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Abstract 

The coefficient of variation (CV) is a useful statistical tool for measuring the relative variability between multiple 

populations, while the ratio of CVs can be used to compare the dispersion. In statistics, the Bayesian approach is 

fundamentally different from the classical approach. For the Bayesian approach, the parameter is a quantity whose variation 

is described by a probability distribution. The probability distribution is called the prior distribution, which is based on the 

experimenter’s belief. The prior distribution is updated with sample information. This updating is done with the use of 

Bayes’ rule. For the classical approach, the parameter is quantity and an unknown value, but the parameter is fixed. 

Moreover, the parameter is based on the observed values in the sample. Herein, we develop a Bayesian approach to 

construct the confidence interval for the ratio of CVs of two normal distributions. Moreover, the efficacy of the Bayesian 

approach is compared with two existing classical approaches: the generalised confidence interval (GCI) and the method of 

variance estimates recovery (MOVER) approaches. A Monte Carlo simulation was used to compute the coverage 

probability (CP) and average length (AL) of three confidence intervals. The results of a simulation study indicate that the 

Bayesian approach performed better in terms of the CP and AL. Finally, the Bayesian and two classical approaches were 

applied to analyse real data to illustrate their efficacy. In this study, the application of these approaches for use in classical 

civil engineering topics is targeted. Two real data, which are used in the present study, are the compressive strength data 

for the investigated mixes at 7 and 28 days, as well as the PM2.5 air quality data of two stations in Chiang Mai province, 

Thailand. The Bayesian confidence intervals are better than the other confidence intervals for the ratio of CVs of normal 

distributions. 

Keywords: Air Quality; Compressive Strength; Bayesian Approach; Confidence Interval; Coefficient of Variation; Highest Posterior 

Density; Variance Estimates Recovery (MOVER). 

 

1. Introduction 

In 2018, the air quality in Thailand was worse than in previous years because smog, exacerbated by human activities 

and comprising particulate matter (PM), a complex mixture of particles and liquid droplets, has steadily increased. PM 

is defined by size, and PM2.5 (2.5 µm) is of particular concern. The main causes of PM are the exhaust from diesel 

engines, the burning of biomass, and industrial activity. The World Health Organization has stated that the level of 

PM25 should not exceed 25 µg/m3 over a 24-hour mean period [1], whereas the Pollution Control Department in 

Thailand has set 50 µg/m3 over a 24-hour mean period as acceptable [2]. However, some air quality monitoring stations 
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in Thailand have found levels over three times higher than this in some areas of Thailand. Excessive exposure to PM2.5 

can lead to health problems such as heart and respiratory diseases, and so people should avoid outdoor activities and 

wear a facemask during high PM2.5 days. The PM2.5 level dispersion in different areas can be compared using the 

coefficient of variation (CV). Also, in civil engineering, compressive strength refers to the ability of a certain material 

or structural element to withstand loads tending to reduce size. The compressive strength is often tested to evaluate the 

actual mix meets the requirements of the design specification. In order to conduct the compressive strength test, the 

compressive strength is used at the age of 7, 14, 28, and 56 days. The coefficient of variation (CV) has been used to 

describe the compressive strength and can be used to compare the compressive strength variability in two or more 

different days for the investigated mixes. In this study, the Bayesian confidence interval for the ratio of the coefficients 

of variation (CV) of normal distributions for these two applied issues in civil engineering will be evaluated. 

The ratio of the standard deviation and the mean of a population is called the CV, which is a metric that is free of 

the unit of measurement. The larger the CV value, the greater the dispersion, with the lowest value indicating the lowest 

risk. The CV has been widely used in many fields, such as atmospheric and medical sciences. For instance, the CV has 

been used to compare the dispersion of PM2.5 in many areas [3] and blood sample measurements taken from the various 

laboratories [4]. Several methods for estimating the confidence interval of the CV have been suggested. Vangel [5] 

analyzed the small-sample distribution of a class of approximate pivotal quantities for the CV of a normal distribution. 

