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Abstract 

Despite their drastically different chemical ingredients and interactions, geopolymer concrete exhibits many of the same 

features as ordinary concrete. Among these properties is drying shrinkage. As in normal concrete, dry shrinkage in 

geopolymer concrete may cause cracking if the geopolymer concrete is bound, which affects the integrity of the structure 

in the future. It's important to measure drying shrinkage as soon as possible because it's the cause of early age cracking, 

which happens when the concrete isn't very strong. The purpose of this study is to determine how to reduce the dry 

shrinkage value of geopolymer concrete by using different types of fibers. Three types of fibers were used to determine 

their effect on the dry shrinkage of geopolymer concrete when compared with a reference mixture without the fibers. 

Metakaolin was used as a binder for the concrete geopolymer. As for the fibers, steel, carbon and polypropylene fibers 

were used in proportions of (0, 0.5, and 1%). The results showed an improvement in dryness shrinkage when adding 

fibers in general, with a difference in values between the different types of fibers. Steel fibers had the lowest amount of 

dry shrinkage. The temperature had a direct influence on the decrease in the extent of the shrinking, since the samples 

handled at higher temperatures had less dryness to begin with. 
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1. Introduction 

Raw material characteristics, mixing ratios, processing methods, and other factors all influence shrinkage. Internal 

tension and even cracks in buildings are caused by excessive and uneven shrinkage, which affects the quality and 

durability of concrete [1-3]. Geopolymer concrete exhibits many of the properties of traditional concrete, although its 

chemical components and reactions are very different. However, only a few attempts have been made to assess the 

drying shrinkage of geopolymer concrete. Wallah & Rangan (2010) studied the drying of ocean-treated samples in the 

order of 1,500 microstrain, two to three times higher than that required for OPC-based parabolic cement [4, 5]. A 

thermo-thermo-treated fly ash-based geopolymer concrete has dried after 3 months. Water is not directly integrated 

into the geopolymer gel product, unlike Portland cement. In the geopolymer gel, only a small amount of the mixing 

water remains as interstitial water [6, 7]. Because MK-geopolymer pastes take a lot of water to mix, there is a lot of 

unbound or free water in the hardened paste that can evaporate at room temperature under low relative humidity 

circumstances. Despite the lack of chemically bonded water, structural stability is still required. 
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Under relatively typical climatic circumstances, excessive water loss might cause severe shrinkage cracking of 

specimens. One explanation for geopolymer drying shrinkage and cracking might be the formation of high capillary 

pressures between wet and dry regions of the micropore network, which has been shown to begin crack propagation in 

the microstructure [8]. Also, one of the reasons for the increase in dry shrinkage is the amount of the binder and the 

ratio of the alkaline liquid substance to the amount of the binder [9]. There have been attempts by Bell & Kriven 

(2009) [10] to avoid dry shrinkage and crack proliferation by modifying the pore structure to reduce capillary porosity 

and control water loss during processing. It was observed that the dry shrinkage of heat treated geopolymer concrete 

was generally lower compared to that of heat-treated concrete at ambient conditions [11, 12]. This attribute was most 

likely due to the water that is released during ambient-curing, which then evaporates over time, especially within the 

first two weeks. Therefore, it effectively and influentially contributes to the properties of geopolymer concrete and 

makes it more durable [13] as well as making it a desirable option in the future when manufacturing various structural 

components [14].  

On the other hand, Khan et al. explained the effect of curing temperature on dry shrinkage and creep of 

geopolymer compared to ordinary concrete consisting of Portland cement (OPC), where the increase in temperature 

led to less shrinkage and creep [15]. While Al-Hedad et al. (2020) found that adding reinforcement to the geopolymer 

concrete reduces the coefficient of thermal expansion and dry contraction compared to that without reinforcement 

[16]. Also, Gailitis et al. (2019) compared the shrinkage deformation between foam concrete and geopolymer concrete 

and found that the geopolymer shrinkage is less than that of foam concrete [17]. Many studies have addressed the 

effect of adding fiber to concrete. The chemical and microstructure differences between geopolymer concrete and 

ordinary concrete can lead to different binding properties between the matrix and the added fiber. As a result, the 

fibers in a geopolymer matrix may not necessarily perform the same as the fibers in a regular concrete matrix. 

Integrating fibers into the cementitious matrix is a well-known approach to improving the flexural properties and post 

peak characteristics of corresponding composites because fibers regulate crack propagation and widening under 

various forms of mechanical loading or shrinkage [18]. Deboning, sliding, and dragging fibers out are local processes 

that promote bridging action during micro and macro matrix cracking. This mechanism raises the energy requirement 

for the fracture to propagate [19]. 

