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Abstract 

The strut-and-tie model (STM) method is useful for the limit state design of reinforced concrete (RC) corbels. However, 
for the rational design of RC corbels, designers must accurately determine the strengths of concrete struts and nodal 
zones to check the strength conditions of a selected STM and the anchorage of reinforcing bars in nodal zones. In this 
study, the authors suggested a numerical process for determining the strengths of concrete struts and nodal zones in RC 
corbel STMs. The technique incorporates the state of two-dimensional (2-D) stresses at the strut and nodal zone 
locations, 2-D failure envelope of concrete, deviation angle between the strut orientation and compressive principal stress 
trajectory, and the effect of concrete confinement by reinforcing bars. The authors also proposed the strength equations 
of struts and nodal zones that apply to the typical determinate and indeterminate STMs of RC corbels. The authors 
considered the effects of the shear span-to-effective depth ratio, the horizontal-to-vertical load ratio, and the primary 
tensile and horizontal shear reinforcement ratios in developing the strength equations. The authors predicted the failure 
strengths of 391 RC corbels tested to examine the appropriateness of the proposed numerical process and strength 
equations. The predicted failure strength compares very well with experimental results, proving that the rational analysis 
and design of RC corbels are possible by using the present study's strut and nodal zone strengths. 

Keywords: Reinforce Concrete Corbel; Strut-and-Tie Model; Concrete Strut; Nodal Zone. 

 

1. Introduction 

RC corbel is a representative structural member with static discontinuities due to the concentrated vertical and 
horizontal loads. The primary design codes, including FIB [1], AASHTO [2], ACI 318 [3], have accepted the STM 
method for the design of RC corbels. The STM method promotes a better understanding of the load transfer 
mechanism, thus improving a designer's ability to handle unusual design circumstances. However, to employ the 
method in practice, a structural designer must determine the strengths of struts and nodal zones to verify their load-
carrying capacities.  

Many researchers have conducted experimental and analytical studies on the strength of concrete struts and nodal 
zones. The readers can find various suggested strength equations and values from previous researches [1-15]. 
However, the suggested equations and values are not consistent and general because they base on structural concretes 
with specific loading and geometric conditions. Yun & Ramirez [16] proposed a numerical method for determining 

                                                           
* Corresponding author: ymyun@knu.ac.kr 

http://dx.doi.org/10.28991/cej-2021-03091725 

 

© 2021 by the authors. Licensee C.E.J, Tehran, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 



Civil Engineering Journal         Vol. 7, No. 08, August, 2021 

1276 
 

the strut strengths in three-dimensional (3-D) structural concrete. The method accurately determines the stress levels 
of concrete struts for 3-D STM design situations. However, it is inefficient to implement in practice since the method 
requires very complicated numerical calculations and iterative 3-D finite element linear analyses of unreinforced 
concrete members and selected STMs. Therefore, strength values of concrete struts and nodal zones applicable to all 
general cases must be provided for the rational STM design of structural concrete. 

In this study, the authors presented a numerical process for determining the strengths of concrete struts and nodal 
zones in RC corbels. The approach considers the state of 2-D principal stresses at the strut and nodal zone locations, 2-
D failure envelope of concrete, deviation angle between the directions of the concrete strut and principal compressive 
stress, and the effect of concrete confinement by reinforcing bars. The process requires numerical calculations and 
iterative linear elastic finite element analyses of disturbed regions and selected STMs. Thus, for use in practice, the 
authors developed the strength equations of concrete struts and nodal zones for previous studies' typical corbel STMs. 
The authors examined the validity of strength equations by predicting 391 RC corbels' failure strengths with the 
typical STMs.  

In Section 2 of this paper, the authors introduced three types of statically determinate and indeterminate corbel 
STMs that designers employ in practice. In addition, the authors introduced the strength equations/values of struts and 
nodal zones suggested by the current design codes and the present study. In Section 3, the authors predicted the failure 
strengths of RC corbels by using three types of corbel STMs to evaluate the properness of the existing and proposed 
strength values of concrete struts and nodal zones. The authors provided a detailed STM procedure for estimating the 
failure strength of corbels with tables and figures. In Section 4, the authors concluded the research results of this 
paper. 

