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Abstract 

Natural or human-induced variability emerged from investigation of the traditional stationary assumption regarding 

extreme precipitation analyses. The frequency of extreme rainfall occurrence is expected to increase in the future and 

neglecting these changes will result in the underestimation of extreme events. However, applications of extremes accept 

the stationarity that assumes no change over time. Thus, non-stationarity of extreme precipitation of 5, 10, 15, and 30 

minutes and 1-, 3-, 6-, and 24-hour data of 17 station in the Black Sea region were investigated in this study. Using one 

stationary and three non-stationary models for every station and storm duration, 136 stationary and 408 non-stationary 

models were constructed and compared. The results are presented as non-stationarity impact maps across the Black Sea 

Region to visualize the results, providing information about the spatial variability and the magnitude of impact as a 

percentage difference. Results revealed that nonstationary (NST) models outperformed the stationary model for almost 

all precipitation series at the 17 stations. The model in which time dependent location and scale parameter used (Model 

1), performed better among the three different time variant non-stationary models (Model 1 as time variant location and 

scale parameters, Model 2 as time variant location parameter, and Model 3 as time variant scale parameter). Furthermore, 

non-stationary impacts exhibited site-specific behavior: Higher magnitudes of non-stationary impacts were observed for 

the eastern Black Sea region and the coastal line. Moreover, the non-stationary impacts were more explicit for the sub-

hourly data, such as 5 minutes or 15 minutes, which can be one of the reasons for severe and frequent flooding events 

across the region. The results of this study indicate the importance of the selected covariate and the inclusion of it for the 

reliability of the model development. Spatial and temporal distribution of the nonstationary impacts and their magnitude 

also urges to further investigation of the impact on precipitation regime, intensification, severity. 
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1. Introduction 

It is now accepted that precipitation patterns are changing because of changing climatic conditions [1]. Increasing 

temperature owing to anthropogenic factors increases the water holding capacity of the atmosphere, which most 

probably results in increased precipitation [2-7]. These changes increase the probability of higher frequency and 

severity of extreme rainfall with unexpected outcomes [8-10]. For instance, Myhre et al. (2019) [11] investigated 

extreme indices and indicated the increasing magnitude of extreme weather events is in accordance with increasing 

temperature based on historical trends over Europe. Sun et al. (2021) [12] also reported that intensifying of extreme 

precipitation is connected with warming temperature over the areas including Europe, Asia, and North America for the 

observations ending in 2018.  
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Croitoru et al. (2013) [13] found similar results in regions such as Europe or the entire globe and revealed that most 

of the daily extreme precipitation indices show increasing trend tendencies. In addition, Huo et al. (2021) [14] 

indicated the sign of non-stationary behavior of extreme precipitation in Europe based on their study, in which they 

considered long-term historical records and future projections.  

Rainfall and extreme rainfall in Turkey and surrounding regions have been also the subject of interest in various 

studies, in which a remarkable spatial variation has been demonstrated among the results of these studies. Türkeş 

(2012) [15] showed that annual total precipitation over the northern and eastern parts of the Black Sea region and the 

Central and Eastern Anatolia regions of Turkey have an increasing trend behavior. The Mediterranean, Southern and 

Central regions of Turkey mostly face a decreasing trend in total precipitation, whereas the Black Sea and Northern 

regions show an increasing trend [16-18]. Paxian et al. (2015) [19] investigated the precipitation changes over the 

Mediterranean basin in terms of frequency and intensity and indicated decreasing totals and increasing extremes for 

the northern Mediterranean regions, particularly over the Iberian Peninsula and Turkey in the future. Sensoy et al. 

(2013) [20] found an increasing maximum daily precipitation trend at most weather stations in Turkey. Abbasnia and 

Toros (2020) [21] revealed a significant difference in extreme indices between coastal and inland stations and 

indicated a slight increase of annual total precipitation in the northeast region of the Black Sea. Tokgöz and Partal 

(2020) [22] indicated a general increasing trend for annual precipitation and temperatures in the Black Sea Region. 