Fibers of varied materials and geometric qualities, which may be classified into two categories: high modulus and 

low modulus, are utilized in construction [20]. Each group improves the matrix's individual properties. Metallic fibers, 

on the other hand, increase flexural strength due to their higher stiffness, while nonmetallic fibers, with a higher aspect 

ratio and surface contact area, regulate matrices' plastic shrinkage [21]. The effectiveness of fibers in geopolymer 

matrices is influenced by their intrinsic characteristics, fiber content, geopolymer precursors, curing conditions, and 

composite age [22]. The fiber/matrix interface, on the other hand, plays a critical role in the overall mechanical 

properties of composite structures; a strong contact interface has the ability to pass load from the matrix to fibers with 

high load bearing power, while fibers with inert surfaces result in weak interfacial contact, which leads to interface 

deboning and composite failure [23]. Because geopolymer is made mostly of water, the wettability of the 

reinforcement may be utilized to assess if the fibers and the matrix have a strong connection. Good wettability, which 

is defined by a low contact angle, aids the creation of a strong connection and the degree of efficacy of reinforcement 

in a geopolymer composite [24]. 

Noushini et al. (2016) investigated the effect of monofilament polypropylene fibers and monofilament structural 

polyolefin fibers on the long-term creep and shrinkage of fly ash-based geopolymer concrete and discovered that the 

addition of PP and PO fibers with a volume fraction of 0.5% resulted in reduced drying shrinkage and increased 

compression creep for fly ash-based geopolymer concrete [25]. 

In this study, further investigations are being conducted in order to evaluate the effect of fibers on concrete 

geopolymers upon initiation of the shrinkage test. The shrinkage tests started 24 hours, 3, 7, 14, 28, 56 days after 

casting. This drying shrinkage is a cause of premature concrete cracking, so evaluate it as soon as possible. According 

to the standard ASTM, or ANSI C157 [26], the curing temperatures were (35 and 75°C). This work will contribute to 

increasing the amount of experimental data available in the literature on the time-dependent behavior of concretions of 

geopolymer based on metakaolin content. This paper provides preliminary experiments on the effect of the addition of 

different types of fibers on the drying shrinkage of geopolymer concrete. Especially since Iraqi metakaolin is used in 

the production of this type of geopolymer. 

2. Materials and Methods 

Figure 1 shows a study flow diagram of the progress through the phases of the experiment. 
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Figure 1. Details of the experimental program 

2.1. Metakaolin 

According to ASTM C618, the binding material in the creation of geopolymer concrete is Iraqi metakaolin. The 

chemical composition of metakaolin as determined by the analysis is shown in Table 1 and Figure 2, with silica oxide 

(SiO2) accounting for 55.99%, aluminum oxide (Al2O3) for 38.32%, and iron oxide (Fe2O3) for 1.735%, and calcium 

oxide (CaO) accounting for less than 0.7%. The metakaolin utilized can be classified according to ASTM C618 based 

on these findings. It is primarily pozzolanic, with silicon dioxide reacting with calcium hydroxide from the cement 

hydration process to form the calcium silicate hydrate (CSH) gel, which produces cementitious compounds 

appropriate for geopolymer application. The presence of calcium ions resulted in a rapid reaction time; As a result, the 

geopolymer will harden quickly and cure faster [27]. 

 

Figure 2. XRD analysis data for metakaolin 
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Table 1. XRD analysis data for metakaolin composition 

Composition Content (%) 

SiO2 55.99 

Al2O3 38.32 

Fe2O3 1.735 

CaO 0.671 

MgO 0.19 

K2O 0.5344 

SO3 0.24 

TiO2 2.015 

2.2. Alkaline Solution 

The alkaline solution is made from a mixture of a 12 molarity sodium hydroxide solution and a sodium silicate 

solution. To form the NaOH solution, NaOH (which is presented in flakes and pellets) granules were dissolved at 98% 

purity in water. Table 2 shows the properties of NaOH. In the case of sodium silicate solution, the ratio of Na2O to 

SiO2 and H2O affects the concentration of the solution, according to Table 3. 

Table 2. Properties of Sodium hydroxide 

Composition Content (%) 

NaOH 98.00 

Na2CO3 0.40 

NaCl 0.15 

Fe2O3 0.01 

Na2SO4 200 ppm 

Cu+2 4 ppm 

Ni+2 5 ppm 

SiO2 20 ppm 

Table 3. Properties of Sodium Silicate 

Description Value 

Ratio of SiO2 to Na2O 2.4 ± 0.05 

Na2O percent by weight 13.00 – 13.60 

SiO2 percent by weight 32.00 – 33.00 

Density - 20° 50 ± 0.5 

Specific Gravity 1.535 – 1.550 

Viscosity (CPS) 20°C 600 – 1200 

pH 12.9 

2.3. Fibers 

The fibers used in this study are carbon, steel with hooked ends steel, and polypropylene. Table 4 and Figure 3 

shows the characteristics of each. 