2. STM and Strength of Struts and Nodal Zones 

2.1. Strut-and-Tie Model   

Although the current design codes stipulate the use of the STM method for the limit state design of a corbel, they 
do not recommend STMs for RC corbels specifically. Three types of simple determinate and indeterminate STMs are 
general for corbel analysis and design. Most books and publications dealing with disturbed regions, including 
Bergmeister et al. [10], ACI 445 [17], Collins & Mitchel [20], Nawy [21], and Wight [22] introduced a determinate 
STM representing an arch mechanism, as shown in Figure 1(a). The arch mechanism transfers an external load to a 
column directly by an inclined concrete strut. KCI [19] introduced a determinate STM representing a truss mechanism, 
shown in Figure 1(b). The truss mechanism transfers an external load to a column by inclined concrete struts and a 
horizontal steel tie. Chae & Yun [18] proposed a first-order statically indeterminate STM for RC corbels. The 
proposed model, defined as a combined mechanism, is shown in Figure 1(c). As the axial forces in the indeterminate 
STM depend on the struts and ties' axial stiffness, they suggested a load distribution ratio that transforms the 
indeterminate STM into a determinate one: 

CBdaA
P

FE  2)/(100(%)                                                              (1) 

where the parameters A, B, and C are functions of the shear span-to-effective depth ratio, the compressive strength of 
the concrete, the primary tensile reinforcement ratio, the minimum flexural reinforcement, and the horizontal-to-
vertical load ratio. Details of parameters are described in the reference.  

          

                                  (a)                                                                         (b)                                                                   (c)  

Figure 1. STMs for RC Corbels. (a) Arch Mechanism. (b) Truss Mechanism. (c) Combined Mechanism 
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2.2. Strength Equations of Design Codes 

EC2 [13] proposed the following strength equation for struts and nodal zones: 

c 1 2 cdf f                                                                               (2) 

where ��� is the design value of the cylinder strength of concrete �′� in MPa. ��� equals ������/��, where ��� 
is the 

characteristic value of the cylinder strength of concrete in MPa, ��� 
(=0.85~1.0)

 
is the coefficient accounting for long 

term effects on the compressive strength, and �� (=1.5)
 
is the partial safety factor for the concrete. �� is 1.0 for the 

strut in a uniaxial compression stress state and for the nodal zone bounded by struts, bearing area, or both (CCC-nodal 
zone), 0.85 for the nodal zone anchoring one tie (CCT-nodal zone), 0.6 for the for the strut subjected to tensile stresses 
transverse to the strut, and 0.75 for the nodal zone anchoring two or more ties (CTT-nodal zone). �� is 1.0 for the strut 
in a uniaxial compression stress state, 1 − ���/250 for the strut subjected to tensile stresses transverse to the strut and 
for all nodal zones. 

FIB [1] also proposed Equation 2, where �� is 1.0 for the strut in undisturbed uniaxial compression stress states, for 
the strut in regions with transverse compression, and for CCT-nodal zone. Besides, �� is 0.75 for the strut with cracks 
parallel to the direction of compression and tension reinforcement perpendicular to this and for CCT- and CTT-nodal 
zone, and 0.55 for the strut with reinforcement running obliquely. ��	equals (30/���)

�/�. The code limits the value of 
���� to 1.0, 0.8, and 0.55 for the three cases of struts, as mentioned above, and 1.0 for all nodal zones. DIN [15] 
proposed Equation 2, too, where �� is 1.0 for the strut in uncracked compressive zones and CCC-nodal zone and 0.75 
for the strut with cracks parallel to the direction of compression and CCT- and CTT-nodal zone. ��	equals 0.4 +
0.6(0.16����/(2200���)) for lightweight concrete and 1.0 for normal weight concrete, where ���� and ���  are the 

mean values of the axial tensile strength of concrete and the characteristic tensile strength of the reinforcement. CSA 
[14] proposed the equation for the strength of concrete struts as follows: 

'

. ( ( . )cot )
c

c 2
s s s

f
f

0 80 170 0 002 a 


  
                                                    

 

(3) 

Where �� and �� are the tensile strain of a steel tie crossing a concrete strut and the smallest angle between the steel tie 
and the concrete strut, respectively. The codes suggested 0.85����� ,	0.75����� , and 0.65�����  as the strengths of 
CCC-, CCT-, and CTT-nodal zone, respectively. Here, ��  equals lesser of 2.0 and ���/��  (��= area under the 
bearing device, ��= area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained 
wholly within the support and having its upper base equal to the loaded area) if a bearing or loading plate connects to 
the nodal zone. ��	is zero if a bearing or loading plate does not connect to the nodal zone. 

Lately, ACI 318 [3] proposed the equation for the strength of concrete struts and nodal zones by considering the 
shape of a concrete strut, the amount of reinforcement confining the strut, and the influence of concrete confinement 
effect as follows: 

'0.85c c s cf f                                                   

                         

(4) 

where ��  is a strut confinement modification factor. ��  is lesser of ���/�� and 2.0 for strut whose end of a strut 
connected to a node that includes a bearing surface. �� is a factor that accounts for the effects of cracks and confining 
reinforcement. Detailed explanations, values, and related equations about ��  for strut strength are given in the 
reference. �� is 1.0, 0.8, and 0.6 for CCC-, CCT-, and CTT-nodal zone, respectively. 

2.3. Strength of Present Study  

In the present study, the authors introduce a numerical method to determine 2-D concrete struts and nodal zones' 
strength levels. The procedure of the method is as follows. 