Furthermore, studies based on frequency analyses have revealed that climate change can alter the distribution 

parameters of extreme events, that is, distribution of extremes can have non-stationary characteristics over time, which 

can change the occurrence of probability [23-27]. However, under changing climatic conditions, frequency, and 

probability analyses of hydroclimatological variables should be conducted considering possible nonstationarities [28-

30]. Precipitation events are random processes and making good predictions are crucial, especially for extreme events 

within this random framework. On the other hand, to capture the characteristics and the patterns, long-term and good-

quality data is a prerequisite. Furthermore, for pluvial or flash flood estimation, which urban areas mostly face, it is 

necessary to obtain short-term behavior and variability of extremes. This is particularly important for regions such as 

the Black Sea region, which accommodate geophysical features such as various land-use and land-cover types, 

irregular terrain, and land-sea interaction dynamics [17, 31]. It is also important to determine the spatial and temporal 

variations of extremes in regions with topography such as the Black Sea region, which is one of the regions exposed to 

meteorological hazards from extreme precipitation [17, 32, 33]. 

In the present study, the well-known generalized extreme value (GEV) distribution is utilized to determine the 

impact of non-stationary behavior of the annual maximum precipitation series of 5–10–15–30 minutes and 1–3–6–24–

hours at 17 stations in the Black Sea region of Turkey (Figure 1) in terms of magnitude and regionality. Previous 

studies that have investigated the effect of non-stationary behavior of weather in Turkey have generally focused on 

analyzing the trend of precipitation series by statistical tests. However, traditional trend tests may not be satisfactory 

for the detection of the nonstationarity [34, 35]. On the other hand, in this study, the location and/or scale parameters 

of the GEV distribution were set to be time-dependent and the effect of nonstationarity were determined based on 

model superiority. Furthermore, data from 5 minutes to 24 hour annual maximum precipitation was examined. The 

results of this study also considerable because of the floods and hazards that the region is exposed recently. 

Nonstationary impact over the extreme precipitation is quantified for the region and the most impacted sub-regions 

were illustrated. The non-stationary model fit was examined by the Negative Log-Likelihood (NLL) values of the 

stationary and non-stationary models and best fit nonstationary GEV model obtained among the studied ones. 

2. Material and Methods  

2.1. Study Area and Data 

The Black Sea region, which is in the north of Turkey (Figure 1), had an average of 628.6 and 604.9 mm areal 

precipitation in 2019 and 2020 respectively while the normal is 696.5 mm. The coastal line of the Black Sea region 

has the highest number of rainy days. According to the Turkish State Meteorological Service (TSMS), the Black Sea 

coast receives the highest amount of rainfall and has a continuous rainy season throughout the year [36].  

The Black Sea is a humid region in Turkey that has a temperate climate with cooler winters and warmer summers 

(summer 23°C, winter 7°C), although local geographical factors create distinct local climatic characteristics [37-39]. 

In this study, the annual standard duration maximum precipitation data of selected stations were obtained from TSMS 

and used for the analyses. The names, station IDs, coordinates, elevation, and data ranges of the selected stations are 

provided in Table 1. 

https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.1776#met1776-bib-0045


Civil Engineering Journal         Vol. 7, No. 09, September, 2021 

1622 

 

 

 
Figure 1. Selected 17 stations in the Black Sea region of Turkey 

Table 1. The 17 stations that were selected to analyze the effect of non-stationary in the Black Sea region of Turkey 

Station ID Lon Lat Elevation (m) Data Range 

Amasya 17085 35.8353 40.6668 409 1965-2015 

Artvin 17045 41.8187 41.1752 613 1991-2015 

Bartin 17020 32.3569 41.6248 33 1966-2015 

Bayburt 17089 40.2207 40.2547 1584 1966-2015 

Bolu 17070 31.6022 40.7329 743 1958-2015 

Corum 17084 34.9362 40.5461 776 1958-2015 

Duzce 17072 31.1488 40.8437 146 1965-2015 

Giresun 17034 38.3878 40.9227 38 1966-2015 

Gumushane 17088 39.4653 40.4598 1216 1966-2015 

Kastamonu 17074 33.7756 41.3710 800 1985-2015 

Ordu 17033 37.8858 40.9838 5 1965-2015 

Rize 17040 40.5013 41.0400 3 1952-2015 

Samsun 17030 36.2563 41.3441 4 1957-2015 

Sinop 17026 35.1545 42.0299 32 1965-2015 

Tokat 17086 36.5577 40.3312 611 1966-2015 

Trabzon 17037 39.7649 40.9985 25 1957-2015 

Zonguldak 17022 31.7779 41.4492 135 1945-2015 

2.2. Methods 

Stationary and non-stationary models with time as covariate were constructed and model performance were 

investigated to determine whether stationary or non-stationary models perform best. Storm durations of 5, 10, 15, 30 

minutes and 1, 3, 6, 24 hours of the annual maximum rainfall data with GEV distribution used at the selected stations. 

