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Abstract 

Dynamic tests enable assessment of the structure’s technical condition and provide information necessary for management 

and maintenance throughout the object’s life cycle. On their basis, the dynamic characteristics of the object are estimated 

(e.g., the logarithmic decrement). The possible occurrence of atypical features in the obtained signal (e.g. amplitude beat, 

outliers), as well as the influence of the type of devices and sensors used for measurements, should be considered. If these 

features are omitted during the analysis, key dynamic characteristics may be evaluated incorrectly. Therefore, this study 

presents development of a reproducible, universal and robust open-source algorithm for effective estimation of the 

logarithmic decrement of bridge structures as a reproducible research. Using the presented approach, it is possible to obtain 

correct results regardless of the signal’s specificity and its atypical features, as well as the type of devices used to collect 

data in the in-situ conditions. Two approaches based on the use of advanced regression models are considered to estimate 

the logarithmic decrement. These are direct non-linear approximation (DNAP) and Hilbert non-linear approximation 

(HNAP). The enriched HNAP solution was then implemented as a Python module with a "Signal" class and tested on two 

independent in-situ examples. The presented approach led to effective and correct estimation of the logarithmic decrement, 

and proved to be insensitive to the type of bridge, its structural characteristics, atypical features of the obtained signal, and 

the specificity of the data acquisition techniques. In contrast to methods based on deep machine learning, the presented 

solution does not require a large learning set representative for a given type of design and works independently of the size 

of the data sample. As demonstrated in the paper, the solution based on the Hilbert transform allows efficient determination 

of the damping decrement even in the presence of beat frequencies as well as outlier data. The algorithm works 

independently of the measurement method, with the necessary functions for preprocessing being implemented in the 

module itself. The solution has been optimized for improved speed, reliability, and reproducibility of results. 

Keywords: Structural Vibrations; Bridge Load Tests; Amplitude Beat; Logarithmic Decrement; Hilbert Transform; Robust Methods; Non-

Linear Approximation; Python Programming; Reproducible Research. 

 

1. Introduction 

The most frequently used dynamic characteristics of engineering structures, including bridges, are the forms and 

frequencies of natural vibrations as well as vibration damping parameters. While estimation of the natural frequencies 

is, in many cases, uncomplicated [1], determination of the logarithmic decrement often requires the use of more complex 

methods. The results of dynamic tests of structures allow us to assess their condition and often provide critical 

information for their management and maintenance throughout their life cycle. 
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In-situ dynamic load testing and short-term monitoring under service load is usually conducted with the use of 

temporarily installed, dedicated sensors [2, 3]. On the other hand, systems permanently installed (embedded) on the 

structure as well as external measuring devices [4] are used in the case of long-term monitoring. The types of 

measurement techniques and sensors applied in the dynamic bridge tests are presented, e.g., in [5–7]. One of the most 

popular measurement techniques is the application of microelectro-mechanical (MEMS) accelerometers and 

inclinometers [6, 8]. Brunetti et al. [9] used the accelerometric measurement results to evaluate the damping 

characteristics of a railway bridge for Italian high-speed railways. One of the key goals of this study was to evaluate the 

effect of non-structural secondary elements of the bridge (tracks, handrails, and bearings)-often not included in the 

design models-on increasing the stiffness and damping response. On this basis, it was also assessed whether the 

theoretical (specified in the regulations) damping factors have a sufficient safety margin. 

Complementary or alternative non-contact data acquisition devices are used. For example, radar interferometry with 

the use of the IBIS-S® radar was performed in the vibration analysis of a high-speed four-track rail bridge [10]. The 

results of the measured dynamic response of the bridge under different loading conditions were compared with the 

results from the Structural Health Monitoring System (SHM) based on the embedded hydrostatic devices. Similar 

measurement results were obtained with both techniques in relation to all the six analyzed bridge load cases. The main 

difference between the leveling and radar measurements was the sampling frequency; the high sampling frequency of 

radar measurements made it possible to determine the maximum displacements caused by the live load. 

Vibration measurements can also be made using sensors natively dedicated to other purposes. ATR (Automatic 

Target Recognition) systems are an example of a remote sensing device recording changes in the position of a target. 

Sensors embedded in the robotic total stations (ATR) are designed to support automatic surveying measurements. 

However, after proper marking of the selected structural element of the bridge, they can track changes in the position of 

the reflector in the vertical plane, thus recording the vibrations of the bridge [11]. 

The non-contact techniques in the in-situ measurements were also used in the study of a residential building damaged 

during an earthquake [12]. The dynamic properties of the structure were estimated by measuring displacements using 

accelerometers, and then analyzing the history of displacements in time recorded using radar interferometry. Alva et al. 

(2020) [12] show high potential for the use of radar interferometry in the diagnosis of the condition of structures located 

in seismic areas. The main advantage of this technique is that there is no need to approach or enter the structure to 

directly install the measuring devices. 

