damage 50% in life safety and collapse prevention limit 

states. 

   

Immediate occupancy Life Safety Collapse Prevention 

Figure 11. Fragility curves for steel frame of seven stories and variation in connection capacity (50, 70, and 100%) 
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Figure 12 shows the Probability of Exceedance (POE) for seven-stories for different accelerations Ag(Tf) giving 

through projection the value of fundamental period on spectrum acceleration with variation in connection capacity (50, 

70, and 100%) for different damage states (IO, LS, CP).  

 

Figure 12. Probability of Exceedance (POE) for seven-stories with Ag(Tf) 

The highest POE is provided by connection capacity of 50% in the order of 100% at 0.10g for all limit states, for 

connection capacity of 70% in the order of 100%, 5.28% and 2.8% at 0.13g for IO, LS CP respectively. And for 

connection capacity of 100% in the order of 100%, 1% and 0.05% at 0.14g for IO, LS CP respectively. 

Figures 13 shows the fragility curves for ten story steel frame and variation in connection capacity (50%, 70%, and 

100%). The results for a ten-story steel frame give the same results as for a five-story and seven-story steel frames, but 

with a decrease in the value of acceleration for the probability of damage 50% in life safety and collapse prevention 

limit states.   

   

Immediate occupancy Life Safety Collapse Prevention 

Figure 13. Fragility curves for steel frame of ten story and variation in connection capacity (50, 70, and 100%) 

Figure 14 shows the Probability of Exceedance (POE) for ten-story frame for different accelerations Ag(Tf) giving 

through projection the value of fundamental period on spectrum acceleration with variation in connection capacity (50, 

70, and 100%) for different damage states (IO, LS, CP).  

 

Figure 14. Probability of Exceedance (POE) for ten-story frame with Ag(Tf) 
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The highest POE is provided by connection capacity of 50% in the order of 100% at 0.05g for all limit states, for 

connection capacity of 70% in the order of 100% for IO and zero percent for LS and CP at 0.07g. For connection 

capacity of 100% of the order of 100% for IO and zero percent for LS and CP at 0.10g. 

5. Conclusions 

In this study, three frames with bolted joints representing 50%, 70% and 100% of the beam's plastic moment 

capacity, were investigated under earthquake loading. Pushover and the incremental dynamic analyses were carried for 

the three steel frames (five, seven and ten stories) for developed the fragility curves were compared, and the important 

findings inferred from the study are enumerated as follows: 

 The results show that the lateral capacity decreases and the ductility increases when the connection capacity is 

decreased, because semi-rigid connections of steel frames show greater natural periods compared to their 

perfectly rigid frame counterparts. This causes the building to attract low loads during earthquakes; 

 The steel frame with connection capacity of 50% is highly vulnerable for all types of frames; 

 The steel frame with connection capacity of 70% slows vulnerability and damage for all types of frames, which 

gives a good result; 

 The diminution in capacity of the connection leads to a decrease of the spectral acceleration; 

  The increase in the number of stories leads a decrease in spectral acceleration. 

Therefore, the design of steel frame with semi-rigid connection should provide adequacy with the consideration to 

the two demand measures, MIDR and MID, especially under NFD-HR and NFFS earthquakes. 
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