Stage 1: After constructing a finite element model for a concrete member's disturbed region, determine the principal 
stresses (��� and ���) and principal angles of the finite elements by conducting a linear elastic finite element analysis. 
Then, construct an STM that describes a proper load transfer mechanism of the region by considering the principal 
stress trajectories and patterns of reinforcement. Lastly, collect the finite elements close to the centreline of each 
concrete strut. 

Stage 2: Determine the principal failure strengths of each collected finite element, ��� and ��� (≥ ���), by extending a 

line connecting the points (0, 0) and (���, ���) to the failure envelope straightly. Here, ��� obtained from the failure 

envelope corresponds to ���
� , the principal failure strength of a finite element acting toward the concrete strut's 

longitudinal direction. 

Stage 3: Calculate the deviation angle � between the directions of the concrete strut and the principal compressive 
stress of the finite element to adjust the principal failure strength ���

�  as follows: 
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Then, obtain the concrete strut's strength by averaging the principal failure strengths of the finite elements (that 
located near along the longitudinal axis of the strut) in the standard deviation range. The reason for taking the average 
in the standard deviation range is to minimize the effect of the variation of the stresses of the finite elements placed 
along the strut's longitudinal axis. The nodal zone's strength in the direction of the strut's longitudinal axis equals the 
average of the principal failure strengths of the finite elements located at the nodal zone area.  

Stage 4: Conduct a structural analysis of the STM using concrete struts' strengths determined in Stage 3. Then, along 
with the external forces, apply the steel ties' axial forces to the finite element model of the disturbed region and iterate 
the procedure from Stage 1. This iteration continues until the difference between the newly and previously determined 
axial forces of the steel ties reaches a tolerance limit. Figure 2 shows the iterative procedure for considering the 
confinement effect by reinforcing bars.  

  
 (a)  

               
(b) 

Figure 2. Algorithm for Considering Confinement Effect of Concrete by Reinforcing Bars. (a) Algorithm. (b) Example 

The procedure mentioned above requires considerable effort and iterative finite element analyses of the 
unreinforced concrete member and STM. Thus, the authors determined the strengths of concrete struts for the three 
types of corbel STMs shown in Figure 1 using the above procedure, considering numerous combinations of design 
variables. By using a curve-fitting process, the authors developed the strength coefficient of the concrete strut, 
��(= ��/��

�), as follows: 
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1 2 3 4s s h s h                                                                    (6) 

where �� is the tensile reinforcement ratio defined by ��	�����/��	�����, �� is the horizontal shear reinforcement ratio 

defined by ��	�����/��	����� , and �/�  is the shear span-to-effective depth ratio of the corbel. Here, ��	�����  and 

��	����� are the areas of the primary tensile and horizontal shear reinforcing bars that will be (or were) placed be in a 

corbel, respectively. ��	����� (= (� × �/� + ��)/��, � = 0.9�, and �� is the yield strength of the steel) and ��	����� 

(=(� × �/�)/��) are the areas of the primary tensile and horizontal shear reinforcing bars that resist the external 

vertical force �and horizontal force ��. The strength coefficient is valid for the corbels with ranges of 0.4 ≤ �� ≤ 1.0, 
0 ≤ �� ≤ 1.0, and �/� ≤ 1.40. The parameters �� (� = 1~4) for the strength coefficient of strut � are as follows: 

2
1

2
2

2
3

2
4

0.7 ( / ) 1.2( / ) 0.5

0.7( / ) 1.3( / )

0.6( / ) 1.2( / ) 0.6

0.8( / ) 1.4( / ) 1.0

a d a d

a d a d
    

a d a d

a d a d









   


 


  
   

                                                   (7) 

Figure 3 shows the strength coefficients ��  and the parameter ��  for struts � , � , � , and � . Using the same 
procedure, the authors also determined the strength of the nodal zone at node 1 (nodal zone 1) of the corbel STMs 
showed in Figure 1. By using a curve-fitting process, the authors developed the strength coefficient of nodal zone 1,

'( / )n c cf f  , in the directions of struts �, �, and � as follows: 

( 1.7 / 0.3)( / ) 0.6 / 1 / 0.3

0.8( / ) 1.3 0.3 / 1.4

n u u

n

v N P a d N P  for a d

v a d      for a d

     


   
                                (8a) 

( / 0.3)( / ) 0.5 / 0.9 / 0.3

1.3 0.3 / 1.4

n u u

n

v N P a d N P  for a d

v                           for a d

     


  
                                          (8b) 

( 0.2 / 0.1)( / ) 0.4 / 1 / 0.3

0.1( / ) 1.1 0.3 / 1.4

n u u

n

v N P a d N P  for a d

v a d      for a d

     


   
                                            (8c) 

In Equation 8, the maximum value of ��/� is limited to 0.20. The nodal zone at node 2 (nodal zone 2) of the 
corbel is the CCC-node confined by all the struts framing into the node. Thus, the authors recommend 0.95 for the 
strength coefficient. 