Regardless of the application potential of individual vibration measurement techniques, it is worthwhile knowing 

the dynamic features specific to a given type of engineering structure. A common problem in bridge structures is the 

amplitude beat phenomenon [13, 14]. It occurs when two or more structural elements have similar, but not identical, 

vibration frequencies. This phenomenon leads to an impairment of the durability of the bridge due to the faster wear of 

its structural elements and, consequently, even to a potential failure. This issue is directly related to the problem of 

correct estimation of the logarithmic decrement, which is the key characteristic used in the assessment of the dynamic 

response of bridges. Nakutis & Kaškonas (2011) [15] show that in the case of close spectral components in the vibration 

data, the selection of the optimal filter parameters is difficult, and the selection of the non-optimal filter parameters may 

have a significant impact on errors in the estimation of the damping decrement. A modified method of estimating the 

damping decrement was proposed, which-in relation to the presented data-does not require bandpass filtering and allows 

for amplitude damping to be taken into account. The level of errors in the estimation of the logarithmic decrement 

estimated with the use of the proposed, modified method is comparable to the values given in the publications on the 

subject of vibrations of bridge structures. 

It must be, however, emphasized that Nakutis & Kaškonas (2011) [15] indicate that the proposed methodology has 

not been tested in relation to the signals with a phase shift, in the case of greater diversification in the amplitude 

components, or in the presence of additive noise. Moreover, there may be more atypical features of the signal. Those 

features are especially important in the vibrations of road bridges, e.g. during mandatory load testing allowing certain 

bridge structures for service [16–19]. These are, for example, the following features: 

 Existence of several (and not only two) main components of vibrations [14, 20]; 

 Irregularities in the sampling frequency - e.g. in case of measurements with robotic total stations; 

 High damping (damping closer to the critical) - leading to severe limitations in the observation of several amplitude 

beat cycles; 

 Existence of a large number of outliers in a not very numerous time series (observations with high leverage in the 

regression model - e.g. interferometric data [21]; 

 Existence of an erroneous additive constant - e.g. for amplitudes determined by numerical integration from 

acceleration measurements made with accelerometers; 

 Larger standard deviations for one of the directions of vibration, e.g. zenith direction for global navigation satellite 

system (GNSS) receivers. 
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The problem of analysis of bridges is also complicated by the fact that, depending on the type of structure of the 

object, its response to static loads and dynamic excitation is different, as well as the nature of the radar profile [22]. 

Combined with the large number of indicated possible sources of irregularities occurring in the signal, as shown above, 

the number of combinations of data cases we can deal with during analysis is very large. At the same time, the aspect of 

time also plays an important role in the diagnosis of bridge structures. Conducting acceptance testing of structures 

generally takes place just before the structure is placed in service. In the case of diagnostic tests of existing structures, 

on the other hand, it is crucial to assess the condition of the structure as soon as possible in order to take it out of service 

before it poses a danger to road users or to restore traffic on the closed structure once the results of the analysis show 

that there is no danger. 

All this results in the necessity of using such methods of measurement data analysis that will not be laborious, time-

consuming and expensive. Thus, these methods must be characterized by high accuracy of the results, including being 

resistant to the previously mentioned factors in order not to show false alarms as to the assessment of the condition of 

the structure. With literature research and own experience, the authors identified the problem of lack of effective and 

universal tool for processing data representing free vibrations of engineering objects. The research goal the team set for 

themselves was to develop algorithms, and consequently a working solution, that has the following characteristics: 

 Do not require a large learning dataset typical of the structure, 

 The solution is to be universal, i.e. it does not require transfer-learning procedures for different types of structures, 

 They will work independently of the signal amplitude, so for a given bridge structure it will be possible to 

determine the damping decrement during test experiments related to the test load in different load schemes, 

 The solution has to enable signal filtering in time domain (free vibration extraction) as well as filtering in the 

frequency domain, 

 The solution is to be resistant to outliers and eliminate their influence on the calculation result automatically, 

 The solution is to enable calculation of the damping decrement also for the signals in which the phenomenon of 

beat frequency occurs, 

 The solution is to be resistant to the occurrence of outliers regardless of the statistical distribution of these errors, 

 The solution is to have an open source code and be optimized in terms of calculation speed so that it can be used 

directly during the dynamic load testing and short-term monitoring under service load, 

 The solution is to be able to work on computers with limited resources such as Raspberry Pi. 

Therefore, this paper concerns the development of a universal and robust open-source procedure for effective 

estimation of the logarithmic decrement of mechanical vibrating systems, with particular emphasis on bridges—

providing correct results regardless of the specificity and atypicality of a given signal recorded in the in-situ conditions 

with the use of different data acquisition devices and techniques. 

The presented approach is distinguished by its high efficiency regardless of the type of bridge structure, and thus 

allows obtaining correct results for different responses of the structure to dynamic forcing, and thus for different nature 

of the radar profile. Moreover, the solution is robust to both the anomalies present in the signal and the type of equipment 

and data acquisition techniques, effectively eliminating the potential problems signaled above. 

An important element of the presented approach is that we need a small amount of data - data from a single 

measurement is sufficient to perform the analysis. This solution does not require calibration based on data from 

measurements of other objects of the same construction, nor does it require an extensive measurement database (as is 

the case with machine learning algorithms, for which large data sets are the basis for network training). 

Data analysis also does not require data preprocessing or data cleaning, which for many currently available solutions 

is an indispensable stage of analysis, generating additional time and financial burden. For the presented solution, all 

necessary operations were implemented within the presented Python module.  