Table 4. Properties of Fibers 

Fiber Type 
Specific 

gravity 

Diameter 

(μm) 

Tensile strength 

(MPa) 

Modulus of Elasticity 

(GPa) 

Average aspect 

ratio 

Length 

(mm) 

Carbon Fiber 1.80 10 4000 230 80 8 

Steel Fiber 7.15 50 1000 200 70 35 

Polypropylene Fiber 0.91 15-20 600-700 6-9 65 12 
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Figure 3. Carbon, steel with hooked ends and polypropylene fibers 

2.4. High Range Water Reducing (HRWR) 

For the production of geopolymer concrete, modified sulfated formaldehyde naphthalene condensation primer was 

used. KUT PLAST SP 400 HRWRA compliant with BS 5075 and ASTM C494 Type F in this study. The use of this 

type of HRWR results in a very high level of water reduction, and, as a result, a noticeable increase in strength can be 

gained along with maintaining good operability. Table 5 shows the main properties of KUT PLAST SP 400 HRWRA. 

Table 5. Superplasticizer properties * 

Characteristic Depiction 

Status and color Liquid in a dark brown color 

Specific gravity 1.24–1.26at 20°C 

Air entrainment ≤1% 

Chloride Nil to BS 5075 

Calcium chloride Nil 

Freezing point 0° C 

                                          * According to manufacturer. 

2.5. Fine Aggregate 

Natural fine aggregates supplied by Samarra were used. All geopolymer concrete mixes contained fine aggregates 

with a maximum size of 4.75 mm and were graded into zone 2 limitations. Tables 6 and 7 were also used to classify 

fine aggregates that met the criteria of Iraqi Standard No. 45/1984 Zone 2 [28]. 

Table 6. Fine aggregates grading 

Sieve size (mm) Percentage passing Grading limits according to Iraqi standards No. 45 / 1984 Zone 2 

9.5 100 100 

4.75 98 90-100 

2.36 90 75-100 

1.18 72 55-90 

0.6 47 35-59 

0.3 26 8-30 

0.15 4.6 0-10 

Table 7. Fine aggregate chemical and physical characteristics 

Properties Value The criteria of Iraqi standards No. 45-1984 

Specific gravity 2.60** _ 

Fineness modulus 2.83* _ 

Sulfate 0.23 %** ≤ 0.5 % 

Water absorption 1.9 %** _ 

Bulk density 1590 kg/m3* _ 

Materials finer than 0.075 mm 2.1 %* ≤ 5 % 
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2.6. Coarse Aggregate 

In all of the combinations, crushed gravel from Samarra was utilized as coarse aggregate. Gradient, specific gravity, 

sulfate concentration, absorption, and fine materials were all tested, according to Iraqi standards IQS 45/1984 [28]. 

Tables 8 and 9 show the grades and physical properties of the coarse aggregate which are respectively shown. 

Table 8. Coarse aggregate grading 

Sieve size (mm) Percentage passing Grading limits according to Iraqi standards IQS 45 / 1984 

20 100 100 

14 97 90-100 

10 80.5 50-85 

5 7.2 0-10 

2.36 - - 

 Table 9. Coarse aggregate physical characteristics and sulfate content 

Physical properties Values The criteria of Iraqi standards IQS 45/1984 

Specific gravity 2.64 _ 

Density 1640 _ 

Absorption 0.9 % _ 

Fine materials that pass through a 75 µm sieve 0.08 1% Maximum 

Sulfate content (%) 0.07 0.1% Maximum 

3. Mixture Design and Specimen’s Preparation 

Seven sets of mixtures were made and tested to see how different types and amounts of fibers affected the drying 

shrinkage of metakaolin-based geopolymer concrete. The aggregate content, both coarse and fine, was maintained at a 

consistent level across totally mixes. The concentricity of NaOH was 12 Molar, sodium hydroxide to sodium silicate 

weight ratios equaled (1:1) also surface area of metakaolin to be (2300) m2/kg, heat curing process was employed for 

these mixtures, with a temperature of 35 and 75 °C for 3 days. 

Following that, the specimens are kept in the laboratory at the appropriate temperature until the time of test. Test 

was measured at different ages (1, 3, 7, 14, 28, and 56) days. Detailed information and mix proportions for 

metakaolin-based geopolymer concrete mixes are shown in Table 10. 

Table 10. Mix proportions of Geopolymer concrete containing fibers 

Mixes 

symbol 

MK 

(kg/m3) 

Coarse agg. 

(kg/m3) 

Fine agg. 