 

 

Figure 3. Strength Coefficients of Concrete Struts (�� = �. �,� �/� = �. �) 
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3. Verifications  

Using the three types of STMs shown in Figure 1, the authors predicted 380 RC corbels' failure strengths to 
examine the properness of the existing and proposed strength values of concrete struts and nodal zones. The corbels 
were tested by Kriz & Raths [23], Hermansen & Cowan [24], Mattock et al. [25], Fattuhi & Hughes [26, 27], Yong & 
Balaguru [28], Fattuhi [29-31], Foster et al. [32], Bourget et al. [33], Campione et al. [34, 35], Yang et al. [36], Urban 
& Krawczyk [37], Khosravikia et al. [38], Wilson et al. [39], Abdul-Razzaq & Dawood [40], Ivanova et al. [41], 
Abdulridha et al. [42], Romanichen and Souza [43], Al-Talqany and Alhussainy [44], and Shakir [45]. Table 1 shows 
the specifications and ranges of the primary design variables of the corbels. The references above provide the test 
setups, rebar details, failure patterns, and additional details. 

3.1. Strength Prediction Using Determinate STMs 

The authors used corbel PG2, one of the corbels tested by Foster et al. [32], to illustrate the procedure for 
predicting the corbel's failure strength by using determinate STMs. Figure 4 shows the geometrical shape and 
reinforcement details of the corbel. The shear span-to-effective depth ratio �/�, the  

Table 1. Details of RC Corbels tested to Failure. 

Investigators 
No. of  

Corbels 
� 

(mm) 
� 

(mm) 
� 

(mm) 
� 

(mm) 
��
�  

(MPa) 
�� 

(MPa) 
�/� �/���� 

Kriz & Raths [23] 185 203-406 152-610 307-1059 457-660 16.9-42.2 293-498 0.11-0.62 0.601-6.675 

Hermansen & Cowan [24] 40 152-228 152-381 119-375 254-406 17.6-49.2 317-359.3 0.29-1.01 1.120-14.165 

Mattock et al. [25] 28 152 152-330 221-231 254 23.8-30.7 321-447 0.22-1.02 2.956-9.615 

Fattuhi & Hughes [26, 27] 21 150-152 150-152 103-135 148-150 32.2-57.4 491-558 0.44-1.04 1.801-4.145 

Fattuhi [29-31] 28 150-154 150-152 92-226 150-251 24.6-70.7 427-454 0.44-1.46 1.110-11.459 

Yong & Balaguru [28] 14 254 356 305 406 39.2-79.5 420 0.25-0.75 0.902-3.154 

Foster et al. [32] 30 125-150 300-550 450-740 600-800 45.0-105 415-495 0.30-1.00 0.678-8.189 

Bourget et al. [33] 7 150 300 321-338 360 70-132 525-550 0.25-0.38 0.652-1.642 

Campione et al. [34, 35] 12 160 160 130-140 140-160 48.5-79 488-570 0.84-1 1.191-3.534 

Yang et al. [36] 2 160 160 303 350 83.8 499 0.33 2.656 

Urban & Krawczyk [37] 3 200 200 225-284 245-300 23.9-35 409-628 0.52-0.66 1.519-4.133 

Khosravikia et al. [38] 3 355 355 572 610 29.4 471-570 0.58 3.054-4.165 

Wilson et al. [39] 4 355.6 355.6 558.8 610 36-47.1 487-506 0.59-0.65 2.966-4.130 

Abdul-Razzaq & Dawood [40] 3 115 250 350 390 33.0-33.7 450 0.5-1.5 5.076-5.183 

Ivanova et al. [41] 1 150 300 340 360 30.0 585 0.45 1.697 

Abdulridha et al. [42] 2 150 200 200 250 28.0-57.0 401 0.84 2.104-4.214 

Romanichen & Souza [43] 2 200 250 350 400 25.0 493 0.60-1.00 5.774 

Al-Talqany & Alhussainy [44] 4 150 150 127.5 150 80.5 493 0.50-1.00 1.885-2.312 

Shakir [45] 2 200 200 220 250 57.1 510 0.70-1.00 3.400 

Total 391 115-406 150-610 92-1059 148-800 16.9-132 293-628 0.11-1.5 0.601-14.165 

�,�,�,ℎ: width, overhanging length, effective depth, height of corbel; ��
�: compressive strength of concrete; ��: yield strength of steel; �/�: shear span-to-effective depth 

ratio; �: flexural reinforcement ratio; ����: minimum flexural reinforcement ratio 

Primary tensile reinforcement ratio �/����, the compressive strength of the concrete ��
�, the yield strengths of the 

primary tensile and horizontal shear reinforcing bars ��, and the width of loading plate are 0.60, 2.94, 94.0 MPa, 415 
and 490 MPa, and 100 mm, respectively. 
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Figure 4. Rebar Details of Corbel PG2 

Figures 5(a) and (b) show the determinate STMs for corbel PG2. In the models, the authors placed steel ties A and 
E at the centroid of the primary tensile and horizontal shear reinforcing bars. The authors located the horizontal 
concrete struts crossing the column to fit their widths' lower boundary lines to the bottom end of the corbel. The 
widths of the horizontal concrete struts are the same as the equivalent rectangular stress block's depth defined as 
����/(0.85��

��) (�� is the primary tensile reinforcement area and �=150 mm). The location of the vertical concrete 
strut placed at the column is dependent on the horizontal coordinate of node 2. In this study, as the failure strength 
changes according to the horizontal coordinate of node 2, the authors considered three different cases of horizontal 
coordinates of node 2. 