The paper is organized in the following way: Section 2 presents the problems of data acquisition equipment issues 

and the specifics of bridge in-situ vibration signals. It also presents issues related to the adopted linear and nonlinear 

regression procedures. Section 3 discusses the methodology adopted and the computer implementation in the form of a 

Python module with a custom signal class developed. Section 4 presents the application of the computer implementation 

on real measurement data. It considers measurements performed on bridges of varying construction, where data were 

collected using different techniques and the resulting signal was characterized by different atypical features. Conclusions 

and plans for further research are presented in Section 5. 
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2. Problem Description 

2.1. Issues Regarding Data Acquisition Devices 

As mentioned in the introduction section, the issue of the bridge vibration data analysis can be split into two groups 

of general topics. The first group of problems concerns the specificity of data obtained from particular types of measuring 

devices, and related advantages and disadvantages of particular acquisition techniques. Therefore, the authors concisely 

include the key remarks on this issue in Table 1. It illustrates most of the aspects which were taken into account in the 

development of the computational implementation presented in this study, so that it could be effectively applied 

regardless of the data acquisition technique. 

Table 1. Common techniques of bridge vibration measurements and their features 

Measurement method 
Measured 

quantity 
Advantages Disadvantage Comments 

radar interferometers 
line of site or 

sight disp. 

Multiple points can be 
measured at once with high 

accuracy. 

Measurement compatible 
with [23] 3D data in a 

relative coordinate system. 

Calculating projection 
displacement needed. 

Difficulty in interpreting a 

radargram, e.g. for rail steel truss 
bridges [23] non-compliance for 

engineering structures. 

Relatively expensive 
method. 

accelerometers acceleration 
No line of sight restrictions. 

Very high frequency. 

Limited accuracy in determining 
the vibration amplitude. 

One point at a time. 

Many accelerometers can 

work independently at many 
points at once, practically in 

continuous mode. 

Global Navigation 
Satellite System 

3D position 

with time 
stamp 

3D data in the absolute 

coordinate system 
accurately identified in time 

Limited accuracy. 
Satellite line of sight needed. 

The vertical z coordinate is 

about 2.5 times less accurate  
(than x and y) 

Total station with 

Automatic target 

recognition 

vertical angle 

changes 

Data can complement the 

radar measurement. 

Single point measurement only in 

the vertical plane with a limited 

sampling rate. 

Non-uniform sampling - the 

LSSA algorithm must be 

used for spectral analysis. 

Potentiometric 

Displacement Sensors 
(PDS) 

Vertical 
displacement 

High accuracy 
Only one direction of 

measurements 

Difficult setup depending on 

the type of bridge crossing. 
Rel. inexpensive technique. 

The second group of problems regards the specificity of the dynamic response of the bridge under inspection, which 

is discussed in more detail in the following section. 

2.2. Specificity of the In-Situ Bridge Vibrations Signals 

Real structures such as road bridges are systems with an infinite number of dynamic degrees of freedom. In numerical 

modelling, a simplification by means of discretization of continuous mass distributions into the system of equivalent 

concentrated masses is used. As a result, usually a complex system of matrix equations is obtained [24]. However, 

additional simplification can be made in the vibration analysis of a specific measurement point on the object (e.g. in the 

mid-span cross section of the bridge). The analogy to a physical system with one dynamic degree of freedom – in this 

case to a classical damped oscillator - is often used. The justification for this approach is presented in e.g. [18]. 

Finding a function representing such a simplified physical system requires finding solutions to the following 

equation: 

𝑑2𝑥

𝑑𝑡2
+

1

𝜏

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 0  (1) 

Here, 𝑥 is vertical displacement in [mm], 𝑡 is time [s], 𝜔0 is angular frequency [rad/s]. Solutions of (Equation 1) are 

sought by finding function parameters in the form: 

𝑥 = 𝐴𝑒−𝛽𝑡𝑐𝑜𝑠𝜔𝑡  (2) 

Here, 𝐴 is amplitude [mm], β is damping factor. Consequently, it is possible to determine the logarithmic decrement 

since its value can be determined as follows: 

𝛬 = 𝛽𝑇  (3) 

Here, 𝑇 is period [s]. Equations 1 and 2 represent a theoretical problem of a classical damped oscillator. They are a 

composite of a periodic function and an exponential function (Figure 1-a) [25, 26]. Calculation of the frequency spectrum 

is based on the component of the periodic function, while calculation of the damping parameters, including the 

logarithmic decrement, is obtained from the envelope analysis. 
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Figure 1. Theoretical model of a damped oscillator; b) Filtered signal from the in-situ acquisition and its Hilbert transform [26]  

Contrary to the basic theoretical model, the signal from the in-situ measurements is a combination of many 

components together with measurement noise. It should also be borne in mind that at the stage of data acquisition, the 

damping function is not explicitly represented in the obtained data (Figure 1-b). 

Thus, there are two basic ways to correctly estimate the bridge’s logarithmic decrement basing on the in-situ data. 

