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Abstract 

Indeed, natural processes of discarding rubber waste have many disadvantages for the environment. As a result, multiple 

researchers suggested addressing this problem by recycling rubber as an aggregate in concrete mixtures. Previously, 

numerous studies have been undertaken experimentally to investigate the properties of rubberized concrete. Furthermore, 

investigations were carried out to develop estimating techniques to precisely specify the generated concrete's 

characteristics, making its use in real-life applications easier. However, there is still a gap in the conducted studies on the 

performance of the k-nearest neighbor algorithm. Hence, this research explores the accuracy of using the k-nearest 

neighbor's algorithm in predicting the compressive and tensile strength and the modulus of elasticity of rubberized concrete. 

It will be done by developing an optimized machine learning model using the aforementioned method and then 

benchmarking its results to the outcomes of multiple linear regression and artificial neural networks. The study's findings 

have shown that the k-nearest neighbor's algorithm provides significantly higher accuracy than other methods. This kind 

of study needs to be discussed in the literature so that people can better deal with rubber waste in concrete. 
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1. Introduction 

The tire industry is the primary user of rubber, which yields the most rubber waste; thus, as a result, rubber recycling 

is frequently referred to as tire recycling [1]. Polymer decomposition is widely recognized to need a long period and has 

negative environmental consequences. Non-biodegradable waste management is an important and challenging issue for 

many governments worldwide. Many construction industry researchers have taken on the task of using recycled particles 

as a partial alternative to natural aggregates in the manufacturing of cement-based products during the last few decades 

[2, 3]. Currently, throwing away worn rubber tires is a severe environmental issue [4-6]. The great potential for 

uncontrolled fires and other environmental dangers, as well as several health concerns, are among the most significant 

risks associated with this technique [7, 8]. According to estimates by the World Business Council for Sustainable 

Development, around one billion tires worldwide reach the end of their life span annually [9]. In 2015, 4.89 million tons 

of rubber tires and 2.68 million tons of rubber products were manufactured worldwide. The rubber products industry 

increased by 2% in 2017, reaching 2.70 million tons, while automobile tire production increased by 1%, reaching 4.94 

million tons, resulting in a 1% increase in output [10]. It must be mentioned that the direction of increased manufacture 

of rubber goods and automobile tires has not been a consistent trend when reviewing prior years; yet, owing to the 
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volume of production, management of rubber waste has become a challenge for today's societies. Consequently, using 

this waste material in building operations has become more popular as a strategy to manage rubber-based solid waste 

due to the abundance and amount of production of this type of waste substance [3, 11]. 

Nowadays, various researchers are investigating the feasibility of adding recycled rubber aggregate to concrete to 

create what is known as "rubberized concrete" [11–14]. The benefit of this form of concrete over the traditional one, 

aside from its environmental advantages, is from rubber's capability to dissipate energy efficiently, which, when 

employed in structural elements, can favorably impact vibration behavior [15-17]. On the other hand, it has been 

indicated that substituting natural aggregates with rubber alternatives reduces their mechanical properties substantially 

[18–23]. This reduction is directly correlated to the amount of rubber aggregates in concrete [24-26]. Marie (2016) [27] 

observed a reduction of between 14% and 89% when rubber particles replaced 5% to 100% natural aggregates. Aslani 

& Khan (2019) [28] observed a drop of about 3% to 49% in the splitting tensile strength when replacing the fine 

aggregates with rubber particles. The drop ratio was later elevated to be between 46% and 73% when the coarse 

aggregates were substituted. Miller & Tehrani (2017) [29] showed a 50% reduction in the modulus of elasticity of 

rubberized concrete with 100% rubber particles in the mixture. These decreases are mostly due to replacing a stronger 

aggregate with a smaller one [23] and the poor bond capacity between rubber aggregates and cement paste compared to 

natural aggregate [30]. 