   

                               (a)                                                                  (b)                                                                      (c) 

Figure 5. STMs for Corbel PG2. (a) Arch Mechanism. (b) Truss Mechanism. (c) Combined Mechanism 

The authors determined the failure strength of corbel PG2 by using the STM methods of current design codes, 
requiring the verification of STM elements' load-carrying capacities, including concrete struts, steel ties, and nodal 
zones. The authors examined the load-carrying capacity by comparing the element's available area with its required 
area. The available areas of concrete struts and the nodal zone boundaries were determined by the ACI-ASCE 445 
approach [46], which considers the STM's geometric shape and the loading and bearing plates' sizes. The steel tie's 
available area is the same as the area of reinforcing bars placed within the effective width of a steel tie. Figure 6 shows 
the available widths (areas) of the struts and ties of the determinate STMs. For cases in which two or three struts share 
one boundary of the nodal zone shown in Figures 6(b) and (c), the authors used the KCI [19] procedure (illustrated in 
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Figure 6(d) for a nodal zone under a loading plate) to determine the available widths of the struts. The authors 
obtained the required areas of the struts and ties under an experimental failure load by dividing the axial forces (shown 
in Figure 5) by their strengths. The authors also determined the required areas at the boundaries of a nodal zone by 
dividing the axial forces of the struts and ties framing the nodal zone by the nodal zone's strength. 

The authors accounted for the tension-stiffening effect in the strength predictions by increasing the available area 
of horizontal steel tie A to the following amount:  

, , /tie add tie c TS yA A f f                                                                       (9) 

       

                                (a)                                                                (b)                                                                  (c) 

(d)      

Figure 6. Available Widths of Concrete Struts and Nodal Zones in Corbel PG2 STMs. (a) Arch Mechanism. (b) Truss 

Mechanism. (c) Combined Mechanism. (d) Available Strut Widths at Node 1 of Combined Mechanism. 

where ����,�  is the cross-sectional area of concrete at the location of steel tie � , ��  is the yield strength of the 

reinforcing bars in the tie, and ��� is the concrete tensile stress suggested by Lee et al. [47]: 

. . '( . . )0 57 0 76
TS s b s cf 0 0313 d 3 3881 f                                                 (10) 

In Equation 10, �� and �� are the reinforcement ratio and the tie’s rebar diameter, respectively. 

Table 2 illustrates a detailed procedure for predicting the failure strength of corbel PG2 with the arch mechanism 
STM, proposed strut strengths, and Bergmeister et al.’s [10] nodal zone strength. As shown in the table, concrete strut 
D failed at a load of 888.3 kN (84.6% of the experimental failure load), and nodal zone 1 did not fail at this load. Thus, 
84.6% of the failure load proved to be its failure strength. The nodal zone 2 did not fail in all corbels in tests; 
therefore, the authors did not verify the strength of nodal zone 2. The authors predicted the corbels' failure strengths 
with variable horizontal coordinates of node 2 using different strength values of concrete struts and nodal zone 1. 

Table 3 lists the strength analysis results estimated by using determinate arch and truss corbel STMs. The average 
ratios of the calculated strength to experimental strength (and COV) by the determinate arch mechanism STM with the 
strut and nodal zone strengths of EC2, DIN, FIB, CSA, ACI 318, and the present study are 0.77 (34.9%), 0.81 
(31.9%), 0.66 (28.5%), 0.87 (31.2%), 0.74(39.7%), and 0.97 (28.3%), respectively. The predicted failure strengths of 
391 corbels are reasonably well on average by the determinate arch mechanism STM with the proposed strut and 
nodal zone strengths. 
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Table 2. Failure Strength Estimation of Corbel PG2 by Determinate Arch Mechanism STM 

(a) Failure Strength Verification of Strut and Tie 

Strut No. �� ��
�  (MPa) ��� (MPa) �� (kN) ������ (mm) ������ (mm) ������/������ Safety 

D 0.78 94.0 72.9 1296.2 118.6 100.3 0.846 × 

Tie No. �� �� (MPa) ��� (MPa) �� (kN) ������ (mm2) ������ (mm2) ������/������ Safety 

A 1.00 415.0 415 760.0 1831.3 1995.7 1.090 ○ 

��	and ��: coefficients of strengths of strut and tie; strength of concrete strut ��� = ����
�; strength of steel tie ��� = ����; ��: axial force under experimental failure load of 

