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Abstract 

The present work concerns a numerical study of the behavior of reinforced masonry (RM) structures under seismic loading. 

These structures are made of small hollow elements with reinforcements embedded in the horizontal joints. They were 

dimensioned according to the rules and codes commonly used. They are subject to vertical loads due to their own weight, 

and to horizontal loads due to seismic forces introduced by the accelerograms. The software used is the non-linear analysis 

program Drain2D, based on the finite element method, where the shear panel element was introduced. A series of 

calculations was performed on a number of structures at different levels, excited by three major accelerograms (El Centro, 

Cherchell, and Kobe). Throughout the study, our main interest is to evaluate the behaviour factor, the ductility, and the 

failure mode of these structures while increasing the intensity of earthquakes introduced. The results of this present study 

indicate that the average values of the behaviour factor and the global ductility are of the order of q≈μ≈3.00. The reinforced 

masonry structures studied have been broken by interstage displacement. The results given by the study are comparable to 

those given in the literature and in Eurocode 8. The behavior of reinforced masonry under a seismic load is similar to the 

behavior of reinforced concrete; it is a ductile behavior that allows the dissipation of the energy transmitted by the 

earthquake. These numerical studies confirm and complete the experimental work carried out by other researchers. 

Keywords: Reinforced Masonry; Elastic Inelastic; Earthquake; Failure Mode; Behavior Factor; Ductility. 

 

1. Introduction 

The idea for this work comes from the fact that northern Algeria has practically exhausted its building potential. 

Knowing that, the south of the country presents opportunities to build in order to lodge the populations, especially when 

the exploration is still relevant and the future is there. In addition, recent events prove that even this area of Algeria is 

prone to earthquakes such as the BISKRA earthquake. However, it is then necessary to build and take the measures to 

deal with this natural hazard. 

The first concern that the design engineer must have is to provide provisions ensuring the general stability and 

especially the bracing of all the buildings. The purpose of these requirements is not only to ensure the resistance to the 

horizontal forces taken into account in calculations, such as those resulting from the action of the earthquake, but also 

to enable buildings to withstand, without undue damage, the effects of certain stresses, such as localized explosions [1, 

2]. The damage encountered in structures under seismic loading differs according to the type of bracing chosen [3, 4], 

the metal bracing, reinforced concrete, or reinforced masonry cited in the seismic code [5-7], which is characterized by 
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its coefficient of behavior [8, 9], its energy dissipation capacity, and its ductility [10]. When seismic solicitations are 

important, the lack of ductility makes the structures vulnerable to rupture. In this work, we study the bracing of 

reinforced masonry [11]. 

In the literature, masonry is defined as "the art of tidying brick and stones with mortar or other bonding". As is 

known, masonry is a good material for facing compressive forces, and bad compared to tensile forces. From where, the 

idea of arming the masonry as the reinforcements have very good resistance to tensile forces [10-12]. Masonry in general 

and reinforced masonry in particular have very complex mechanical behaviour due mainly to their heterogeneity. Its 

behaviour is a function of the mechanical characteristics of the masonry elements, the mortar that composes them, and 

possibly reinforcements [13, 14], as well as the interaction of these three constituents [15]. In addition, the mechanical 

behaviour of the masonry is greatly influenced by the applied solicitations, mainly by the conditions of their 

implementation [11, 16]. 

The brittleness of the failure of unreinforced masonry shear walls, which is more remarkable with high axial loads, 

may be reduced by the use of steel reinforcement. The role of the horizontal reinforcement on the shear resistance of 

masonry walls has been investigated in the perspective of the development of novel solution for reinforced masonry 

walls [10, 17]. 

There are two types of reinforced masonry: The first type is horizontally reinforced masonry, where the armature is 

embedded in the horizontal joints. The second type is vertically reinforced masonry, where the armature is placed in the 

hollow elements vertically and then filled with concrete or cement slurry [18, 19]. The method of placing reinforcement 

in mortar either horizontally or vertically is described by Fódi (2011) and Araya-Letelier et al. (2019) [20, 21]. Husain 

et al. [22] carried out documentary and comparative research on the behavior of unreinforced masonry and reinforced 

masonry based on modeling strategies and methods, mechanical behavior, and influencing factors available in the 

technical literature. 