The nonstationarity impacts were determined by calculating model superiority. For exploring the model superiority, 

the negative log likelihood (NLL) values’ percentage differences of stationary and non-stationary cases were 

calculated. extRemes [40], an R package that contains suit of functions for performing extreme value analysis were 

used to obtain GEV models. Extreme value analysis (EVA) is the preferred method to examine meteorological 

extremes considering the tail behavior of the concerned distributions to determine the distribution of extremes [41- 

47].  

Probabilistic distribution functions are used in the Extreme Value Theory, which has a broad field of applications 

[48]. Considering the annual maximum series such as those used in this study, the GEV distribution can be properly 

fitted the maxima. [49]. The cumulative distribution function (CDF) of GEV can be represented by the location (μ), 

scale (σ), and shape (ξ) parameters (Equation 1) [41, 48]; 

G(𝑧) = exp[−{1 + ξ(
z−μ

σ
)}+

−1/𝜉], (1) 

where z+ = max{z, 0}, σ > 0, and −∞ < μ, ξ < ∞. 

 



Civil Engineering Journal         Vol. 7, No. 09, September, 2021 

1623 

 

 

The GEV is separated into three well-known extreme distributions based on the sign of shape parameter, ξ’s sign. 

Distributions result from ξ > 0, ξ < 0, and ξ → 0 corresponds to Fréchet, Weibull, and Gumbel, respectively [41, 42, 

49]. For this study, stationary and non-stationary GEV models used the annual maximum precipitation series. To 

accurately model these series, the block maxima approach (BM) was used, which utilizes blocks of maximums. 

Distribution parameters of the constructed models were estimated using maximum likelihood estimation (MLE) [41, 

50-53]. 

Under non-stationary conditions, the distribution parameters of GEV become dependent on time and the stationary 

assumption is violated, which assumes parameters do not change over time. To reflect the changing conditions, the 

distribution parameters were expressed with time varying or other covariates such as climatic variables. In the present 

study, the time-dependent GEV parameters used and the location and scale parameters, were assumed to be time-

dependent, whereas the shape parameter remained constant for the non-stationary cases. A description of the non-

stationary models with regard to distribution parameters are presented in Table 2. Then the outperformed model fit 

was determined by Negative Log-Likelihood (NLL) [54] and impact of nonstationarity was determined by the percent 

change value between stationary and its corresponding non-stationary NLL values for the models in Equation 2. 

(
𝑁𝑆𝑇 𝑁𝐿𝐿−𝑆𝑇 𝑁𝐿𝐿

𝑆𝑇 𝑁𝐿𝐿
) × 100                                (2) 

Table 2. Non-stationary models and parameters 

Model Location Scale Shape 

1 𝜇t = 𝛽0 + 𝛽1t  𝜎t = 𝛽0 + 𝛽1t 𝜉 (constant)  

2 𝜇t = 𝛽0 + 𝛽1t 𝜎 (constant) 𝜉 (constant)  

3 𝜇 (constant)  𝜎t =𝛽0 +𝛽1t  𝜉 (constant)  

Overview of the methodology can be seen from the flowchart 

 

Figure 2. Flowchart of the methodology 

3. Results and Discussions 

Three non-stationary models and one stationary model were constructed to examine whether the 5–10–15–30 

minutes and 1–3–6–24 hours rainfall series were influenced by nonstationarity at 17 stations. NLL values were used to 

assess the performance of the models (Appendix I) percent difference between stationary case and non-stationary 

cases to investigate model superiority. Non-stationary impact maps were presented according to the performance of 

the models for subhourly and hourly durations (Figures 3 and 4). 

The results obtained from the comparison of the non-stationary/stationary model at each station for the subhourly 

extreme precipitation data is shown in Table 3. The positive percentage values in the table indicate the corresponding 

non-stationary model outperformed the stationary model of the same duration. Considering the 5 minutes extreme 

precipitation for the region, most of the non-stationary models exhibit a better fit compared with the corresponding 

stationary ones. Among the three non-stationary models, Model 1 revealed the highest performance and the stations 

Düzce, Giresun, Gümüşhane, Rize, Trabzon, and Zonguldak showed a better fit among the other stations. However, 

the 10 minutes extreme precipitation series did not show similar behavior to that of the 5 minutes series.  