Tian [6] presented a new approach for making inferences about the common CV of several independent normal 

distributions using the concepts of generalized variables. Mahmoudvand and Hassani [7] introduced an approximately 

unbiased estimator for the population CV of a normal distribution. Panichkitkosolkul [8] improved the confidence 

interval for the CV of a normal distribution by replacing the sample CV in Vangel’s confidence interval with the 

maximum likelihood estimator. Moreover, Wongkhao et al. [9] proposed confidence intervals for the ratio of two 

independent CVs of normal distributions based on the generalized confidence interval (GCI) and method of variance 

estimates recovery (MOVER) approaches. Kalkur and Rao [10] provided a Bayesian estimator for the CV and inverse 

CV of a normal distribution. Thangjai et al. [11] proposed adjusted GCIs for the common CV of several normal 

distributions. Thangjai et al. [12] presented Bayesian confidence intervals for the means of normal distributions with 

unknown coefficients of variation. Thangjai et al. [13] presented confidence intervals for the single CV of a normal 

distribution and the difference between the CVs of two normal distributions. 

Statistics can be divided into two different techniques, which are the Bayesian approach and the classical approach 

[14]. There are differences in Bayesian and classical approaches in methods and analysis. For the Bayesian approach, 

the parameter is a variable that has a probability distribution. Prior probability is the probability assigned to an event 

before the arrival of evidence information. After receiving the information, the prior probability is updated with the 

sample information using the Bayes’ rule. The updated prior probability is called the posterior probability. The posterior 

distribution is used for constructing the confidence interval of the parameter. The Bayesian approach has been 

successfully utilised to establish the confidence interval for parameters of interest. For example, Thangjai et al. [12] 

presented the Bayesian confidence interval for the mean of a normal distribution with an unknown CV and the Bayesian 

confidence interval for the difference between two means of normal distributions with unknown coefficients of variation. 

Maneerat and Niwitpong [15] compared medical care costs using Bayesian credible intervals for the ratio of means of 

delta-lognormal distributions. Maneerat et al. [16] proposed a Bayesian approach to construct the interval estimation for 

the difference between variances of delta-lognormal distributions. Moreover, Thangjai et al. [13] proposed the Bayesian 

confidence interval for the CV of a normal distribution and the Bayesian confidence interval for the difference between 

the CVs of normal distributions. In addition, Thangjai et al. [17] constructed the Bayesian confidence interval for the 

CV of a log-normal distribution and the Bayesian confidence interval for the difference between CVs of log-normal 

distributions. For the classical approach, the parameter is an unknown constant. The best interval estimation of the 

parameter was obtained from the results of experiments. The classical approach includes many methods, such as the 

GCI method and the MOVER method. The GCI approach has been widely used to estimate the confidence interval for 

parameters. For instance, Tian [6] introduced the GCI for constructing the confidence interval for the common CV of 

normal distributions. 

  Tian and Wu [18] constructed the confidence interval for the common mean of log-normal distributions using the 

GCI approach. Ye et al. [19] presented the confidence interval for the common mean of inverse Gaussian distributions 

based on the GCI approach. Niwitpong and Wongkhao [20] constructed the confidence interval for the difference 

between the inverse means of normal distributions. Thangjai et al. [21] presented the GCI approach to construct the 

confidence interval for the mean and difference between means of normal distributions with unknown coefficients of 

variation. Thangjai et al. [22] proposed the GCI approach to construct the confidence interval for the difference between 

variances of one-parameter exponential distributions. Thangjai and Niwitpong [23] used the GCI approach to estimate 

the confidence intervals for the signal-to-noise ratio and difference between signal-to-noise ratios of log-normal 

distributions. Moreover, the MOVER approach has been widely used to construct the confidence interval for the 

parameter. For example, Donner and Zou [24] introduced the MOVER approach for constructing the confidence interval 

for a function of the normal standard deviation. Niwitpong [25] proposed a confidence interval for the difference 
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between CVs of normal distribution with bounded parameters based on the MOVER approach. Wongkhao et al. [26] 

constructed the confidence intervals for the ratio of CVs of normal distributions. Thangjai et al. [27] proposed the 

MOVER approach to construct the simultaneous confidence intervals for all differences in CVs of log-normal 

distributions. 