In the first approach, hereinafter referred to by the authors as direct non-linear approximation (DNAP), the discrete data 

form the on-site acquisition is approximated by a non-linear function consistent with the equation (Equation 2). Based 

on this, it is possible to calculate the decrement from the parameters of the approximating function. In the second 

approach, the approximation is applied to the signal’s envelope, obtained with the use of the Hilbert Transform, 

hereinafter referred to as Hilbert nonlinear approximation (HNAP). Both methods (DNAP and HNAP) are based on the 

use of advanced regression models. 

2.3. Adopted Procedures of Linear and Non-Linear Regression 

Regardless which of the described methods of decrement estimation is used (DNAP or HNAP), the procedure 

involves performing a linear or non-linear regression. The regression technique requires finding the minimum of the 

loss (cost) function known from the machine learning algorithms. In case of the standard least squares fit solution, the 

optimal parameters of the regression model are found on the basis of the residual values defined as the difference 

between the variable value and its estimation from the model. For a two-dimensional problem (a digital discrete signal 

is processed in the time and amplitude domain) n data points (𝑥𝑖, 𝑦𝑖
) are analyzed, where 𝑥𝑖 is the independent variable, 

and 𝑦
𝑖
 is the dependent variable (an observation or measurement result). As a result: 

𝑣𝑖 = 𝑦
𝑖
− 𝑓(𝑥𝑖, 𝑎) (4) 

Here, 𝑣𝑖 is residual, 𝑥𝑖 is the independent variable, 𝑦
𝑖
 is the dependent variable (observation or measurement result), 

𝑓(𝑥𝑖 , 𝑎) – linear regression model. Looking for a solution which meets the condition: 

𝑆 = ∑ 𝑣𝑖
2𝑛

𝑖=1 = 𝑚𝑖𝑛. (5) 

Here, 𝑆 is sum of squared residuals. In general, taking into account the weight matrix, the solution has the form: 

𝑆 = ∑ 𝑝𝑣𝑖
2𝑛

𝑖=1 = 𝑚𝑖𝑛. (6) 

Here, 𝑝 is weight matrix. However, the above solution has a fundamental problem - the second derivative of the loss 

function is constant (Figure 2). 

𝑑2

𝑑(𝑣2)
𝑆(𝑣) = 𝑝 = 𝑐𝑜𝑛𝑠𝑡  (7) 

In consequence, all observations (i.e. discrete values of measured displacements) receive the same weight p - 

independent of the residual values. This excludes the possibility to automatically eliminate the impact of the outliers in 

the form of the optimal regression model. Moreover, it causes a potential error in a subset of observations which affects 

the entire variance-covariance matrix of the adjustment model. 

For the above reason, the procedure has to adopt another loss function in which the influence of the residual value 

from a given, individual observation is taken into account in the regression model. Examples of such functions are 

presented in Figure 3. The first one (Figure 3-a) solves the problem of the outliers in a radical manner, that is, any 

(a) 
(b) 
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observation which has a residual coefficient greater than the adopted criterion is eliminated from the solution. The 

second loss function (Figure 3-b) is a solution which gradually reduces the influence of the observation as the residual 

coefficient increases. 

 

Figure 2. Second derivative of the objective (loss) function assumes the same weight to all observations in the least squares 

method, regardless of the value of v residuals in the regression model 

 

Figure 3. Examples of robust linear regression models 

Notwithstanding, the main issue of this study is proper assessment of damping in the vibrations of bridge structures 

- which is a highly non-linear phenomenon. Thus, in the main solution, the least-squares of a nonlinear problem are 

assumed and so, the non-linear regression method is applied. 

In general, the adequate equation takes the form: 

𝐽𝑋 = 𝐾 + 𝑉 (8) 

Here, 𝐽 - Jacobian matrix, 𝑋 - matrix of approximate values of the unknowns of the model, 𝐾 - linearized equations, 

𝑉 – coefficient vector. In the first step, the algorithm assumes the expansion of the observational equations into Tylor 

Series in order to obtain the Jacobian coefficient of the linearized equations: 

𝐽 =

[
 
 
 
𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛]
 
 
 

, 𝑥 = [
𝑑𝑥1

⋮
𝑑𝑥𝑛

] (9) 

𝐾 = [
𝐿1 − 𝐹1(𝑥1, 𝑥2, … , 𝑥𝑛 )

⋮
𝐿𝑚 − 𝐹𝑚(𝑥1, 𝑥2, … , 𝑥𝑛 )

]; 𝑉 = [

𝑣1

⋮
𝑣𝑛

], (10) 

With approximate values, the first approximation of the result is made based on the following transformation: 

𝑋 = (𝐽𝑇𝐽)−1𝐽𝑇𝐾 = 𝑁−1𝐽𝑇𝐾 (11) 

The equation including the weight matrix 𝑊 takes the form: 

WJK = WK (12) 

(a) (b) 
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X = (JTWJ)−1JTWK = N−1JTWK (13) 

As a result, corrections to the approximate values of the unknowns are determined (matrix X). After adding the 
corrections, successive adjustments are made iteratively until the values of the corrections in the n-th iteration are smaller 
than the adopted convergence criterion. If the matrix of unknowns J is correctly determined, and the approximate values 
of the unknowns in the first iteration allow for a convergent computational process, the desired result of the parameters 
of the model is obtained in a finite number of iterations. 