 

Observed Annual 
Maximum Precipitation

GEV Models Constructed

Stationary Models For 
Evey Station

NLL Computed

Nonstationary Models 
with Time as Covariate

Model 1 For 
Evey Station

NLL Computed

Model 2 For 
Evey Station

NLL Computed

Model 3 For 
Evey Station

NLL Computed
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Although most of the non-stationary models performed better than the stationary models, the magnitude of results 

were not as high as the 5 minutes data and Bayburt, Gümüşhane, and Rize stations showed the highest performance 

among the stations. Model 1 was again the best performing model between the other models, although the difference 

was not significant. The 15 minutes model results revealed that Model 1 was also the best fitting model and results 

showed that Artvin, Bayburt, Rize, Samsun, Tokat, and Trabzon stations were the ones which non-stationary models 

showed higher magnitude of performance for the 15 minutes data. Moreover, similar behavior was observed for the 30 

minutes data as that of the 15 minutes data except for Samsun station; however, the percent change values that indicate 

model performance were higher than the 15 minutes data nonstationary models for 30 minutes data non-stationary 

models. Nevertheless, Model 1 (the model in which time was the covariate for location and scale parameters) 

exhibited better performance for all subhourly storm durations and at all stations. The effect of nonstationarity was 

more evident for subhourly extreme precipitation data at Artvin, Bayburt, Düzce, Giresun, Gümüşhane, Rize, Trabzon, 

and Zonguldak. The model performances also indicated that inclusion of covariate (nonstationarity) introduced better 

model fit for most of the distribution used in this study. 

Table 3. Non-stationary Model Performance ((NLL) percentage difference) for subhourly extreme precipitation 

 
5 Min 10 Min 15 Min 30 Min 

City Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3 

Amasya 0.75% 0.47% 0.09% 0.36% 0.27% 0.02% 0.18% 0.00% 0.17% 0.19% 0.05% 0.08% 

Artvin 0.53% 0.90% 0.49% 0.59% 0.02% 0.42% 2.39% 0.29% 1.01% 2.75% 0.01% 1.95% 

Bartin 0.67% 0.01% 0.43% 0.08% 0.00% 0.06% 0.06% 0.00% 0.03% 0.57% 0.47% 0.00% 

Bayburt 0.25% 0.17% 0.17% 1.46% 1.47% 0.50% 1.70% 1.34% 0.02% 2.51% 1.48% 0.12% 

Bolu 0.12% 0.12% 0.00% 0.07% 0.05% 0.03% 0.25% 0.21% 0.01% 0.94% 0.39% 0.05% 

Corum 0.05% 0.01% 0.01% 0.06% 0.05% 0.03% 0.09% 0.07% 0.00% 0.79% 0.37% 0.00% 

Duzce 1.60% 1.55% 0.05% 0.89% 0.16% 0.08% 0.78% 0.64% 0.11% 1.06% 0.44% 0.85% 

Giresun 1.62% 0.20% 1.51% 0.69% 0.15% 0.47% 0.25% 0.15% 0.07% 0.07% 0.00% 0.00% 

Gumushane 1.44% 0.30% 1.35% 1.20% 0.55% 1.23% 0.00% 0.46% 0.43% 0.99% 0.89% -0.01% 

Kastamonu 0.14% 0.14% 0.00% 0.37% 0.00% 0.09% 0.27% 0.00% 0.27% 0.00% 0.00% 0.00% 

Ordu 0.23% 0.10% 0.00% 0.06% 0.01% 0.03% 0.07% 0.04% 0.00% 0.24% 0.20% 0.00% 

Rize 6.07% 4.29% 3.91% 1.93% 1.41% 1.01% 1.88% 1.03% 0.95% 2.49% 1.32% 0.87% 

Samsun 0.97% 0.55% 0.00% 0.90% 0.05% 0.26% 1.13% 0.03% 0.39% 0.57% 0.15% 0.18% 

Sinop 0.58% 0.14% 0.32% 0.52% 0.00% 0.45% 0.00% 0.00% 0.02% 0.51% 0.00% 0.29% 

Tokat 0.86% 0.31% 0.47% 0.83% 0.21% 0.17% 1.05% 0.17% 0.42% 1.27% 0.30% 0.55% 

Trabzon 2.86% 2.75% 0.25% 0.85% 0.82% 0.07% 1.25% 0.73% 0.01% 1.51% 1.40% 0.07% 

Zonguldak 1.61% 1.01% 0.88% 0.27% 0.00% 0.20% 0.25% 0.05% 0.08% 0.19% 0.19% 0.03% 

As illustrated in Figure 3, the results demonstrate the non-stationary behavior at the stations for different durations, 

from 5 min to 30 min. The majority of the sites exhibited a better fitted non-stationary model result for all the 

durations. The magnitude of the performance is reflected by the color scale. It can be depicted from the figure that the 

impact of nonstationarity over extreme precipitation is more evident in the Eastern part of the Black Sea region for the 

subhourly storm durations. 