Most of the work done in the field of reinforced masonry is based on experimentation, such as; Kumar et al. [23] in 

their experimental analysis of reinforced and unreinforced brick masonry walls with specified dimensions and different 

properties. Koutras et al. [24] studied the seismic behavior of reinforced masonry structures, and Cheng et al. [25] 

evaluated the collapse resistance of reinforced masonry by shake-table tests. Ahmadi et al. [26] and Banting et al. [27] 

studied the displacement of reinforced masonry structures under seismic parameters. Tomazevic et al. [20] studied the 

behaviour of reinforced masonry structures. Potro et al. [28] worked on the behaviour of a new reinforced masonry 

system In-plane cyclic. 

The present paper focuses on the determination of the reinforced masonry structures' behavior, their modes of failure, 

and the relationship between the behavior factor q and the overall ductility. These structures are made of products of 

small elements hollow with reinforcements embedded in the horizontal joints, excited by several earthquakes. These 

structures have two, three, four, and five levels. 

Our research is based on a numerical study of reinforced masonry structures, made possible by a non-linear analysis 

program called Drain 2D based on the principles of the finite element method [15, 29, 30]. This numerical study 

completes and approves the experimental work carried out by other researchers based on the behavior of reinforced 

masonry under seismic loads, the behavior factor, and the global ductility [15, 20, 21, 31]. 

1.1. Behavior Factor 

The role of a bracing is to dissipate the energy transmitted by the seismic action. This quality is described in the 

literature by a coefficient called of global behaviour factor of the structure. Each calculation code defines it by a name 

specific to the country of origin. The Algerian paraseismic regulation defines it by the coefficient "R" and Eurocode 8 

by the coefficient "q". 

The behavior factor “q” of the structure [2, 4] is defined by Equation 1, given below: 

𝑞𝑖 =
𝜆𝑚𝑎𝑥

𝜆𝑒
  (1) 

 A multiplier λe such that the displacement inter-stages De is achieved. 

 A multiplier λmax such that the maximum displacement inter-stages Dmax is reached. 

1.2. Ductility 

Ductility by definition is the ability of a material or an element of a structure to elongate in the plastic domain, 

without breaking or losing strength [2, 32]. In the present study, we consider structural elements whose characteristic 

under cyclic action is of the perfectly plastic elastic type. The ductility is defined as follows: 

𝜇 =
𝐷

𝐷𝑒
  (2) 
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The research flow chart is shown in Figure 1. 

 

Figure 1. Flow chart of the study 

2. Behavior Law and Mechanical Characteristics of Reinforced Masonry 

According to Eurocode 6 [6] and Ghassan [15] project, the calculation is based on the same principles as for 

reinforced concrete element. 

It is assumed that the masonry achieved: 

𝐹𝑀𝑢𝑎 = 0,85 𝐹𝑘  (3) 

𝐹𝑘 = 𝐾 . 𝑓𝑏
0,65 . 𝑓𝑚

0,25
  (4) 

When steel reaches its ultimate value Fsu = 400 N/mm2, the equilibrium equation of forces gives: 

𝐹𝑚𝑎𝑠𝑜𝑛𝑟𝑦 𝑎𝑟𝑚𝑒𝑑 = 𝐹𝑠𝑡𝑒𝑒𝑙 → 0,8 . 𝑏 . 𝑦 . 𝐹𝑀𝑢𝑎 = 𝐴𝑠 . 𝐹𝑠𝑢 and 𝑦 =  
𝐴𝑠 .𝐹𝑠𝑢

0,8 .𝑏 .𝐹𝑀𝑢𝑎
 (5) 

𝜀𝑠

𝑑−𝑦
=  

𝜀𝑀𝑎

𝑦
 and 𝜀𝑀𝑎 =

𝑦

𝑑 −𝑦
 𝜀𝑠 (6) 

Such as: 

𝐹𝑀𝑢𝑎 = 𝜀𝑀𝑎 . 𝐸𝑀𝑎  (7) 

𝐸𝑀𝑎 =
𝐹𝑀𝑢𝑎

𝜀𝑀𝑎
  (8) 

since fma and εma are defined, we can have Ema. It only remains to define fk. 