It is of theoretical importance to develop approaches for confidence interval estimation for the ratio of the CVs of 

two independent normal distributions. In this study, we developed an approach using the concept of Bayesian statistics. 

The problem of constructing the confidence interval for the CV of a normal distribution based on the Bayesian approach 

has been considered by many authors (for example, see Kalkur and Rao [10] and Thangjai et al. [13]). In the present 

study, the Bayesian approach was used to construct the confidence interval for the ratio of CVs of normal distributions, 

followed by comparing its performance with that of the GCI and MOVER approaches proposed by Wongkhao et al. [9]. 

This study is organised as follows: In Section 2, the Bayesian confidence interval for the ratio of CVs of normal 

distributions is presented. In Section 3, simulation results of estimated coverage probabilities (CPs) and average lengths 

(ALs) are obtained by using Monte Carlo studies. In addition, a Bayesian approach is applied to a real-life dataset. 

Concluding remarks are summarised in Section 4. 

2. Bayesian Confidence Interval for Ratio of the CVs 

Let 𝑋 = (𝑋1, 𝑋2, … . , 𝑋𝑛) be a random sample of size n  from a normal distribution with mean 𝜇𝑥 and variance 𝜎𝑋
2. 

Also, let 𝑌 = (𝑌1, 𝑌2, … . , 𝑌𝑚) be a random sample of size m  from a normal distribution with mean 𝜇𝑌 and variance 𝜎𝑌
2. 

The CV is the ratio of standard deviation to the mean. The CVs of 𝑋 and 𝑌 are defined as: 

X
X

X


 


 (1) 

And; 

Y
Y

Y


 


 (2) 

The ratio of CVs is defined as: 

X X X X Y

Y Y Y Y X

/

/

    
   

    
 (3) 

Let 𝑋̅, 𝑌̅, 𝑆𝑋, and 𝑆𝑌  be the sample means and sample standard deviations of 𝑋 and 𝑌, respectively. The maximum 

likelihood estimator of   is obtained by: 

X X X

Y YY

ˆ S / X S Yˆ
ˆ S / Y S X


   


 (4) 

The confidence interval for ratio of CVs of normal distribution is considered using the Bayesian approach. The 

Bayesian approach derives the posterior probability which is based on the likelihood function and the prior probability 

[28]. In this paper, the highest posterior density (HPD) interval is used to construct the Bayesian confidence interval. 

Definition: Suppose that 𝑋 = (𝑋1, 𝑋2, … . , 𝑋𝑛) denotes a random sample. Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) be observed value 

of 𝑋 = (𝑋1, 𝑋2, … . , 𝑋𝑛). Also, let 𝑝(𝜃|𝑥) be a posterior density function. Box and Tiao [29] defines that a region ℜ in 

the parameter space of   is called the HPD region of content (1 − 𝛼) if the following two conditions are satisfied: 

(i) Pr( | x) 1    

(ii) For 1  and 2  , 1 2p( | x) p( | x)    

The HPD interval is based on various priors such as Jeffreys prior and reference prior. In this paper, the independence 

Jeffreys prior is used to construct the HPD interval based on Bayesian framework. The independence Jeffreys priors are: 

2

X X 2

X
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And; 
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Considering the mean 𝜇𝑥, the posterior distribution of 𝜇𝑥 given 𝜎𝑋
2 and 𝑥 is normal distribution which is defined as: 

2
2 X

X X X
ˆ| , x ~ N( , )

n


    (7) 

Similarly, the posterior distribution of 𝜇𝑌 given 𝜎𝑌
2 and 𝑦 is normal distribution which is defined as: 

2
2 Y

Y Y Y
ˆ| , y ~ N( , )

m


    

 
(8) 

Considering the variance 𝜎𝑋
2, the posterior distribution for 𝜎𝑋

2 given 𝑥 is inverse gamma distribution which is defined 

as: 