The results obtained by comparison of the non-stationary/stationary model at each station for the hourly extreme 

precipitation data are shown in Table 4 and illustrated in Figure 4. Considering the 1-hour extreme precipitation for the 

region, most of the non-stationary models also exhibited a better fit. Among the three non-stationary models, Model 1 

revealed the highest performance as it was for the subhourly data. Furthermore, Bartın, Byaburt, Bolu, and Düzce 

stations showed higher model performance than the other stations. Although most of the non-stationary models 

performed better than the stationary models for the 3 hours data, Trabzon station showed a higher non-stationary 

impact than the other stations. Considering the 6 hour and 24-hour data, Model 1 again showed the better 

performance. The 6 hours data from Bartın, Çorum, Rize, Samsun, and Trabzon stations and the 24-hour data for Rize 

station presented a higher magnitude of impact compared with the other stations. 

 

 



Civil Engineering Journal         Vol. 7, No. 09, September, 2021 

1625 

 

 

 

Figure 3. Map of non-stationary effect - Subhourly storm durations - Model 1-2-3 respectively 

Table 4. Non-stationary Model Performance ((NLL) percentage difference) for hourly extreme precipitation 

 
1 hour 3 hour 6 hour 24 hour 

City Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3 

Amasya 0.51% 0.33% 0.07% 0.58% 0.19% 0.08% 0.49% 0.09% 0.06% 0.31% 0.03% 0.11% 

Artvin 0.69% 0.63% 0.87% 0.18% 0.04% 0.02% 0.02% 0.00% 0.00% 0.06% 0.00% 0.00% 

Bartin 1.24% 0.46% 0.00% 0.97% 0.80% 0.00% 2.25% 0.30% 0.00% 0.73% 0.03% 0.00% 

Bayburt 1.96% 1.81% 0.00% 0.11% 0.07% 0.02% 0.03% 0.00% 0.02% 0.35% 0.11% 0.26% 

Bolu 1.08% 0.36% 0.30% 0.37% 0.15% 0.00% 0.26% 0.11% 0.01% 0.48% 0.00% 0.03% 

Corum 0.54% 0.28% 0.05% 0.91% 0.39% 0.03% 1.26% 0.63% 0.00% 0.52% 0.11% 0.06% 

Duzce 1.03% 0.22% 0.99% 0.21% 0.11% 0.00% 0.33% 0.28% 0.00% 0.54% 0.02% 0.04% 

Giresun 0.21% 0.00% 0.00% 0.37% 0.00% 0.00% 0.30% 0.00% 0.00% 0.28% 0.00% 0.00% 

Gumushane 0.36% 0.12% 0.01% 0.01% 0.01% 0.00% 0.29% 0.00% 0.25% 0.08% 0.03% 0.03% 

Kastamonu 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.01% 0.03% 0.00% 0.00% 

Ordu 0.00% 0.07% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Rize 0.70% 1.00% 0.08% 0.96% 0.01% 0.00% 1.32% 0.09% 0.00% 1.26% 0.24% 0.01% 

Samsun 0.90% 0.02% 0.09% 0.52% 0.26% 0.03% 1.00% 0.03% 0.05% 0.57% 0.00% 0.01% 

Sinop 0.84% 0.07% 0.45% 0.69% 0.01% 0.08% 0.59% 0.04% 0.06% 0.25% 0.04% 0.00% 

Tokat 0.83% 0.31% 0.00% 0.27% 0.08% 0.07% 0.59% 0.07% 0.31% 0.04% 0.03% 0.00% 

Trabzon 0.83% 0.30% 0.22% 1.37% 0.14% 0.02% 1.75% 0.13% 0.04% 0.41% 0.43% 0.01% 

Zonguldak 0.06% 0.05% 0.04% 0.38% 0.01% 0.09% 0.43% 0.01% 0.00% 0.04% 0.00% 0.00% 
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Figure 4. Map of non-stationary effect - Hourly storm durations - Model 1-2-3 respectively 

The results from Model 1 indicated that the Eastern Black Sea stations were exposed to the highest impact of 

nonstationarity. The coastal Giresun, Trabzon, Rize, and Artvin stations showed nonstationarity impacts together with 

the inner stations located in the Eastern Black Sea for subhourly data. Zonguldak and Düzce stations, which are 

located in the western part of the region, also showed higher nonstationarity impacts compared with the surrounding 

stations. Ay (2020) [55] stated the possible effect of local and human factors for the trend analyses of rainfall and 

temperature in the western Black Sea region and suggested these factors should be considered to evaluate trends. 