The mechanical characteristics of the studied structures are summarized in Table 1. 

Calculation of the Behavior Factor and the Ductility 

Mechanism of Ruin 

Results of the Study 

Interpretation and Discussion 

of the Results 

Conclusion 

Mechanical Characteristics of Reinforced Masonry 

Materials and Structures Seismic Actions Software Drain 2D 

Behavior of Reinforced Masonry Structure 

Behavior Factor Ductility 
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Table 1. Mechanical characteristics of the masonry studied 

Mechanical characteristics 𝒇𝒎 N/mm2 𝒇𝒃 N/mm2 𝒇𝒌 N/mm2 𝜹 𝜸𝒎 𝒇𝒗𝒌 N/mm2 𝒇𝒗𝒅 N/mm2 𝑬 N/mm2 𝑮 N/mm2 

Values  10 4.60 2.03 1.15 2.2 0.3 0.136 1.83×105 0.732×105 

3. Materials and Method 

3.1. Constituent Materials and Structures 

The structures studied are reinforced with two bars of diameter (8mm) welded in zigzags and embedded in the 

horizontal joints, made of hollow bricks of dimension (200×200×500mm3).The mortars used are of high strength which 

ensures a great adhesion between the elements of the armed masonry. The structures are respectively two, three, four 

and five levels. They are shown in Figure 2. 

 

Figure 2. Elevation view of the different structures studied 

3.2. Study Software 

The software used is the Drain2D program developed by A. Kanaan and G.H Powel at the University of California 

(Berkeley) [33]. 

It has the following elements: 

a) A beam element that flexes plastically. 

b) A column beam element that plasticizes by forming plastic hinges with rigid nodes. 

c) A semi - rigid joining element. 

d) A shearing sail member that has shear stiffness only. 

e) A bar element that plasticizes in tension and flames elastically in compression. 

In the present study, a shear web element is taken into account (element (d)). 

3.3. Seismic Action 

Pre-sizing of these structures was done according to the requirements of the regulatory codes. A vertical descent of 

loads was made as well as horizontal loads which are given by seismic forces introduced with three accelerograms: 

Seismic actions are defined by three accelerograms that were used in this study: 

         Str-1-                                 Str-2-                                 Str-3-                                 Str-4- 

str 

3.00 m 

4.00 m Diaphragme 

Foundation 

Reinforced masonry 
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 The earthquake accelerogram El Centro, California from May 18, 1940 with a magnitude of 6.9 on the Richter 

scale. 

 The earthquake accelerogram Cherchell in Algeria from October 29, 1989 a magnitude 6.2 to 6.8 on the Richter 

scale. 

 The accelerogram of the Kobe earthquake in Japan on January17, 1995 with a magnitude of 7.2 on the Richter 

scale. 

3.4. Calculation of the Behavior Factor and the Ductility 

The seismic action is increased by multiplying accelerogram a(t) by the coefficient λ, ([a(t) x λ]), so as to find the 

particular values of each state of the different structures, and reach an inter-stage displacement corresponding [7, 34, 

35]. To: 

δ(i+1)-δi=1%H (9) 

δ(i + 1) - δi = 3% H (10) 

The particular values of each state of the various structures characterized by the behavior factor values and the 

responses in terms of displacement are defined as to 
𝐷𝑖

𝐷𝑒
 [2, 7]. Thus the value of q corresponding to the intersection on 

the curve with the bisector (Figure 3) identifies the maximum value of the behavior factor of the structure. 

 

Figure 3. Property of the behavior factor q depending on the ductility [2] 

3.5. Mechanisms of Ruin 

Three modes of failure can be identified in reinforced masonry are given by multiple searches [36-39]. 

a) Out shear panels. 

b) Failure by bending the panels. 

c) Ultimate interstate Displacement. 

In our case the mechanism (c) is used. 