1050kN; ������ = ��/(����); ������: available width of concrete strut (refer to Figure 6(a))  
 

(b) Failure Strength Verification of Nodal Zone  

Node No. Node Type �� �,��	(mm2) �� ��
�	(MPa) ���	(MPa) ��	(kN) ������ (mm) ������ (mm) ������/������ Safety 

1 CCT 0.65 
500 150, 

100  150 
1.30 94.0 122.2 

P 888.2 48.5 100.0 2.064 ○ 

Strut D 1096.4 49.0 223.6 4.566 ○ 

Tie A 642.8 35.1 200.0 5.703 ○ 

��(= ����/��, �/�� ≤ 4, �� = 0.8 for ��
� ≥ 70): coefficient of strength of nodal zone by Bergmeister et al. [10]; strength of nodal zone ��� = ����

�; ��: axial force at nodal 

zone boundary under 84.6% of experimental failure load; �: applied load (=84.6% of experimental failure load); ������: available width of nodal zone boundary (refer to Figure 

6(a)) 

Table 3. Failure Strength Estimated by Determinate Corbel STMs 

(a) Arch Mechanism STM   

/cal testP P  

                      Strut & Node  
                      Strength 

    STM Model 
EC2 [13] DIN [15] FIB [1] CSA [14] ACI 318 [3] Present Study 

Model (A) 0.65 0.76 0.57 0.82 0.69 0.90 

Model (B) 0.77 0.83 0.68 0.89 0.76 1.00 

Model (C) 0.80 0.83 0.71 0.89 0.77 1.00 

Mean (391)* 0.77 0.81 0.65 0.87 0.74 0.97 

COV (%) 34.9 31.9 37.9 31.2 39.7 28.3 

(A)~(C): STMs whose horizontal coordinates of node 2 are located at distances of 10, 15, and 20% of column width from the left face of the column, respectively; COV: 
coefficient of variation; ( )*: number of corbels. 

 
(b) Truss Mechanism STM   

/cal testP P  

                           Strut & Node  
                         Strength 

    STM Model 
EC2 [13] DIN [15] FIB [1] CSA [14] ACI 318 [3] Present Study 

Model (A) 0.68 0.77 0.58 0.64 0.63 0.82 

Model (B) 0.76 0.83 0.66 0.73 0.69 0.98 

Model (C) 0.78 0.82 0.69 0.73 0.72 1.01 

Mean (146)* 0.74 0.81 0.64 0.70 0.68 0.94 

COV (%) 33.5 32.0 36.8 39.0 34.5 29.6 

( )*: number of corbels having horizontal shear reinforcing bar(s); Yielding of steel ties describing horizontal shear reinforcing bars is prevented. 

The authors speculate that the more conservative results by the design codes come from using the improper (lower) 
strengths of struts and nodal zones. The average strength coefficients of the inclined strut (and CCT nodal zone) in the 
arch mechanism STM by EC2, DIN, FIB, CSA, and ACI 318 are 0.51(0.72), 0.64(0.64), 0.44(0.61), 0.76(0.76), and 
0.56(0.69), respectively. Whereas the average strength coefficient by the present study is 0.85(1.03). The differences 
in the strength coefficients between the design codes and the present study are mainly due to the different ways of 
considering the confinement effects by reinforcing bars. Besides, the expected failure strengths of 146 corbels (with 
horizontal shear reinforcing bars) are reasonably well by the truss mechanism STM with the proposed strengths. The 
same inference about the strength analysis results applies to the truss mechanism STM. The average strength 
coefficients of the inclined struts B, C, F, and G (and CCT nodal zone) in the truss mechanism STM in Figure 5(b) by 
EC2, DIN, FIB, CSA, ACI 318, and the present study are 0.51(0.72), 0.64(0.64), 0.44(0.61), 0.54-0.85(0.76), 0.46-
0.58(0.69), and 0.59-1.11(0.91-1.05), respectively. These outcomes imply that the proposed strut and nodal zone 
strengths are appropriate for analyzing and designing a corbel with the determinate STMs.  
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3.2. Strength Prediction Using Indeterminate STM 

By using the indeterminate STM shown in Figure 1(c), the authors examined the failure strengths of the corbels 
tested to failure. The same corbel, PG2, was used to illustrate the strength evaluation procedure. Figure 5(c) shows the 
selected indeterminate STM for corbel PB2. The authors located the steel ties A and E at the centroid of the primary 
tensile and horizontal shear reinforcing bars. The authors placed the horizontal concrete strut crossing the column to fit 
the lower boundary line of its width to the corbel's bottom end. The width of the horizontal concrete strut equals the 
depth of an equivalent rectangular stress block. As the failure strength changes according to the horizontal coordinate 
of node 2, the authors considered three different cases of horizontal coordinates of node 2, as in the determinate STMs. 