2.4. DNAP 

In the direct non-linear approximation (DNAP), the discrete data form the on-site acquisition is directly 

approximated by a non-linear function consistent with the equation (Equation 2). In this case, the entire form of the 

complex function is estimated in one step, including the part describing the periodic vibration and the part describing 

the exponential form. It is not an optimal solution for several reasons. Firstly, it is more demanding in terms of 

determining the initial values of the solution, and since it is an iterative method, it is a mandatory stage. As a result, the 

algorithm based on this approach is less versatile. Numerous authors' experiences in the proof load-testing of road 

bridges show that the calculated parameters of the approximating function are not suitable for correct description of the 

dynamic response of the bridge structure under investigation. This is for example the case during the analysis of several 

consecutive free vibrations recorded after departure of test-loading vehicles moving previously through the bridge with 

different speeds (e.g. 10, 30, and 50 km/h). For each experiment, the obtained parameters of DNAP function will be 

different (which is not desired). Secondly, in this method, an essential damping factor 𝛽 is obtained with the same 

accuracy and uncertainty as all the other parameters of equation (Equation 2), which are not as crucial in the discussed 

problem of the logarithmic decrement estimation. Thirdly, such a solution, although applicable, will be ineffective in 

case of the presence of amplitude beat in the dynamic response of a given bridge. The discussed situation is not 

particularly unique and occurs often, for example, in analyses of the suspension bridges. Additionally, the DNAP 

procedure can be sensitive to the presence of atypical features of the acquired signal such as existence of outliers, 

irregularities in the sampling frequency, high damping, which are often encountered in vibration testing of bridge 

structures. This drawback is especially visible when non-linear approximation is done with the use of standard least 

squares approach without implementing robust algorithms. To illustrate the influence of the non-linear regression 

strategy choice, Figure 4 highlights some of these problems on exemplary simulated data in the authors’ dedicated public 

Python module [27]. 

 

 

Figure 4. Examples showing the sensitivity of the DNAP approach and the impact of using appropriate nonlinear regression 

strategy (simulated signal) 

(a) (b) 

(c) (d) 
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Due to the above mentioned and graphically highlighted remarks (Figure 4), in the authors’ final computational 

implementation, HNAP strategy was chosen with adoption of a robust non-liar regression algorithm. 

2.5. HNAP 

In the HNAP approach, the approximation does not refer directly to the signal from the in-situ measurements, but to 

its envelope obtained from the Hilbert transform [28]. The form of this approximation function is simpler than in case 

of DNAP and is consistent with formula (Equation 14): 

x = Ae−βt + c  (14) 

Here, 𝑐 is additional approximation parameter (equals 0, after translation by mean value of the signal).  

Due to the use of the Hilbert transform, it is possible to directly determine the envelope and, on its basis, to determine 

the value of damping coefficients using nonlinear regression method. Alternatively, linear regression can also be fitted 

to the resulting data after subjecting them to the natural logarithm operation (approach not used in this study). Basic 

limitation of the described approaches is high sensitivity of the solution to measurement errors and the values of the 

envelope at the beginning and at the end of the discrete signal. These values are often disturbed due to the specificity of 

the digital transformation procedure [28]. However, this problem can be solved by a proper time domain cut-off of the 

resulting Hilbert envelope in the computer implementation. Figure 5 shows two examples of HNAP application on the 

simulated signal. 

 

Figure 5. Example of the HNAP application on the simulated signal 

3. Methodology and Computational Implementation 

To enable the use of the developed computational implementation by other research teams, the solution was 

implemented as a Python module with a “Signal” class (Figure 6) and made publicly available [27] as reproducible 

research. The class uses the NumPy library and two SciPy library modules [26]. The “Signal” class has five initial 

attributes: the name, the vector of the coefficients of equation (Equation 14), the time vector representing the points in 

time at which the signal was sampled, the amplitude vector representing the displacement values and the signal envelope 

representing the Hilbert transform. The automated method of the class’s constructor initializes the attributes as NumPy 

arrays (except for the “name” attribute). 

The Signal class has the following methods: 

 fun method which returns a vector of the difference between the observations and the estimated model, 

 load_data method which takes as an attribute the path to the data file to be analyzed and returns the calculated 

vector of time and displacements (or accelerations) to a specific object (instance) of the class. computation is 

performed in such a way as to avoid the influence of computational artifacts at the beginning and end of the signal, 

 compute_sampling_spacing method, which computes key parameters of sampling features of the input signal from 

the in-situ device. It returns sampling mean value, sampling median, and sampling standard deviation, 

(a) (b) 
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 compute_period method, which is responsible for computing period features of the structural response. It returns 

mean period, median period as well as standard deviation of periods 

 fourier_trans method responsible for frequency domain representation, 

 lowpass_filter and bandpass_filter methods, which were implemented to allow filtering of the signal with a low-

pass and a band-pass filter, respectively, 

 compute_envelope which is a method providing the results of the Hilbert transform application, 

 lsq_resutls method which is responsible for determining the coefficients of equation (Equation 14) (in particular, 

the damping coefficient 𝛽) using the simple least squares method, 

 softL1_results method which is responsible for determining the coefficients of equation (Equation 14) (in 

particular, the damping coefficient 𝛽) using the robust least squares method with Mean Absolute Error (MAE) 

weight function, 

 huber_results which is responsible for determining the coefficients of Equation 14 (in particular, the damping 

coefficient 𝛽) using the robust least squares method with Huber weight function. 