 

1 

𝑞 =
𝜆𝑙𝑖𝑚

𝜆𝑒
= 𝑞𝑙𝑖𝑚 

𝐷  

𝐷 = 𝑞𝐷𝑒 

𝐷𝑠

𝐷𝑒
 

𝐷

𝐷𝑒
 

𝑞 = 𝑞𝑚𝑎𝑥 =
𝜆𝑚𝑎𝑥

𝜆𝑒
 

           = Behavior factor 

Instable behavior 

𝐷 > 𝑞𝐷𝑒 

Stable behavior 

𝐷 < 𝑞𝐷𝑒 

1 1 

1 
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4. Results of the Study 

In our research, we are interested in two aspects: the behavior factor and overall ductility. The study consists in 

finding a relative inter-stage displacement equal to 1% H= 3.00cm. This state corresponds to global ductility value at 

Dmax /De = 1 or to a global behavior factor q = 1 (1). This is achieved by increasing the excitation using the parameter 

λ, until finding an inter-stage displacement equal to 3% H=9.00cm. This state corresponds to the ruin of the structures. 

4.1. Behavior Factor 

The values of the behavior factor are summarized in Tables 2 to 5; three accelerograms were used for the structures. 

Table 2. Overall displacement of structure 1 for the three accelerograms used 

Structure Accelerograms λi Levels Hi δi (cm) δi-δi-1 (cm) D (cm) D/De qi = λ / λe 

1 

El Centro 

λ e = 4.80 
2 0.055 - 

0.055 1 1 
1 0.025 0.03 

λl =14.40 
2 0.164 - 

0.164 2.98 3.00 
1 0.074 0.09 

Cherchell 

λ e = 6.80 
2 0.065 - 

0.065 1 1 
1 0.035 0.03 

λl = 20.00 
2 0.193 - 

0.193 2.93 2.94 
1 0.103 0.09 

Kobe 

λ e= 1.60 
2 0.059 - 

0.059 1 1 
1 0.029 0.03 

λl = 4.70 
2 0.175 - 

0.175 2.97 2.94 
1 0.085 0.09 

Table 3. Overall displacement of structure 2 for the three accelerograms used. 

Structure Accelerograms λi Levels Hi δi (cm) δi-δi-1 (cm) D (cm) D/De qi = λ / λe 

2 

El Centro 

λ e = 1,45 

3 0.043 - 

0.043 1 1 2 0.043 0 

1 0.013 0.03 

λl = 4.40 

3 0.131 - 

0.131 3.04 3.03 2 0.131 0 

1 0.041 0.09 

Cherchell 

λ e= 1.15 

3 0.051 - 

0.051 1 1 2 0.051 0 

1 0.021 0.03 

λl = 3.37 

3 0.149 - 

0.149 2.92 2.93 2 0.149 0 

1 0.059 0.09 

Kobe 

λ e = 0.43 

3 0.048 - 

0.048 1 1 2 0.048 0 

1 0.018 0.03 

λl = 1.28 

3 0.143 - 

0.143 2.98 2.98 2 0.143 0 

1 0.053 0.09 
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Table 4. Overall displacement of structure 3 for the three accelerograms used 

Structure Accelerograms λi Levels Hi δi (cm) δi-δi-1 (cm) D (cm) D/De qi = λ / λe 

3 

El Centro 

λ e = 1,50 

4 0.051 - 

0.051 1 1 
3 0.051 0 

2 0.051 0 

1 0.021 0.03 

λl = 4.40 

4 0.150 - 

0.150 2.94 2.93 
3 0.150 0 

2 0.150 0 

1 0.060 0.09 

Cherchell 

λ e = 1.00 

4 0.051 - 

0.051 1 1 
3 0.051 0 

2 0.051 0 

1 0.021 0.03 

λl = 2.90 

4 0.149 - 

0.149 2.92 2.90 
3 0.149 0 

2 0.149 0 

1 0.059 0.09 

Kobe 

λ e = 0.35 

4 0.049 - 

0.049 1 1 
3 0.049 0 

2 0.049 0 

1 0.049 0.03 

λl =1.00 

4 0.140 - 

0.140 2.85 2.86 
3 0.140 0 

2 0.140 0 

1 0.05 0.09 

Table 5. Overall displacement of structure 4 for the three accelerograms used 

Structure Accelerograms λi Levels Hi δi (cm) δi-δi-1 (cm) D (cm) D/De qi = λ / λe 