2
2 X
X

(n 1)sn 1
| x ~ IG( , )

2 2


  (9) 

The posterior distribution for 𝜎𝑌
2 given 𝑦 is inverse gamma distribution which is defined as: 

2
2 Y
Y

(m 1)sm 1
| y ~ IG( , )

2 2


  (10) 

Bayesian approach uses posterior distribution of ratio of CVs to construct the confidence interval through Monte 

Carlo simulation. Since the posterior distribution of ratio of CVs of normal distributions is defined as: 

2

X X X X X Y
BS

2
Y Y Y XY Y

/ /

//

     
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    
 (11) 

where 𝜇𝑥 and 𝜇𝑌 are simulated from the posterior distributions as defined in Equations 7 and 8, respectively. Moreover, 

𝜎𝑋
2 and 𝜎𝑌

2 are simulated from the posterior distributions as defined in Equations 9 and 10, respectively. Therefore, the 

100(1 − 𝛼)% two-sided confidence interval for the ratio of CVs based on the Bayesian approach is obtained as: 

.BS .BS .BSCI [L ,U ]    (12) 

Where 𝐿𝛿.𝐵𝑆 and 𝑈𝛿.𝐵𝑆 are the lower limit and the upper limit of the shortest 100(1 − 𝛼)% highest posterior density 

interval of 𝛿𝐵𝑆, respectively. 

The following algorithm is used to construct the Bayesian confidence interval for the ratio of CVs of normal 

distributions: 

Algorithm 1. 

Step 1: Generate 
2

X X| , x   form Equation 7 and 
2

Y Y| , y   form Equation 8; 

Step 2: Generate 
2

X | x  form Equation 9 and 
2

Y | y  form Equation 10; 

Step 3: Compute BS  from Equation 11; 

Step 4: Repeat step 1 - step 3, a total q  times and obtain an array of BS ’s; 

Step 5: Compute .BSL  and .BSU  from Equation 12. 

Here, two approaches of Wongkhao et al. [9] are briefly discussed to construct the confidence intervals for the ratio 

of CVs of normal distributions. The approaches are the GCI approach and MOVER approach. 

Firstly, the GCI approach uses the generalized pivotal quantity to construct the confidence interval. The generalized 

pivotal quantities for the CVs of X  and Y  are defined as: 

X

2 2

X n 1

n 1 X

(n 1)s /
R

x t s / n







 
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
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And; 

Y

2 2
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m 1 Y
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R
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




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


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where x , y , Xs , and Ys  are the observed values of X , Y , XS , and YS , respectively. Also, n 1t   and m 1t   are the 

student’s t  distributions with n 1  and m 1  degrees of freedom, respectively. Moreover, 
2

n 1  and 
2

m 1  are the 

chi-squared distributions with n 1  and m 1  degrees of freedom, respectively. 

The generalized pivotal quantity for the ratio of CVs is defined as: 

X

Y

R
R

R







  (15) 

where 𝑅𝜃𝑥
 and 𝑅𝜃𝑌

 are defined in Equations 13 and 14, respectively. 

Therefore, the 100(1-α)% two-sided confidence interval for the ratio of CVs based on the GCI approach is defined 

as: 

.GCI .GCI .GCICI [L , U ]    (16) 

where 
.GCIL

 and 
.GCIU

 are the 100(α/2)-th and the 100(α/2)-th percentiles of R  as defined in Equation 15, 

respectively. 

Next, the lower and upper limits of confidence interval for CV of X  are: 

2X
X X X X

X

S
l (X max(0,X a d (a 2)))

d
     (17) 

And; 

2X
X X X X

X

S
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d
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where 
2

X 1 /2,n 1a (n 1) /     , 
2

X /2,n 1b (n 1) /     , and 
2 2 2

X /2 Xd X z S / n  . 