 

Figure 6. UML Signal class diagram 

The “Signal” class workflow (Figure 7) starts with pre-processing the data to obtain a subset of time series 

representing free vibrations of the tested bridge object. The second step is digital filtering. This stage of calculations 

enables determination of the logarithmic decrement for a specific vibration frequency with the greatest possible 

reliability and accuracy. Despite the use of bandpass filtering, the signal may not be close to the theoretical representation 

of a damped oscillator. The reason is possible occurrence of the outliers or amplitude beat. In order to limit the influence 

of these factors on the final result of the estimation, in the next step the signals envelope is calculated with the use of 

Hilbert transform. It is known from the mathematical model that it has the form which can be approximated with an 

exponential function. As mentioned previously, the data may contain errors or measurement artifacts so non-linear 

regression is performed using the robust methods. 
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Figure 7. Signal class workflow 

The presented, computational algorithm is developed mainly for observations made in accordance with ISO 4866 

[23], therefore, a time series including vibration amplitudes represented as a digital signal is processed (discretely 

sampled data). For this reason, the developed open-source Signal class also includes methods of filtering the signal in 

the frequency domain. The key difficulties in determining a reliable and accurate value of the logarithmic decrement 

have been resolved as follows: (I) The problem related to the initial parameters describing the analogy to the damped 

oscillator and the potential presence of the amplitude beat has been solved by proper usage of the Hilbert Transform; 

(II) The problem of the observations significantly deviating from the mathematical model (including measurement 

errors) has been solved with adequate application of robust non-linear regression techniques. 

The presented computational solution was validated against two real-life examples. Both are related to the estimation 

of the bridge damping characteristics during their dynamic load testing. The authors’ procedure turned out to be effective 

in proper estimation of the logarithmic decrement for data obtained from an existing road arch bridge (example 1), which 

is characterized by the presence of the amplitude beat, as well as a post-tensioned, two span, double girder bridge 

(example 2) in which the variability of the amplitude and damping values was significant. 

Basing on the theoretical analyses and practical in-situ validations presented in this paper, it can be stated that the 

presented procedure facilitates efficient dynamic analyses of variety of bridge structures and measurement techniques 

applied for data acquisition. In particular, the procedure turned out to be resistant to such phenomena as amplitude beat, 

outliers, high damping as well as irregular sampling rate, which are often the main problem of proper estimations and 

assessments. The research methodology is shown in Figure 8. 

4. Application of Computational Implementation to Real In-Situ Bridge Vibration Data 

Due to the variability of the amplitude value in regard to free vibrations of bridge structures, determination of the 

logarithmic decrement, directly by definition, is often burdened with a very large standard deviation. The presented 

solution minimizes the impact of three basic difficulties: above mentioned variability of the amplitude caused by the 

measurement inaccuracy of the given data acquisition device, variability caused by the amplitude beat, existence of the 

outliers at the beginning and end of the signal resulting from the change in the representation of an analogue mechanical 

signal into a discrete, digital one. 

To highlight the application potential of the presented computational solution two real-life, in-situ bridge examples 

were analysed. In both, the main goal was to estimate the damping characteristics of free vibrations after departure of 

dynamic test loading. To prove that the proposed method is versatile and robust, the data acquisition in the chosen 

examples was performed with different measurement techniques. Furthermore, the amplitude beat and other 

abovementioned features were also present in the acquired data. 
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Figure 8. Flowchart of the research methodology 
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First example concerns analyses of a road arch bridge spanning over 60 m. It consists of two steel arch girders with 

box cross sections and reinforced concrete deck. Data acquisition was performed with the use of radar interferometry 

technique. Figure 9 presents the final results of implementation of the presented Python computational solution. As can 

be noted - despite many difficult features in the acquired data - combination of proper time and amplitude filtration with 

conjunction of the Hilbert transform and non-linear robust approximation, leads to proper estimation of free vibrations 

damping characteristic with satisfying level of regression characteristics (available for reader in detailed manner in [27]). 

 

Figure 9. Exemplary application of the proposed solution regarding free vibrations of a road arch bridge 

Second example regards a post-tensioned, two span, double girder bridge. In contrary to the previous example, the 

data was acquired by means of Potentiometric Displacement Sensors (PDS), the damping coefficient of the structure 

was high, thus the amplitude values were decreasing rapidly (Figure 10). Despite different (almost opposite) 

characteristics of the dynamic response and different measurement technique, the proposed strategy of signal analysis 

again proved to be a correct and robust in obtaining desired damping information (example 2 in [27]). 