Indeed, much experimental research has been conducted to study the performance of rubberized concrete and the 

impact of rubber aggregate utilization on concrete. Several previous machine learning models were discussed and 

investigated in the literature to boost the possibility of recycling this material in the concrete production industry as part 

of waste management master plans. Topçu & Saridemir (2008) [31] predicted new density and flow table values by 

applying a feed-forward back-propagation neural network and an adaptive neuro-fuzzy inference system. Cheng & Cao 

(2016) [32] estimated rubberized concrete's compressive strength and splitting tensile strength using a radial basis 

function neural network, multivariate adaptive regression splines, genetic programming, and evolutionary multivariate 

adaptive regression splines. Jalal et al. (2019, 2020) [33, 34] evaluated compressive strength utilizing an adaptive neuro-

fuzzy inference system, multivariable nonlinear regression, and a support vector machine. Hadzima-Nyarko et al. (2020) 

[35] predicted the compressive strength of rubberized concrete using regression trees, a multi-layer perceptron neural 

network, and random forests. Furthermore, Habib & Yildirim (2021) [36] applied feed-forward back-propagation neural 

networks and multivariable linear regression to interpolated damping ratio, dynamic modulus of elasticity, and natural 

frequency of rubberized concrete elements. 

Indeed, most of the previous studies have focused on developing either artificial neural networks or multivariable 
linear regression or both approaches for the compressive strength of rubberized concrete and rarely went into the 
capability of other techniques and the possibility of predicting other rubberized concrete's properties. Moreover, it can 
be shown that studies on the applications of k-nearest neighbor for rubberized concrete are limited to the prediction of 
compressive strength rather than other parameters. Thus, the significant gap in the literature that this study is trying to 
address is the quality of k-nearest neighbor to predict compressive strength, splitting tensile strength, and modulus of 
elasticity, which are investigated in this work. Besides, it tries to benchmark and compare the outcomes and accuracy 
of this method to the most frequently used techniques: multiple linear regression and the artificial neural network 
approach. The ultimate goal is to address one of the primary challenges in rubber waste management by developing a 
solid model for estimating rubberized concrete to make its use in the construction sector considerably more productive. 

2. Materials and Methods 

The mixture of fine (sand) and coarse (either naturally occurring or crushed rock) aggregates and cement paste is 
referred to as concrete. In contrast, worn tires are considered a severe environmental problem worldwide. Researchers 
are currently more interested in recycling trash tires and repurposing rubber generated from crushed tires. There have 
been several suggestions for recycling used tires as part of waste management efforts, for example, putting rubber into 
concrete as an aggregate alternative in the construction sector, which has been implemented. Figure 1 shows the general 
methodology applied in this research for evaluating the mechanical properties of rubberized concrete. 

 

Figure 1. Flowchart of research methodology 
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2.1. Dataset Acquisition of Rubberized Concrete Properties 

As previously stated, this study aims to gather and reuse existing data from the literature to build some numerical 

algorithms of rubberized concrete features. The compressive and splitting tensile strengths of rubberized concrete, and 

its modulus of elasticity, will be determined in this work. The numerical research dataset was captured from earlier 

experimental results [21] at a broad spectrum of rubber compositions. Table 1 summarizes the illustrative statistics of 

the data applied to build the estimation algorithms. In addition, Figure 2 indicates a schematic graph of the probability 

plots of the interpolated component. 

Table 1. Summary of statistics information applied in the studied models 

Parameters Statistics Minimum Average Maximum 

Inputs 

Coarse Aggregates 522.6 898.7 1076.4 

Fine Aggregates 338.4 581.9 697 

Rubber Content 0 95.2 314.1 

Cement 280 360 450 

Silica Fume 0 40 90 

Water 180 195 210 

Superplasticizer 5.25 9.375 13.5 

Outputs 

Compressive strength 7.1 44.13 85.77 

Splitting Tensile Strength 0.7 2.874 4.7 

Modulus of Elasticity 6.1 27.38 47.5 
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Figure 2. Probability diagram of the predicted parameters 

2.2. Machine Learning Methods 

2.2.1. Multiple Linear Regression 

It has been explained previously that multiple linear regression (MLR) is a statistical technique utilized to construct 

a linear relationship between two or more independent variables [37]. According to Achen (1982) [38], MLR is described 

with the help of a mathematical model, as clarified in Equation 1. 