The authors determined the failure strength of corbel PG2 by verifying the load-carrying capacities of STM 
elements, including concrete struts, steel ties, and nodal zones. The authors examined the load-carrying abilities by 
comparing the elements' available areas with their required areas. The authors obtained the available areas using the 
ACI-ASCE 445 approach [46], as in the determinate STMs. The authors considered the tension-stiffening effect at the 
location of steel tie A. Figure 6(c) shows the available widths (areas) of the struts and ties. The required areas of the 
struts and ties were obtained by dividing the axial forces shown in Figure 5(c) by their strengths. The authors 
calculated the elements' axial forces using the equilibrium equations at the nodes of determinate STM. Since the STM 
is an indeterminate truss structure, the authors used the load distribution ratio �  (%), defined in Equation 1, to 
transform the indeterminate truss structure into a determinate structure. 

Table 4 and Figure 7 explain a detailed procedure for evaluating the failure strength of corbel PG2 by using the 
indeterminate STM with the proposed strut strengths and Bergmeister et al.’s [10] nodal zone strength. Since the 
indeterminate STM reflects both the arch and truss load transfer mechanisms simultaneously, the authors determined 
the failure strength of the corbel following the sequential failure of both load transfer mechanisms. As illustrated in 
Table 4(a) and Figure 7(a), the first failure of the indeterminate STM occurred by the steel tie E's yielding at a load of 
289.5 kN (27.6% of the experimental failure load). After the first failure, the indeterminate STM became determinate 
arch mechanism STM one, as shown in Figure 7(b). The arch mechanism STM could still transfer a fraction of the 
applied load to the column by steel tie A and inclined strut D. The authors added the remaining areas of struts B and C 
to the area of strut D at the boundary of nodal zone 1. As shown in Table 4(b) and Figure 7(c), the second failure of 
the STM occurred due to strut D's failure under an additional load of 709.7 kN (67.6% of the experimental failure 
load). After the second failure, the STM became an unstable truss structure that could not carry any additional load, as 
shown in Figure 7(d). At 999.2 kN (289.5+709.7 kN, 95.2% of the experimental failure load), which the indeterminate 
STM could carry to the utmost limit by the concrete struts and steel ties, the authors examined the strength of the 
nodal zone 1, as illustrated in Table 4(c) and Figure 7(e). Since nodal zone 1 did not fail, 95.2% of the experimental 
failure load becomes the corbel's failure strength. Since the nodal zones 2, 3, and 4 did not fail in all corbel tests, the 
authors did not verify those nodal zones' failure. Similarly, the authors predicted the corbels' failure strengths with 
variable horizontal coordinates of node 2 by using different strength values of concrete struts and nodal zone 1.  

Table 4. Failure Strength Estimation of Corbel PG2 by an Indeterminate STM 

(a) Failure Strength Verification of Struts and Ties at the First State 

Strut No. �� ��
�  (MPa) ��� (MPa) �� (kN) ������ (mm) ������ (mm) ������/������ Safety 

B 0.48 94.0 45.6 221.4 32.4 43.1 1.330 ○ 

C 0.62 94.0 58.1 389.6 44.7 75.8 1.695 ○ 

D 0.79 94.0 74.0 749.5 67.5 86.5 1.281 ○ 

F 0.81 94.0 75.9 389.6 34.2 45.0 1.314 ○ 

G 0.81 94.0 75.9 221.4 19.4 25.6 1.314 ○ 

Tie No. �� �� (MPa) ��� (MPa) �� (kN) ������ (mm2) ������ (mm2) ������/������ Safety 

A 1.00 415.0 415.0 760.0 1831.3 1995.7 1.090 ○ 

E 1.00 420.0 420.0 320.6 763.2 210.4 0.276 × 

��	and ��: coefficients of strengths of strut and tie; strength of concrete strut ��� = ����
�; strength of steel tie ��� = ����; ��: axial force under experimental failure load of 

1050kN; ������ = ��/(����); ������: available width of concrete strut (refer to Figure 6(c)). 

(b) Failure Strength Verification of Strut and Tie at the Second State 

Strut No. �� ��
�  (MPa) ��� (MPa) �� (kN) ������ (mm) ������ (mm) ������/������ Safety 

D 0.79 94.0 74.0 1296.2 116.8 78.9 0.676 × 

Tie No. �� �� (MPa) ��� (MPa) �� (kN) ������ (mm2) ������ (mm2) ������/������ Safety 

A 1.00 415.0 415.0 760.0 1831.3 1490.8 0.814 × 

��: axial force under experimental failure load of 1050kN; ������: available width of concrete strut after the first failure (refer to Figure 7(b)). 
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(c) Failure Strength Verification of Nodal Zone 

Node No. Node Type �� �,��	(mm2) �� ��
�	(MPa) ���	(MPa) ��	(kN) ������ (mm) ������ (mm) 

������

/������ 
Safety 

1 CCT 0.65 
500×150, 

100×150 
1.30 94.0 122.2 

P 999.2 54.5 100.0 1.835 O 

Strut B 61.0 

55.1 223.6 4.059 O Strut C 107.4 

Strut D 1082.7 

Tie A 723.2 39.5 200.0 5.069 O 

��(= ����/��, �/�� ≤ 4, �� = 0.8 for ��
� ≥ 70): coefficient of strength of nodal zone by Bergmeister et al. [10]; strength of nodal zone ��� = ����

�; ��: axial force under 

95.2%(=27.6+67.6) of experimental failure load; �: applied load (=95.2% of experimental failure load); ������: available width of nodal zone boundary (refer to Figure 7(e)). 