(kg/m3) 

Steel fiber 

Vol. % 

Carbon fiber 

Vol. % 

PP fiber 

Vol. % 

Alkaline solution 

% of MK 

Extra water 

% of MK 

HRWR 

(kg/m3) 

GPF0 500 1100 720 0 0 0 0.45 0.075 12 

GPC1 500 1100 720 0 0.5 0 0.45 0.075 12 

GPC2 500 1100 720 0 1 0 0.45 0.075 12 

GPS1 500 1100 720 0 0 0 0.45 0.075 12 

GPS2 500 1100 720 0.5 0 0 0.45 0.075 12 

GPP1 500 1100 720 1 0 0 0.45 0.075 12 

GPP2 500 1100 720 0 0 0.5 0.45 0.075 12 

4. Results and Discussion 

The results of the length change experiment were used to determine drying shrinkage, and the (FGPC) specimens 

were tested for a total of 56 days after a three-day period of heat curing (at temperatures of 35 and 75 °C). After that, 

the samples were placed in the laboratory at ambient temperature until the time of the tests. Figures 4 and 5 depict the 

relationship between all of the mixes' changing length results at various testing times at 35°C and 75°C. 

The length change of all mixes was lower than that of the reference mix (GPF0), as shown in Figure 4. This might 

be due to the heat treatment improving the micro-structural growth and pore amendment of the geopolymer paste [29]. 

The shrinkage test is performed according to the ASTM C157 test method. The measurement of dry shrinkage begins 

(24) hours after the casting is completed. 
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Figure 4. Relationship of Drying Shrinkage with age at 35°C 

 

  Figure 5. Relationship of Drying Shrinkage with age at 75°C 

The heat cured mixes at 75°C showed much lower dry shrinkage than the heat cured samples at 35°C, as shown in 

Figure 5. The fact that the majority of the geopolymerisation process occurs during the heat curing phase may have 

contributed to the heat cured samples' reduced dry shrinkage at 75°C. Tables 11 and 12 show that all fiber reinforced 

GPCs had smaller shrinkage strain than the reference mix (GPF0), which did not contain any fiber. The reduction in 

shrinkage is likely due to the greater tensile strength of the matrix material and/or the friction bonding of fibers in the 

matrix [30]. Drying shrinkage in geopolymer concrete is expected to be linked to an increase in pressure applied and 

tensions in the structural capillary network, resulting in concrete contraction only if the concrete is regulated [31]. 

When compared to the reference mix, the matrix in (GPS2) containing steel fibers had a greater tensile strength than 

(GPF0), as assessed by an indirect tensile test. This indicates that the matrix is more durable (as shown in Table 12), 

resulting in less dry shrinkage and better control of micro-cracking in the steel fiber-containing matrix (GPS2). The 

increased length of the steel fibers, as well as the end-hooked design, allow for improved matrix-fiber interface 

mechanical interlocking when using steel fibers. This results in increased friction, which helps to neutralize a portion 

of the shrinkage energy, resulting in less shrinkage of the fiber reinforced concrete mix. 
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Table 11. Drying shrinkage × 10-6 for Heat Curing at 35°C 

Mix Symbol 

Age (Day) GPF0 GPS1 GPS2 GPC1 GPC2 GPP1 GPP2 

1 700 550 452 582 501 615 517 

3 766 616 495 653 554 678 569 

7 864 689 528 734 599 769 612 

14 933 697 543 810 628 830 641 

28 986 706 551 881 642 895 649 

56 997 712 559 894 661 899 654 

Table 12. Drying shrinkage × 10-6 for Heat Curing at 75°C 

Mix Symbol 

Age (Day) GPF0 GPS1 GPS2 GPC1 GPC2 GPP1 GPP2 

1 78 56 54 65 61 70 65 

3 210 158 127 150 120 130 120 

7 325 223 171 243 204 220 178 

14 394 274 212 289 247 301 240 

28 425 281 225 341 264 362 271 

56 436 293 231 358 274 370 286 

5. Conclusion 

All mixes show that the dry shrinkage of metakaolin-based and heat-cured geopolymer concrete is significantly 

lower than that of room-temperature-cured concrete. The addition of fibers helped in developing the mechanical 

properties of metakaolin-based geopolymer concrete compared to non-fibrous ones. The higher the fiber content, the 

lower the dry shrinkage of the geopolymer concrete. Based on the tests performed and the results obtained in this 

study, it can be concluded that various fibers can be used as reinforcement for geopolymer concrete, as they do not 

cause negative effects on the mechanical properties of concrete but enhance the behavior of geopolymer concrete 

during dry shrinkage. The results of the tests also showed the effect of heat curing on the value and rapidity of dry 

shrinkage. When heat curing was increased, the dry shrinkage value was lower, because most of the geopolymerisation 

process takes place during the heat treatment stage, which contributed to reducing the dry shrinkage of the samples 

treated at high temperature. Also, the results showed that the addition of steel fibers with the end hook led to the 

lowest value of dry shrinkage compared to the rest of the other types of fibers. The length of the fiber and the back 

hook shape of the steel fiber help absorb part of the shrinkage energy, which affects the dry shrinkage value. 
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