𝑌 = 𝛽𝑋 + 𝜀  (1) 

where 𝑌 is the dependent variable vector, 𝑋 is the independent variable, 𝛽  is the model's coefficients vector to be 

predicted, and 𝜀 is a random error vector. 

2.2.2. K-nearest Neighbors 

As with other machine learning algorithms, K-nearest neighbors (KNN) are also applied in classification and 

regression issues. During the prediction phase of the KNN method, feature similarity is typically used, which means that 

a corresponding value is given to the output based on how close it is to the points in the training dataset. Consequently, 

the training stage involves defining a similarity metric that assists in determining neighbors with the same class as the 

target. The k-value specifies the number of neighbors the model searches for when predicting a given value using this 

method. Additionally, many different functions may also be used in computing the distance between the points, such as 

Euclidean, Equation 2, Manhattan, Equation 3, and Minkowski, Equation 4. 

√∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1   (2) 

∑ |𝑥𝑖 − 𝑦𝑖|𝑘
𝑖=1   (3) 

∑ (|𝑥𝑖 − 𝑦𝑖|𝑝)
1

𝑝𝑘
𝑖=1   (4) 

The study was able to optimize the nearest neighbor computation by investigating different algorithms such as the 

brute force algorithm, a ball tree [39], and K-D trees [40]. 

2.2.3. Artificial Neural Networks 

The artificial neural network is extensively used in the civil engineering domain. When using this technique, the 

training procedure involves optimizing the weights and biases of the model. In this manner, the weighted sums of the 

inputs can be obtained by Equation 5, and the result of its j neuron may be derived from Equation 6. 

(𝑛𝑒𝑡)𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑛
𝑖=1   (5) 

in which 𝑤𝑖𝑗  is the weight between 𝑖 and 𝑗 neurons, 𝑥𝑖 is the output of the 𝑖 neuron, 𝑏 is the bias utilized to the algorithm 

the threshold, and 𝑛 is the total number of neurons. 

(𝑜𝑢𝑡)𝑗 = 𝑓(𝑛𝑒𝑡)𝑗  (6) 

where; 𝑓 is an activation function. 
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As shown in Equation 7, the gradient descent concept is employed to generate the updated weights utilized to adjust 

the algorithm's error throughout the back-propagation way. 

∆𝑤𝑛 = 𝛼∆𝑤𝑛−1 − 𝜂
𝜕𝐸

𝜕𝑤
  (7) 

where; 𝑤  is the weight between any two nodes, ∆𝑤𝑛  and ∆𝑤𝑛−1  are the differences in this weight at 𝑛  and 𝑛 − 1 

iterations, 𝛼 is the momentum factor, and 𝜂 is the learning rate. 

As previously stated, extensive research has been conducted on the behavior of this approach in evaluating 

rubberized concrete attributes; as a result, it was utilized as a benchmark in this investigation to compare it to other 

models. 

2.3. Evaluation of Model Performance 

Accurate benchmarking of any numerical model's accuracy is a significant task that should be handled reliably [41]. 

In this study, multiple measures are employed to investigate the performance of the chosen model. The goal is to first 

analyze the model's appropriateness to the provided issue by determining the goodness of fit of the model using the 

whole dataset (both training and testing) and then to evaluate the errors in addressed approaches using just the testing 

dataset (30 percent of the total sample size). As a result, the determination coefficient, Equation 8, was utilized to 

determine fit quality. The normalized root-mean-square error (NRMSE), Equation 9, and mean absolute percentage 

error (MAPE), Equation 10, were used for the error analysis. 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦̅)2   (8) 

NRMSE =

√
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1
𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
  

(9) 

MAPE =
100

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1   (10) 

where 𝑦𝑖 is the actual value,  𝑦̂𝑖 is the predicted one, 𝑛 is the number of observations, 𝑦𝑚𝑎𝑥 is the maximum measured 

value, and 𝑦𝑚𝑖𝑛 is the minimum measured value. 