Moreover, Samsun station also showed different behavior among the centrally located stations of the Region. Yet, 

increasing nonstationarity can be one of the reasons of the extreme precipitation that the region faces. Balov and 

Altunkaynak (2018) [56] also reported an increase in the magnitude and frequency of extreme events, however, these 

results vary spatially for the western Black Sea region. They also found that the method selected for calculation, such 

as annual maxima or peak over the threshold, can influence the results. The inner regions showed higher 

nonstationarity effects when the hourly extreme precipitation data was considered. In particular, the 1-3-6 hour data of 

the central and inner parts of the region exhibited a higher magnitude in comparison with the subhourly data. Bartın 

station also presented a higher magnitude of nonstationarity impact among the western part of the region for the hourly 

storm durations. The difference in the magnitude of the nonstationarity effect at different stations depending on their 

location by the sea or the flatness of the topography can be one of the results of these varying non-stationary impacts 

throughout the region. Baltaci et al. 2018 [57] also stated that the topography and land features can also increase the 

complexity of extreme precipitation Moreover, these factors not only affect the precipitation patterns but can also 

increase the impact of extreme precipitation which increase the vulnerability for such hazard-exposed areas. 

A higher magnitude of impact does not mean a higher amount of extreme rainfall or increasing frequency, but it 

means nonstationarity has impacts that must be considered. It is noteworthy that the impact of the nonstationarity on 

the return level may have increasing or decreasing effects. The nonstationarity effect showed not only spatial 

variations but also variable results among the storm durations. However, there was a clear non-stationary effect of the 

precipitation series, and it is important to investigate these effects in terms of return level and to translate that into risk. 

Aziz and Yucel (2021) [30] reported an increasing impact of nonstationarity for the extreme precipitation in the Black 

Sea Region and obtained higher return levels for the future periods. However, extreme precipitation and total 

precipitation do not necessarily show similar behavior because the mechanisms behind these events are different. For 

instance, extreme precipitation is related to the tail behavior of the distributions, but the average or total values are 
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related to different statistics of the distribution and the atmospheric patterns. This phenomenon is also supported by 

the study of Partal and Kahya (2006) [16], who found a decrease in total precipitation for the winter months in the 

Black Sea Region, which is contradictory with the results of Aziz and Yucel (2021) [30] for the same region who also 

studied historical period and found increasing return levels for the extreme precipitation. On the other hand, this 

supports the findings of Paxian et al. (2015) [19] that claimed increase in Mediterranean extremes despite the decrease 

in precipitation totals. 

In this study, only time is used to construct nonstationary models. On the other hand, time-dependent covariates 

may not always be the best alternative to cover the variance in the data. In the literature, various forms of equations 

have been applied to the annual maximum data and represent different performances for the assessment of non-

stationary impacts [58, 59]. Therefore, it is important to apply more covariates and functions to obtain the best model 

for the precipitation series because precipitation exhibits highly spatial characteristics. For instance, Baltacı et al. 

(2018) [57] found that East Atlantic-Western Russia (EAWR) pattern affects the daily precipitation anomalies of the 

eastern Black Sea region. It is also evident in our study that precipitation characteristics change among the stations and 

storm durations and that subhourly extreme precipitation values were more affected than the hourly values. 

Incorporating nonstationarity by various covariates can also help us to understand extreme events, climatic parameters 

[51] and using various covariates enables to explore the potential drivers for the spatial and temporal variability over 

these events and parameters. 

Moreover, long-term climate records play an important role in nonstationarity analysis, so reanalysis of data sets as 

an alternative to observed data can be used. Kim et al. (2021) [59] also stated that non-stationary analyses are 

constrained because of the lack of data. As Tabari and Willems (2018) [60] found contradictory results with the 

paradigm of “wet regions get wetter, dry regions get drier under climate change”, there is still complexity to uncover 

behind the precipitation process. In our study, different results were obtained based on the model distribution 

parameters. Although the nonstationary models mostly outperformed the other models, variations among the model 

results support the complexity and the need for further explorations. Thus, it is important to explore the mechanism 

behind these changes and to conduct location-specific investigations for such a region with a varying topography and 

climate. 