(a)       (b) 

 (c)    (d)   (e) 

Figure 7. Failure Strength Estimation of Corbel PG2 by an Indeterminate STM. (a) Required Widths/Areas of Struts and 

Ties at First Failure. (b) Remaining Capacity of Strut and Tie after First Failure. (c) Required Widths/Areas of Struts and 

Ties at Second Failure. (d) Unstable STM after Second Failure. (e) Strength Verification of CCT Nodal Zone.  

Table 5 summarizes the strength analysis results for the 146 corbels. The average ratios of the calculated strength 
to experimental strength (and COV) by the indeterminate arch mechanism STM with the strut and nodal zone 
strengths of EC2, DIN, FIB, CSA, ACI 318, and the present study are 0.74 (32.9%), 0.82 (31.1%), 0.65 (36.6%), 0.88 
(29.5%), 0.85 (30.5%), and 0.99 (27.0%), respectively. The proposed strut and nodal zone strengths with the 
indeterminate STM predicted the failure strengths most accurately, implying that the recommended strength values are 
adequate for corbels' design using the indeterminate STM. The more conservative results by the design codes come 
from using the lower strengths of struts and nodal zones. The average strength coefficients of the inclined strut D (and 
CCT nodal zone) in the combined mechanism STM in Figure 5(c) by EC2, DIN, FIB, CSA, ACI 318, and the present 
study are 0.51(0.72), 0.64(0.64), 0.44(0.61), 0.76(0.76), 0.56(0.69), and 0.86(0.91), respectively. When comparing 
Tables 3 and 5, the indeterminate STM yields better results than the determinate STMs, indicating that corbels' failure 
strengths are affected by the type of STM used. Figure 8 compares some of the strength analysis results. 
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Table 5. Failure Strength Estimated by an Indeterminate STM 
/cal testP P  

                           Strut & Node  
                         Strength 

   STM Model 
EC2 [13] DIN [15] FIB [1] CSA [14] ACI 318 [3] Present Study 

Model (A) 0.67 0.77 0.58 0.82 0.81 0.90 

Model (B) 0.77 0.85 0.66 0.91 0.87 1.02 

Model (C) 0.79 0.85 0.70 0.91 0.87 1.04 

Mean (146)* 0.74 0.82 0.65 0.88 0.85 0.99 

COV (%) 32.9 31.1 36.6 29.5 30.5 27.0 

(A)~(C): STMs whose horizontal coordinates of node 2 are located at distances of 10%, 15%, and 20% of column width from the left face of the 
column, respectively; COV: coefficient of variation; ( )*: number of corbels having horizontal shear reinforcing bar(s) 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Failure Strengths Estimated by Determinate and Indeterminate STMs. (a) Arch Mechanism. (b) Truss 

Mechanism. (c) Combined Mechanism 
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4. Conclusion 

For the safe and economical design of RC corbels using the STM methods, designers must accurately determine 
the strength of concrete struts and nodal zones. In this study, the authors suggested a numerical process for 
determining the strengths of concrete struts and nodal zones in RC corbels. Besides, for practical application of the 
recommended process, the authors proposed the strut strength equations that apply to the typical determinate and 
indeterminate STMs of RC corbels. The authors considered the effects of the primary corbel design variables, 
including the shear span-to-effective depth ratio, the horizontal-to-vertical load ratio, and the primary tensile and 
horizontal shear reinforcement ratios in the development of the strength equations. The authors evaluated the validity 
of the proposed strut and nodal zone strengths by predicting tested 391 RC corbels' failure strengths. In the strength 
prediction, the authors employed three typical determinate and indeterminate corbel STMs. The average ratios of the 
calculated strength to experimental strength (and COV) by the strut and nodal zone strengths of EC2, DIN, FIB, CSA, 
ACI 318, and the present study are 0.74~0.77 (32.9~34.9%), 0.81~0.82 (31.1~32.0%), 0.64~0.65 (36.6~37.9%), 
0.70~0.88 (29.5~39.0%), 0.68~0.85 (30.5~39.7%), and 0.94~0.99 (27.0~29.6%), respectively. The failure strengths 
predicted by the proposed strengths are consistent. They agree reasonably well with experimental results, indicating 
that the proposed strut and nodal zone strengths can be useful for RC corbels' rational STM design. 
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