3. Materials and Methods 

3.1. Parametric Assessment of KNN Properties 

In this part, a parametric analysis will be carried out to evaluate the impact of the KNN's hyperparameters on the 

accuracy of the processed models. Thus, the goal herein is to offer a thorough knowledge of the most critical parameter 

for the algorithm prediction. Table 2 demonstrates that the nearest neighbors' approach does not influence the model's 

accuracy in training or testing phases. In contrast, Table 3 illustrates how using a different weight function affects the 

performance of the KNN method. According to the data provided, the distance weight function produces much higher 

accuracy when compared to the uniform function in both the training and testing phases. The role of the distance 

functions in KKN discussed in Section 2.2.2 is shown in Table 4. Clearly, for the given dataset of rubberized concrete, 

the best distance function was the Manhattan one regarding all of the rubberized concrete properties, where it yielded 

the maximum value of R2 and minimum values of NRMSE and MAPE for training and testing scenarios. Finally, Table 

5 depicts the impacts of the number of neighbors on the developed KNN related to the number of neighbors. As can be 

shown there, for the investigated dataset, the optimal number of neighbors is 3, which performed better than other 

options throughout the testing stage. Additionally, only one neighbor yielded better MAPE values but lower R2 and 

NRMSE ones. Moreover, it was concluded that this parameter does not influence the training part of the data. 

Table 2. Influence of the nearest neighbors' algorithm on the accuracy of the KNN model 

Concrete Property Nearest Neighbors Algorithm 
Training Testing 

R2 NRMSE MAPE R2 NRMSE MAPE 

Compressive Strength 

BallTree 1.000 0.000 0.000 0.991 0.025 4.470 

KDTree 1.000 0.000 0.000 0.991 0.025 4.470 

Brute-Force Search 1.000 0.000 0.000 0.991 0.025 4.470 

Splitting Tensile Strength 

BallTree 1.000 0.000 0.000 0.991 0.027 3.344 

KDTree 1.000 0.000 0.000 0.991 0.027 3.344 

Brute-Force Search 1.000 0.000 0.000 0.991 0.027 3.344 

Modulus of Elasticity 

BallTree 1.000 0.000 0.000 0.992 0.025 2.851 

KDTree 1.000 0.000 0.000 0.992 0.025 2.851 

Brute-Force Search 1.000 0.000 0.000 0.992 0.025 2.851 
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Table 3. Influence of the weight function on the accuracy of the KNN model 