 

Figure 10. Results of the implementation of the proposed computational procedure regarding a double-girder, post-

tensioned road bridge 
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5. Discussion 

In-situ bridge vibration data can be difficult to analyze, especially in the aspect of proper and robust logarithmic 

decrement estimation. This feature is identified as crucial in the assessment of bridge dynamic response e.g. during 

dynamic proof load testing. Thus, the key goal of this study was to develop a reliable, open-source reproducible 

computational solution, which would lead to correct estimation of this feature, regardless of possible existence of the 

outliers, amplitude beat, atypical, digital signal features or data acquisition technique. 

On the basis of the conducted analyses (in total, about 4000 sets of measurement signals were analyzed; they are 

available to reviewers together with the code repository [27]), the following features of the presented solutions were 

found. 

The approximation of the measurement signal by a nonlinear function proposed in the DNAP solution is 

characterized, in principle, by limited robustness to the number and size of outliers (Figure 4). This method will be 

suitable if the signal is characterized by the following attributes: 

 The number of outlier observations is limited; 

 The signal, apart from the limited number of outliers, is not characterized by other attributes that make the analysis 

difficult, e.g. there is no beat frequency or frequency drift; 

 The signal is sampled continuously, i.e. the standard deviation of the sampling frequency is small; 

 The signal does not have the character of critical damping. 

Using the method based on nonlinear approximation, we accept the fact that all parameters of the function are 

determined simultaneously with equal weight, even though the attenuation coefficient is the most important for us (e.g. 

in contrast to the phase shift of the whole signal). In this method, it is not possible to remove a systematic factor for the 

damping factor (it can be only achieved indirectly by Group Mean Centering at the first stage of data preprocessing). 

Effectively, this method correctly filters only rare outliers in the data set (Figure 4-a). Dense distribution of outliers 

at the beginning of the data set (where the vibration amplitude is large) or their uniform distribution in the whole range 

of values in dataset results in less accurate calculations of damping – Figures 4-b and 4-c. In particular, the method will 

perform poorly for reinforced concrete bridges where the probability of critical damping is high – Figure 4-d. 

In the second method, HNAP, the outlier data problem is significantly reduced. An example how algorithm works 

for two types of structures is shown in Figures 9 and 10. It is worth to point out that even the systematic error present in 

the signal (frequency rumble) does not affect the estimation of the damping factor. The authors point out that the quality 

of the results can be further improved in this method by applying more precise bandpass filtering criteria on the input 

signal, at data preprocessing step 2 – Figure 7. 

Moreover, after performing the Hilbert transform, four computational options are available to the user for obtaining 

the attenuation decrement: 

 Nonlinear estimation of the envelope, which is an exponential function using the nonlinear least squares method; 

 Nonlinear envelope estimation as an exponential function using robust nonlinear least squares method - examples 

in Figures 9 and 10; 

 Linear envelope estimation with linear least squares method - requires calculation of logarithm from Hilbert 

transform data; 

 Envelope estimation. 

As a result, the developed solution does not assume the use of large learning sets, is resistant to measurement errors 

of different statistical distribution and eliminates systematic errors in the measurement set. As can be seen in source 

code algorithm have been optimized for fast calculations but can be applied to SHM base on IoT architectures. 

The problems presented in this paper are an extension of research conducted by the authors so far. The problem of 

data acquisition with the use of non-contact measurement technologies characterized by the occurrence of atypical 

features in the signal obtained was presented in Kohut et al. (2012) study [29]. Owerko (2013) [30] presents the results 

of estimating the damping parameters with two independent algorithms. The analyses were based on data acquired with 

a radar system during dynamic loading of the bridge. A characteristic feature of the analyzed measurement data was the 

recording of strong measurement noise. The analyses conducted showed that regression for a large amount of data is 

characterized by a large scatter of estimated values. These analyses resulted in conclusions regarding the amount of data 

necessary to determine the complete form of vibration in real conditions as an indication in planning subsequent tests. 

The influence of the type of structure on the nature of measurement data obtained by ground-based radar interferometry 

was discussed in Owerko (2014) study [22]. On the other hand, analyses presented in [31] have shown that damage 

detection based on DSF is not sufficient for bridge structures and requires the use of complementary algorithms. 
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Also the results of tests carried out on various types of bridge structures, presented in the literature review, indicate 

that the data post-processing leading to the logarithmic decrement estimation should be performed with the use of robust 

regression methods. Moreover, the algorithm should not depend on the initial values of the regression model. It is 

particularly important in the examined issue, because for different types of bridge structures the ranges of the occurring 

vibration amplitudes, dominant frequencies and damping parameters can vary significantly. 

As a result of the authors' experience with previous analyses, as well as a review of available methods, and in 

particular their limitations, the development of a reproducible, versatile, and robust open-source algorithm for efficient 

estimation of the logarithmic decrement of bridges was undertaken. This solution addresses current challenges in the 

analysis of measured data of structures under dynamic loading. 

An alternative approach to the presented algorithm, and a current trend in research, is the use of machine learning to 

analyze signals recorded by various measurement methods (including detection of atypical signal features). In principle, 

the results of the computations performed so far are characterized by high efficiency. However, as Zhang & Lei (2021) 
[32] points out for anomaly types such as outlier data, there is still a possibility to improve the recognition accuracy. 

This indicates that the sensitivity of deep learning is not always sufficient for the analysis of measured signals. 