Similarly, the lower and upper limits of confidence interval for CV of Y  are: 
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And; 
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Y

S
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where 
2
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2
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The lower and upper limits of confidence interval for the ratio of CVs are: 

2
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where X X
ˆ S / X  , Y Y

ˆ S / Y  , and Xl , Xu , Yl , and Yu  are defined in Equations 17 to 20, respectively. 
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Therefore, the 100(1-α)% two-sided confidence interval for the ratio of CVs based on MOVER approach is defined as: 

.MOVER .MOVER .MOVERCI [L ,U ]    (23) 

Where 𝐿𝛿.𝑀𝑂𝑉𝐸𝑅 and 𝑈𝛿.𝑀𝑂𝑉𝐸𝑅 are defined in Equations 21 and 22, respectively. 

3. Results and Discussions 

3.1. Simulation Study 

A Monte Carlo simulation study was carried out to analyze the performance of the Bayes estimator and to compare 

it with those of two classical estimators, GCI and MOVER estimators for constructing confidence intervals for the ratio 

of CVs of two normal distributions. In the study, we set 𝜇𝑋 =  𝜇𝑌 = 1.0, 𝜎𝑋 = 1.0, 𝑎𝑛𝑑 𝜎𝑌 = 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 

1.3, 1.5, 1.7, 2.0. For each set of parameters, 5000 random samples were generated and 2500 simulation replications 

were used for each of the random samples. The following algorithm is used to estimate the CP and average length: 

Algorithm 2. 

For a given , 𝑚, 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝑎𝑛𝑑 𝛿  

For ℎ = 1 𝑡𝑜 𝑀 

Generate 𝑥 from 𝑁(𝜇𝑋 , 𝜎𝑥
2)  

Generate 𝑦 from 𝑁(𝜇𝑌, 𝜎𝑌
2) 

Calculate 𝑥, 𝑦, 𝑆𝑋, 𝑆𝑌, 𝜃𝑋 , 𝜃𝑌, 𝑎𝑛𝑑 𝛿 

Construct 𝐶𝐼𝛿.𝐵𝑆(ℎ) = [𝐿𝛿.𝐵𝑆(ℎ) , 𝑈𝛿.𝐵𝑆(ℎ)]  

Construct 𝐶𝐼𝛿.𝐺𝐶𝐼(ℎ) = [𝐿𝛿.𝐺𝐶𝐼(ℎ), 𝑈𝛿.𝐺𝐶𝐼(ℎ)] 

Construct 𝐶𝐼𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ) = [𝐿𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ), 𝑈𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ)] 

Record whether or not all the values of 𝛿 fall in their corresponding confidence intervals 

Compute 𝑈(ℎ) − 𝐿(ℎ) 

End ℎ loop 

Compute the CP and the AL for each confidence interval. 

Table 1 summarizes the empirical CPs and ALs of the GCI, MOVER, and Bayesian confidence intervals. According 

to Thangjai et al. [30], the best confidence interval will have the CP in the range [0.9440, 0.9560] at the 95% confidence 

level and the confidence interval has the shortest average length. The results show that the CPs of three confidence 

intervals are in the range [0.9440, 0.9560]. Moreover, only the Bayesian confidence interval provided CPs greater than 

the nominal confidence level of 0.95 for all cases. In addition, the ALs of the Bayesian confidence interval were shorter 

than the others. Therefore, the results clearly indicate that the Bayesian approach performed satisfactorily in small, 

moderate, and large sample sizes. 

Table 1. The CPs and ALs of 95% two-sided confidence intervals for ratio of CVs of normal distributions 

n m 
Y

X




 .GCI

CI


 
. MOVER

CI


 
. BS

CI


 

CP AL CP AL CP AL 

30 30 

0.3 0.9466 2.8284 0.9432 3.6672 0.9554 2.5226 

0.5 0.9504 2.2750 0.9474 2.1768 0.9578 2.0425 

0.7 0.9494 1.9886 0.9442 2.1365 0.9544 1.7955 

0.9 0.9508 1.7886 0.9458 1.7114 0.9596 1.6182 

1.0 0.9516 1.7364 0.9462 1.8487 0.9548 1.5758 

1.1 0.9524 1.6573 0.9480 1.5829 0.9580 1.5066 

1.3 0.9460 1.5965 0.9426 1.5839 0.9538 1.4554 

1.5 0.9594 1.5047 0.9534 1.5399 0.9638 1.3750 

1.7 0.9498 1.4705 0.9422 1.4253 0.9588 1.3502 

2.0 0.9516 1.3836 0.9474 1.3706 0.9608 1.2772 
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n m 
Y