Concrete Property Weight Function 
Training Testing 

R2 NRMSE MAPE R2 NRMSE MAPE 

Compressive Strength 
Uniform 0.991 0.027 4.297 0.987 0.031 6.030 

Distance 1.000 0.000 0.000 0.991 0.025 4.470 

Splitting Tensile Strength 
Uniform 0.990 0.027 3.826 0.988 0.030 3.823 

Distance 1.000 0.000 0.000 0.991 0.027 3.344 

Modulus of Elasticity 
Uniform 0.991 0.027 3.577 0.986 0.032 3.984 

Distance 1.000 0.000 0.000 0.992 0.025 2.851 

Table 4. Influence of the distance function on the accuracy of the KNN model 

Concrete Property Distance Function 
Training Testing 

R2 NRMSE MAPE R2 NRMSE MAPE 

Compressive Strength 

Manhattan 1.000 0.000 0.000 0.991 0.025 4.470 

Euclidean 1.000 0.000 0.000 0.984 0.033 5.855 

Minkowski 1.000 0.000 0.000 0.972 0.044 7.054 

Splitting Tensile Strength 

Manhattan 1.000 0.000 0.000 0.991 0.027 3.344 

Euclidean 1.000 0.000 0.000 0.989 0.029 3.847 

Minkowski 1.000 0.000 0.000 0.979 0.041 5.071 

Modulus of Elasticity 

Manhattan 1.000 0.000 0.000 0.992 0.025 2.851 

Euclidean 1.000 0.000 0.000 0.992 0.024 3.310 

Minkowski 1.000 0.000 0.000 0.981 0.037 4.267 

Table 5. Influence of number of neighbors on the accuracy of the KNN model 

Concrete Property Number of Neighbors 
Training Testing 

R2 NRMSE MAPE R2 NRMSE MAPE 

Compressive Strength 

1 1.000 0.000 0.000 0.986 0.032 4.116 

2 1.000 0.000 0.000 0.985 0.032 5.135 

3 1.000 0.000 0.000 0.991 0.025 4.470 

4 1.000 0.000 0.000 0.986 0.031 5.343 

5 1.000 0.000 0.000 0.976 0.040 6.360 

Splitting Tensile Strength 

1 1.000 0.000 0.000 0.964 0.053 4.817 

2 1.000 0.000 0.000 0.985 0.035 4.422 

3 1.000 0.000 0.000 0.991 0.027 3.344 

4 1.000 0.000 0.000 0.986 0.034 4.722 

5 1.000 0.000 0.000 0.985 0.034 4.466 

Modulus of Elasticity 

1 1.000 0.000 0.000 0.952 0.059 4.624 

2 1.000 0.000 0.000 0.989 0.029 3.328 

3 1.000 0.000 0.000 0.992 0.025 2.851 

4 1.000 0.000 0.000 0.992 0.024 3.408 

5 1.000 0.000 0.000 0.992 0.024 4.004 

3.2. Compressive Strength 

Concrete compressive strength is an essential parameter for designing a mixture with high load-carrying capacity. 

However, evaluating its reliability requires performing a lengthy experimental procedure that is both time and money-

demanding. Previously, various approaches based on soft computing techniques were proposed to the literature for rapid 

mixture design and characteristics evaluation. Currently, multiple studies can be found on investigating the compressive 

strength of rubberized concrete. However, the capability of the KNN model is not clearly understood the matter. In this 

section, the MLR, ANN, and KNN will be evaluated and compared to understand better the influence of KNN quality 

on predicting the outcomes and determine which algorithm is more appropriate for estimating the compressive strength 
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of rubberized concrete, as demonstrated in Figure 3. The residual diagram, Figure 4, indicates the KNN is much better 

than both the MLR and ANN, which refers to KNN may be employed to precisely build rubberized concrete mixes, and 

no trials are necessary to achieve the desired compressive strength. When comparing the algorithm's quality using the 

fitting rate, Figure 5-a, demonstrates that the coefficient of determination can be significantly improved by about 0.89 

in MLR to 0.99 in KNN. Also, the NRMSE values shown in Figure 5-b highlight a considerable drop in error, roughly 

85%, when the KNN technique is utilized compared to the MLR model. Also, the MAPE results in Figure 5-c show 

more than a 90% percent reduction when the KNN is used compared to the MLR model. On the other hand, comparing 

the performance of the KNN to the ANN, it can be seen that the KNN achieved 12.5 and 60% lower values of NRMSE 

and MAPE, respectively. Nevertheless, the ANN and MLR results follow Habib and Yildirim's observations [36] about 

predicting the dynamic properties of rubberized concrete. 

 

Figure 3. Predictive models for compressive strength of rubberized concrete based on experimental results 

 

Figure 4. Residual diagram of the compressive strength prediction techniques for rubberized concrete 
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(a) 

 
(b) 

 
(c) 

Figure 5. Quality of the rubberized concrete's compressive strength estimation algorithms in the testing stage 
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3.3. Splitting Tensile Strength 

Currently, minimal information regarding the estimation of splitting tensile strength of rubberized concrete can be 

found in the literature. Accordingly, this section is intended to evaluate, analyze and compare the potential of the MLR, 

ANN, and the KNN, aiming to realize the effect of KNN accuracy on the prediction results and specify which model is 

more suitable for estimating the splitting tensile strength of rubberized concrete. Figure 6 and Figure 7 indicate that the 

KNN results are better than MLR, which can precisely develop rubberized concrete mixes to achieve the desired splitting 

tensile strength without trials. In contrast, an inspection of the model's performance by fitting rate, Figure 8-a, reveals 

that the determination coefficient can be significantly enhanced from approximately 0.95 for MLR to 0.99 for the KNN. 