The problem of classifying time series based on trained models is that these models are typically trained on sets that 

include data with well-defined features. Attempting to use the trained network to evaluate a problem based on data with 

other features (e.g., for a different type of structure, other atypical features present in the data) may not provide 

satisfactory results because the model was designed for completely different data. Hence, each occurrence of data with 

different characteristics makes it necessary to update the model or create from scratch a model dedicated to a specific 

case [33], which does not make this approach universal and robust. 

The labor- and time-intensive nature of data preparation and the need for appropriate computer equipment to train 

the network are also important considerations. Due to the problem of the number of factors affecting the quality of the 

data (e.g. type of construction, anomalies, data acquisition conditions, data acquisition equipment), repeatedly pointed 

out in this paper, it is necessary to involve an expert who will manually label the collected data - for the case of supervised 

learning. Only such prepared data, divided into training, validation and test data sets can be input data for neural network. 

Another aspect is the training of neural network itself - selection of appropriate model architecture and training 

parameters, and refining it to obtain satisfactory results is often a long and expensive process. 

An example data preprocessing procedure for computer vision and deep learning-based data anomaly detection is 

described by Bao et al. (2019) [34]. The resulting survey data was preprocessed, resulting in over 333,000 samples used 

for anomaly detection, and the network training time alone took 6 hours. On the other hand, Zhang & Lei (2021) [32] 

use accelerometer data, split into fragments, giving a total of over 28,000 data. In comparison, for data from ground-

based interferometric radar measurements used to detect vehicle crossings of a bridge structure, the training subset alone 

was over 47,000 samples (where the entire collection was divided in a ratio of 70:15:15 into training, validation, and 

test subsets) [35]. 

An alternative approach is to use unsupervised learning. Mao et al. (2021) [36] presented results using GANs and 

autoencoders for anomaly detection. This approach saves time due to the lack of data labeling. Despite the achieved 

accuracy of 94% or up to 90%, the authors point out that atypical data sometimes showed similar features in the time 

domain as data without typicality and were treated as typical, which reduced the detection accuracy. An increase in the 

quality of the monitored data can be guaranteed by combining the proposed method with the ARIMA model. This 

confirms the time and labor-intensive nature of anomaly detection in the analyzed time series using machine learning. 

6. Conclusions 

Based on the literature survey and the authors' own experience, the authors identified the problem of the lack of an 

effective and universal tool for processing data representing free vibrations of engineering structures.  

This paper presents the development of a reproducible, universal, and robust open-source algorithm for efficient 

estimation of the logarithmic decrement of bridge structures as a repeatable test. Two approaches based on the use of 

advanced regression models were considered to estimate the logarithmic decrement. The presented computational 

solution was validated on two real examples. Both of these examples concern the estimation of damping characteristics 

of bridges during their dynamic load tests. The procedure developed by the authors was successful in correctly estimating 

the logarithmic decrement for data obtained from an existing road arch bridge, which is characterized by the presence 

of amplitude rumble. The second example analyzed was a two-girder, two-span, prestressed concrete bridge in which 

the variation in amplitude and damping values is significant. 

Based on the theoretical analysis and practical in-situ validation presented in this paper, it can be concluded that the 

presented procedure facilitates effective dynamic analysis of a variety of bridge structures using different measurement 

techniques applied for data acquisition. In particular, the procedure proved to be robust to phenomena such as amplitude 
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beat, outliers, high damping, and irregular frequency rate. These phenomena are often a major problem in correct 

estimation and evaluation. 

The authors plan to further develop the presented computational repository by (I) extension of the load_data method 

to automate handling of the input files coming directly from widely used measuring instruments; (II) automation in 

regard to time domain filtration to obtain appropriate subsets for damping analysis during structure-free vibrations; and 

(III) publication of the developed modules and classes in the form of a library, web services, or web application. 

Subsequently, it will be possible to expand the solution with a child class adapted to the specificity of steel railway 

bridges and accelerometer data support. 

In addition, the authors plan to adapt the solution’s source-code in a form which facilitates its use for the recipients 

with limited computational background (e.g., in the more accessible form of a Jupyter Notebook) and the use of methods 

allowing for spectral analysis (also for devices sampling unevenly in time). The stability of the frequency response in 

time (e.g. using a spectrogram analysis) with the attenuation parameters of a given frequency is also under consideration 

for future steps. 

6.1. Strengths and Limitations 

Among the main strengths of the presented universal and robust open-source procedure for efficient estimation of 

the logarithmic decrement of oscillating mechanical systems, with particular emphasis on bridges, one can primarily 

distinguish the possibility of obtaining correct results regardless of: 

 The specificity and typicality of the in-situ recorded signal; 

 Selection of the type of equipment and data acquisition techniques used; 

 The type of structure of the object, which determines its response to static and dynamic loads and the nature of the 

radar profile; 

 Lack of necessity for data preprocessing (necessary operations are performed within the implemented Python 

module); 

 Work on small data sets; 

 Speed of implementation. 

The main limitations of the presented approach are related to: 

 The necessity of basic knowledge of the Python language and having appropriate software in order to use the open 

procedure provided in Owerko et al. (2021) [27]; 

 Lack of automatic handling of input files coming directly from commonly used measuring devices. 
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