X




 .GCI

CI


 
. MOVER

CI


 
. BS

CI


 

CP AL CP AL CP AL 

50 50 

0.3 0.9506 1.8471 0.9486 1.7940 0.9544 1.7418 

0.5 0.9462 1.4792 0.9460 1.4376 0.9552 1.3976 

0.7 0.9524 1.2838 0.9512 1.2509 0.9536 1.2190 

0.9 0.9484 1.1788 0.9466 1.1488 0.9552 1.1215 

1.0 0.9458 1.1286 0.9436 1.1004 0.9524 1.0749 

1.1 0.9532 1.0996 0.9490 1.0712 0.9562 1.0472 

1.3 0.9428 1.0400 0.9406 1.0143 0.9458 0.9934 

1.5 0.9414 1.0007 0.9386 0.9760 0.9472 0.9568 

1.7 0.9480 0.9658 0.9458 0.9422 0.9540 0.9250 

2.0 0.9500 0.9147 0.9460 0.8925 0.9586 0.8780 

30 50 

0.3 0.9502 2.6646 0.9446 2.5608 0.9562 2.3574 

0.5 0.9508 2.1207 0.9448 2.0204 0.9558 1.8757 

0.7 0.9556 1.8284 0.9484 1.7505 0.9568 1.6272 

0.9 0.9534 1.6420 0.9502 1.5807 0.9604 1.4658 

1.0 0.9520 1.6043 0.9468 1.5702 0.9558 1.4347 

1.1 0.9524 1.5237 0.9464 1.4562 0.9540 1.3693 

1.3 0.9536 1.4344 0.9488 1.3507 0.9580 1.2899 

1.5 0.9524 1.3335 0.9476 1.3102 0.9552 1.2032 

1.7 0.9572 1.2943 0.9508 1.2536 0.9594 1.1702 

2.0 0.9526 1.2078 0.9484 1.1445 0.9568 1.0979 

100 100 

0.3 0.9518 1.1757 0.9518 1.1620 0.9532 1.1418 

0.5 0.9474 0.9512 0.9476 0.9397 0.9520 0.9245 

0.7 0.9486 0.8329 0.9464 0.8233 0.9492 0.8104 

0.9 0.9492 0.7595 0.9498 0.7511 0.9506 0.7402 

1.0 0.9480 0.7315 0.9462 0.7233 0.9488 0.7130 

1.1 0.9500 0.7058 0.9486 0.6980 0.9504 0.6886 

1.3 0.9526 0.6729 0.9514 0.6653 0.9544 0.6566 

1.5 0.9516 0.6423 0.9502 0.6354 0.9514 0.6279 

1.7 0.9540 0.6231 0.9516 0.6165 0.9534 0.6096 

2.0 0.9550 0.5937 0.9520 0.5871 0.9596 0.5808 

50 100 

0.3 0.9488 1.6807 0.9470 1.6195 0.9520 1.5710 

0.5 0.9460 1.3405 0.9446 1.2943 0.9540 1.2572 

0.7 0.9454 1.1589 0.9436 1.1205 0.9520 1.0888 

0.9 0.9482 1.0414 0.9474 1.0074 0.9540 0.9792 

1.0 0.9508 1.0027 0.9484 0.9714 0.9546 0.9446 

1.1 0.9524 0.9534 0.9512 0.9234 0.9578 0.8990 

1.3 0.9460 0.8999 0.9438 0.8732 0.9528 0.8500 

1.5 0.9428 0.8557 0.9408 0.8306 0.9482 0.8088 

1.7 0.9484 0.8127 0.9468 0.7896 0.9554 0.7695 

2.0 0.9534 0.7667 0.9526 0.7455 0.9564 0.7282 

In this study, the Bayesian approach performs satisfactorily for constructing the confidence interval for the ratio of 