4. Conclusion 

Extreme precipitation, like other extreme weather events, is hard to predict because it does not obey regular 

statistical rules. Extreme events are, by definition, rare; however, their consequences can be catastrophic. Therefore, 

studying extreme events is vital for the social, physical, and economic welfare of society. In this study, the effect of 

nonstationarity was investigated by comparing the performance of stationary and non-stationary models. Hourly and 

subhourly annual maximum precipitation values were used at the station scale. Three non-stationary models were 

constructed and their performance in terms of percentage change was compared. In general, non-stationary model 

performances were better than their corresponding stationary models; based on the model performance, it can be said 

that most of the stations and storm durations preserve non-stationary signals. In terms of storm durations, subhourly 

extreme precipitation exhibited more nonstationarity impact than the hourly maximum precipitation values. Model 1, 

in which time-dependent location and scale parameters were used, Model 2, in which a time-dependent location 

parameter was used, and Model 3, in which a time-dependent scale parameter was used, exhibited an improvement 

compared with the stationary model. Moreover, the model with time-dependent location and scale parameters 

performed better among the nonstationary models. The comparison of the model performance and determination of the 

nonstationarity impact over the Black Sea Region revealed the risk of assuming stationary behavior of extreme 

precipitation. It is known that extreme precipitation events are essential inputs for many engineering implications, 

such as deriving the intensity-duration-frequency (IDF) curves.  

It is clear that for the majority of storm durations and stations, there is a signal of nonstationarity, and ignoring 

these signals may result in unexpected consequences. Design values must be considered to prevent the catastrophic 

impacts of extreme precipitation, and nonstationarity must be incorporated into frequency analyses to improve and 

obtain better predictions by distributions that accommodate the effect of climatic variables and time as covariates. To 

clearly determine the nonstationarity impacts, it is important to select the best covariate and the best function that 

defines the statistical properties because the models revealed not very similar results for the same storm duration and 

station. 

For further studies, the non-stationary frequency analyses can be investigated not only with GEV but by using 

different distributions. Furthermore, the results of this study can be extended to quantify the non-stationary impacts on 

return levels and determine the increase or decrease compared with the stationary-assumption-based calculations.  
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Appendix I: NLL Values of Stationary and Non-stationary Models 

 
Amasya Artvin Bartin Bayburt 

Duration Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 

5 Min 113.76 112.91 113.23 113.66 50.44 50.18 49.99 50.20 107.51 106.79 107.49 107.04 109.62 109.35 109.44 109.44 

10 min 130.35 129.89 130.00 130.32 57.84 57.50 57.83 57.60 129.82 129.71 129.82 129.74 132.80 130.86 130.86 132.15 

15 min 143.03 142.78 143.03 142.79 65.79 64.22 65.60 65.13 144.51 144.42 144.51 144.47 138.25 135.89 136.39 138.22 

30 min 162.39 162.08 162.31 162.26 75.84 73.76 75.83 74.36 167.52 166.56 166.73 167.52 153.83 149.97 151.55 153.65 

1 hour 166.64 165.80 166.10 166.53 81.89 81.33 81.37 81.18 184.70 182.40 183.85 184.70 159.37 156.25 156.48 159.37 

3 hour 172.85 171.84 172.51 172.71 85.10 84.95 85.06 85.08 202.39 200.43 200.78 202.39 157.77 157.60 157.67 157.74 

6 hour 176.05 175.18 175.89 175.94 88.00 87.98 88.00 88.00 211.62 206.86 211.00 211.62 161.96 161.91 161.96 161.93 

24 hour 190.12 189.53 190.07 189.92 107.93 107.87 107.93 107.93 238.28 236.55 238.21 238.28 163.62 163.04 163.44 163.19 

                 

 
Bolu Corum Duzce Giresun 

Duration Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 

5 Min 130.03 129.87 129.88 130.03 153.49 153.42 153.48 153.48 131.16 129.06 129.12 131.10 127.69 125.62 127.44 125.76 

10 min 148.46 148.36 148.38 148.42 177.35 177.25 177.25 177.29 150.24 148.91 150.00 150.12 151.57 150.52 151.35 150.86 

15 min 161.05 160.65 160.71 161.03 188.54 188.38 188.41 188.54 158.14 156.91 157.12 157.96 163.94 163.53 163.70 163.82 