Furthermore, when the KNN technique is utilized instead of the MLR one, the normalized root mean square error 

depicted in Figure 8-b shows a significant reduction of error around 70%. Identically, as seen in Figure 7-c, the mean 

absolute error percentage declined by more than 85 percent. Similar to the compressive strength results, the KNN 

provided better performance than the ANN model in terms of the NRMSE and MAPE metrics, as shown in Figures 8-b 

and 8-c, respectively. 

 

Figure 6. Splitting tensile strength estimation technique for rubberized concrete 

 

Figure 7. Residual diagram of splitting tensile strength prediction algorithm for rubberized concrete 
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(a) 

 
(b) 

 
(c) 

Figure 8. Quality of splitting tensile strength estimation method for rubberized concrete in the testing stage 
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3.4. Modulus of Elasticity 

The modulus of elasticity of rubberized concrete is a considerably important parameter that needs to be evaluated 

for designing reinforced concrete structures. Therefore, reliable prediction of this parameter is a significant task for 

structural engineers. The estimation model results for the modulus of elasticity are illustrated in Figure 9, and Figure 10 

depicts the residual plot of the analysis. Indeed, it can be observed that the KNN model is much better than that of the 

MLR and was marginally superior to the ANN technique. It means that KNN may be utilized to design rubberized 

concrete mixtures more precisely without the need for any trials to reach the required modulus of elasticity level. Figure 

11 illustrates a comparison of the model's performances based on the fitting rate. Figure 10-a reveals that the coefficient 

of determination is significantly improved from about 0.91 in MLR to 0.99 in KNN and ANN. In addition, the 

normalized root mean square error shown in Figure 11-b describes a considerable drop in the error of about 70% when 

the KNN is used compared to the MLR approach. In parallel, as shown in Figure 11-c, the mean absolute error percentage 

was reduced by more than 92 percent. The KNN model outperformed the ANN method in terms of the NRMSE measure 

and produced a much lower MAPE value than the ANN approach. 

 

Figure 9. Output of modulus of elasticity estimation algorithm for rubberized concrete 

 

Figure 10. Residual diagram of modulus of elasticity estimation algorithm for rubberized concrete 
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(a) 

 
(b) 

 
(c) 

Figure 11. Behavior of modulus of elasticity estimation model for rubberized concrete in the testing stage 
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4. Conclusion 

Indeed, previous studies focused on estimating the compressive strength of rubberized concrete using ANN and 

MLR techniques, but they did not go into detail about estimating other properties of this material, nor did they discuss 

the behavior of k-nearest neighbors or benchmark its accuracy. Accordingly, the purpose of this research was to 

investigate the possibility of utilizing the nearest neighbor searching method in estimating the characteristics of 

rubberized concrete. Moreover, it intended to compare the accuracy of this algorithm against the most commonly used 

techniques, represented by ANN and MLR. Evaluating the effect of each of the KNN parameters was carried out, and 

the findings were presented in detail. Practically, using the distance weight function in conjunction with the three nearest 

neighbors provides the best prediction outcomes. On the other hand, when estimating the properties of rubberized 

concrete by KNN from the mixture's components, good behavior and significantly fewer minor errors are observed 

compared to the MLR. It also had a much better performance than the ANN model for the MAPE metric case in all of 

the properties of rubberized concrete. 

Generally, the applications of the findings reported in this study would include developing software packages for 

mixture design of rubberized concrete, which could eventually promote the use of rubber particles in concrete. 

Additionally, the results presented herein will provide researchers in solid waste management in cement-based materials 

with some ideas about using soft computing techniques for modeling the characteristics of recycled aggregate concrete. 

In this case, more research is needed to find out how well other machine learning methods work and how well rubberized 

concrete attributes work. This will help us learn more about how much recycled rubber can be used in the construction 

industry as part of waste management and sustainable development initiatives. 
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