CVs of normal distributions. It was similar to the results of Thangjai et al. [12, 13, 17], Maneerat and Niwitpong [15], 

and Maneerat et al. [16]. Furthermore, the GCI and MOVER approaches do not perform well for constructing the 

confidence intervals for the ratio of CVs of normal distributions. However, the GCI and MOVER approaches are 

recommended to construct the simultaneous confidence intervals for all differences in means of normal distributions 

with unknown CVs [31]. 
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3.2. Empirical Application 

Example 1: Datasets of compressive strength for the investigated mixes at 7 and 28 days obtained from Ali et al. [32] 

are reported in Table 2. The sample statistics of the compressive strength values at 7 days are 𝑛 =9, 𝑥̅ =41.6444, 

𝑠𝑥
2 =623.1003, and 𝜃̂𝑥 =0.5994, whereas the sample statistics of the compressive strength values at 28 days are 𝑚 = 9, 

𝑦̅ =44.5667, 𝑠𝑦
2 =662.805, and 𝜃̂𝑦 =0.5777. The histogram and normal QQ-plots of the data are presented in Figures 1 

and 2, respectively. The Shapiro-Wilk normality test with p-values 0.8344 and 0.6857 for 7 days and 28 days, 

respectively. According to the p-values, the data sets are fitted the normal distribution. The true ratio of CVs was 1.0376. 

The 95% two-sided confidence intervals were [0.3529, 3.0812] with an interval length of 2.7283 using GCI, [0.3938, 

2.7566] with an interval length of 2.3628 using MOVER, and [0.2096, 2.4502] with an interval length of 2.2406 using 

the Bayesian approach. Thus, it can be seen that all of them covered the ratio of CVs for the two populations. The results 

are in agreement with the simulation results in that the Bayesian confidence interval had the shortest length. 

Table 2. Compressive strength of the investigated mixes 7 days and 28 days 

Mix 7 days 28 days 

1 2.7 3.0 

2 16.0 17.5 

3 21.3 22.7 

4 40.5 45.5 

5 44.1 46.0 

6 45.3 50.9 

7 56.0 64.8 

8 71.5 72.5 

9 77.4 78.2 

 

Figure 1. Histogram plots of compressive strength values at 7 days and at 28 days 
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Figure 2. The normal QQ-plots of compressive strength values at 7 days and at 28 days 

Example 2: Thailand is divided into six geographical regions. Figure 3 presents geographical regions of Thailand 

[33]. There are north region, northeast region, central region, east region, west region, and south region. The northern 

Thailand is region with frequent air pollution problems.  

 

Figure 3. Geographical regions of Thailand [33] 
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Chiang Mai province is the hub of the northern Thailand. This example is interested in Mueang Chiang Mai district 

which is the capital district of Chiang Mai province in northern Thailand. This is because the PM2.5 has been the 

seasonal problem in the North of Thailand likes Chiang Mai province. The PM2.5 appears from January to April. 

However, the extremely dry conditions increase the magnitude of forest fires in March. Real data examples of PM2.5 

data are used to illustrate the GCI, MOVER, and Bayesian approaches. The data were reported by the Regional 

Environment Office 1 (http://www.reo01.mnre.go.th). 

The PM2.5 data of two stations in Mueang Chiang Mai district, Chiang Mai province from 1 March 2018 to 30 April 

2018 are reported in Table 3. The data sets consist of 54 measurements in Tambon Chang Phueak station and 56 

measurements in Tambon Sri Phum station. The sample statistics of Tambon Chang Phueak station are 𝑥̅ = 59.3889, 

𝑠𝑥
2 =528.0161, and 𝜃̂𝑥 = 0.3869, whereas the sample statistics of Tambon Sri Phum station are 𝑦 ̅= 59.6964, 𝑠𝑦

2 = 

521.0902, and 𝜃̂𝑦 = 0.3824. The histogram and normal QQ-plots of the data are presented in Figures 4 and 5, respectively. 