30 min 180.39 178.69 179.69 180.29 206.57 204.94 205.81 206.57 170.55 168.74 169.80 169.10 190.73 190.60 190.73 190.73 

1 hour 190.49 188.42 189.80 189.91 214.11 212.94 213.51 214.00 176.23 174.42 175.85 174.48 207.34 206.90 207.34 207.35 

3 hour 190.98 190.27 190.69 190.98 219.83 217.82 218.96 219.77 186.90 186.50 186.70 186.90 222.07 221.25 222.07 222.07 

6 hour 195.89 195.39 195.67 195.88 220.76 217.97 219.37 220.76 198.91 198.25 198.36 198.91 224.63 223.96 224.63 224.63 

24 hour 218.18 217.12 218.18 218.12 221.39 220.24 221.14 221.26 221.86 220.67 221.81 221.78 224.36 223.73 224.37 224.36 

                 

 
Gumushane Kastamonu Ordu Rize 

Duration Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 

5 Min 107.22 105.67 106.90 105.77 83.81 83.70 83.69 83.81 117.47 117.19 117.35 117.47 160.39 150.66 153.51 154.12 

10 min 122.65 121.18 121.97 121.15 93.40 93.05 93.39 93.32 148.84 148.76 148.83 148.80 189.24 185.59 186.57 187.32 

15 min 133.44 133.44 132.83 132.87 99.32 99.05 99.32 99.04 165.29 165.17 165.22 165.28 210.56 206.61 208.39 208.57 

30 min 141.49 140.10 140.24 141.50 110.51 110.51 110.51 110.51 183.45 183.01 183.08 183.44 241.14 235.13 237.95 239.03 

1 hour 142.65 142.14 142.47 142.64 113.48 113.41 113.48 113.47 199.11 199.11 198.98 199.11 265.41 263.55 262.75 265.20 

3 hour 147.40 147.38 147.38 147.40 117.70 117.70 117.70 117.70 210.96 210.76 210.95 210.95 291.98 289.19 291.95 291.97 

6 hour 158.81 158.34 158.81 158.42 118.33 118.21 118.33 118.32 218.20 218.20 218.20 218.20 300.97 296.99 300.71 300.95 

24 hour 177.94 177.80 177.88 177.88 125.54 125.50 125.53 125.54 233.82 233.83 233.82 233.83 304.13 300.29 303.39 304.09 
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Samsun Sinop Tokat Trabzon 

Duration Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 Stationary Model 1 Model 2 Model 3 

5 Min 158.19 156.65 157.31 158.19 130.92 130.16 130.73 130.50 111.34 110.38 111.00 110.82 128.01 124.34 124.49 127.68 

10 min 177.99 176.38 177.90 177.52 151.69 150.90 151.69 151.02 126.79 125.74 126.52 126.58 147.09 145.84 145.88 146.99 

15 min 190.52 188.36 190.47 189.77 159.79 159.78 159.79 159.76 137.77 136.32 137.53 137.19 160.83 158.83 159.66 160.81 

30 min 216.40 215.17 216.06 216.00 178.15 177.23 178.14 177.62 150.35 148.44 149.90 149.53 178.28 175.59 175.78 178.16 

1 hour 238.29 236.15 238.23 238.08 192.78 191.15 192.64 191.90 150.48 149.22 150.01 150.47 189.05 187.48 188.48 188.63 

3 hour 252.42 251.10 251.78 252.34 203.02 201.63 203.01 202.87 145.62 145.23 145.50 145.51 201.16 198.40 200.89 201.12 

6 hour 261.41 258.79 261.32 261.28 205.82 204.61 205.73 205.69 148.83 147.94 148.72 148.36 202.51 198.97 202.26 202.44 

24 hour 265.23 263.71 265.23 265.20 227.23 226.66 227.15 227.23 169.34 169.27 169.28 169.33 220.02 219.11 219.08 219.99 

                 

 
Zonguldak 

            

Duration Stationary Model 1 Model 2 Model 3 
            

5 Min 171.58 168.82 169.85 170.06 
            

10 min 208.20 207.63 208.20 207.78 
            

15 min 230.08 229.51 229.95 229.89 
            

30 min 261.58 261.08 261.08 261.50 
            

1 hour 282.10 281.93 281.96 281.99 
            

3 hour 300.56 299.43 300.54 300.29 
            

6 hour 318.09 316.72 318.06 318.08 
            

24 hour 342.92 342.78 342.91 342.92 
            

 