Table 3. PM2.5 data of Tambon Chang Phueak and Tambon Sri Phum Stations (µg/m3) 

Tambon Chang Phueak Station Tambon Sri Phum Station 

82 74 58 46 66 79 72 57 59 67 

89 68 100 72 38 94 65 102 73 39 

59 67 60 82 79 56 73 59 83 74 

72 68 78 70 57 69 64 73 71 60 

77 104 105 71 47 74 108 107 72 45 

52 34 41 33 26 52 34 43 37 28 

23 18 25 41 72 20 14 27 43 76 

69 71 89 94 64 69 76 69 76 86 

33 27 35 46 56 76 61 33 25 34 

76 75 85 69 44 50 58 80 73 82 

38 32 25 25  71 45 37 34 22 

     17     

 

Figure 4. Histogram plots of PM2.5 data of Tambon Chang Phueak and Tambon Sri Phum stations 
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The Shapiro-Wilk normality test with p-values 0.08361 and 0.1077 for Tambon Chang Phueak and Tambon Sri 

Phum stations, respectively. According to the p-values, the data sets are fitted the normal distribution. The true ratio of 

CVs was 1.0118. The data were used to establish the confidence interval for ratio of CVs using GCI, MOVER, and 

Bayesian approaches. Firstly, the 95% two-sided GCI was [0.7471, 1.3850] with an interval length of 0.6379. In addition, 

the 95% two-sided MOVER confidence interval was [0.7447, 1.3771] with an interval length of 0.6324. Finally, the 

95% two-sided Bayesian confidence interval was [0.7207, 1.3306] with an interval length of 0.6099. It is also true to 

claim that all confidence intervals for ratio of CVs cover the population ratio of CVs. The results confirm the simulation 

results in the previous section that the Bayesian confidence interval has the shortest length. Therefore, the Bayesian 

approach is recommended to establish the confidence interval for ratio of CVs of normal distributions. 

 

Figure 5. The normal QQ-plots of PM2.5 data of Tambon Chang Phueak and Tambon Sri Phum stations 

4. Conclusion 

The CV is used to measure the dispersion of a probability distribution. The lower CV describes the lower dispersion 

or lower risk, whereas the larger CV describes the greater dispersion or greater risk. It is commonly used in many fields, 

such as engineering and environmental data. The ratio of CVs is used to compare the dispersion of two populations. 

This paper is interested in the ratio of CVs of two normal populations using engineering and environmental data. For 

civil engineering data, the ratio of the CVs is used to compare the dispersion of the compressive strength at the ages of 

7 and 28 days. Moreover, the ratio of the CVs is evaluated to describe the spread of PM2.5 data for Tambon Chang 

Phueak and Tambon Sri Phum Stations in Mueang Chiang Mai district, Chiang Mai province. In practice, behavioural 

models have more often been derived by using the classical approach rather than the Bayesian approach. This paper is 

an extension of previous works by Wongkhao et al. [9] and Thangjai et al. [13]. Wongkhao et al. [9] proposed the 

classical GCI and MOVER approaches for constructing the confidence intervals for the ratio of CVs of two normal 

distributions. Moreover, Thangjai et al. [13] proposed the Bayesian approach for the CV and difference of CVs of normal 

distributions. Therefore, we proposed a Bayesian approach for confidence interval estimation for the ratio of the CVs of 

two normal distributions. The Bayesian approach is compared with the existing classical approaches: the GCI and the 
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MOVER approach. The Bayesian and GCI approaches use software packages to estimate the confidence intervals, 

whereas the MOVER approach uses a formula to construct the confidence interval. The simulation results indicate that 

the Bayesian approach performed better than the classical approaches and is thus recommended for constructing the 

confidence interval for the ratio of the CVs of two normal populations. The results of this investigation were similar to 

those of Thangjai and Niwitpong [3] and Thangjai et al. [12, 13]. Further research will be proposed with other approaches 

for comparison. 
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