4 

El Centro 

λ e = 1,30 

5 0.047 - 

0.047 1 1 

4 0.047 0 

3 0.047 0 

2 0.047 0 

1 0.017 0.03 

λl = 3.90 

1 0.140 - 

0.140 2.98 3.00 

4 0.140 0 

3 0.140 0 

2 0.140 0 

1 0.140 0.09 

Cherchell 

λ e = 0.65 

1 0.046 - 

0.046 1 1 

2 0.046 0 

3 0.046 0 

4 0.046 0 

5 0.046 0.03 

λl = 2.06 

5 0.145 - 

0.145 3.15 3.15 

4 0.145 0 

3 0.145 0 

2 0.145 0 

1 0.055 0.09 
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Kobe 

λ e = 0.33 

5 0.047 - 

0.047 1 1 

4 0.047 0 

3 0.047 0 

2 0.047 0 

1 0.047 0.03 

λl = 0.98 

5 0.138 - 

0.138 2.94 2.97 

4 0.138 0 

3 0.138 0 

2 0.138 0 

1 0.048 0.09 

The results of each Table are illustrated by following the figures, which represent the value of the behavior factor q 

as a function of ductility D/De of the structure. This last is shown in Figures 4 to 7 for each structure and accelerograms. 

 

Figure 4. Variations of the q global behavior factor values for the structure 1 to different accelerograms 

 

Figure 5. Variations of the q global behavior factor values for the structure 2 to different accelerograms 
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Figure 6. Variations of the q global behavior factor values for the structure 3 to different accelerograms 

 

Figure 7. Variations of the q global behavior factor values for the structure 4 to different 

4.2. Overall Ductility 

The distribution of the overall ductility μi for each structure according to the height of the different structures and 

for each accelerogram is given in Tables 6 to 9 and in Figures 8 to 11. 

Table 6. Distribution of the overall ductility required μ for structure 1 as a function of height 

Structure Accelerograms 
𝑯𝒊 − 𝑯𝟏

𝑯𝒕 − 𝑯𝟏

 𝝁 =
𝑫

𝑫𝒆

 𝝁𝒎𝒐𝒚

 

1 

El Centro 
1.00 2.98 

2.97 
0.00 2.96 

Cherchell 
1.00 2.92 

2.865 
0.00 2.81 

Kobe 
1.00 2.97 

2.95 
0.00 2.93 

2.86

2,90

2.93

0 0.5 1 1.5 2 2.5 3 3.5

Kobe

Cherchell

El Centro

Behavior Factor q

A
c
c
e
le

r
o

g
r
a
m

s

Structure N°3

2.97

3,00

3.15

0 0.5 1 1.5 2 2.5 3 3.5

Kobe

El centro

Cherchell

Behavior Factor q

A
cc

el
er

o
g
ra

m
s

Structure N°4



Civil Engineering Journal         Vol. 8, No. 10, October, 2022 

2214 

 

Table 7. Distribution of the overall ductility required μ for structure 2 as a function of height 

Structure Accelerograms 
𝑯𝒊 − 𝑯𝟏

𝑯𝒕 − 𝑯𝟏

 𝝁 =
𝑫

𝑫𝒆

 𝝁𝒎𝒐𝒚

 

2 

El Centro 

1.00 3.04 

3.076 0.50 3.04 

0.00 3.15 

Cherchell 

1.00 2.92 

2.883 0.50 2.92 

0.00 2.81 

Kobe 

1.00 2.98 

2.966 0.50 2.98 

0.00 2.94 

Table 8. Distribution of the overall ductility required μ for structure 3 as a function of height 

Structure Accelerograms 
𝑯𝒊 − 𝑯𝟏

𝑯𝒕 − 𝑯𝟏

 𝝁 =
𝑫

𝑫𝒆

 𝝁𝒎𝒐𝒚

 

3 

El Centro 

1.00 2.94 

2.92 
0.66 2.94 

0.33 2.94 

0.00 2.94 

Cherchell 

1.00 2.92 

2.892 
0.66 2.92 

0.33 2.92 

0.00 2.81 

Kobe 

1.00 2.86 

2.802 
0.66 2.86 

0.33 2.86 

0.00 2.63 

Table 9. Distribution of the overall ductility required μ for structure 4 as a function of height 

Structure Accelerograms 
𝑯𝒊 − 𝑯𝟏

𝑯𝒕 − 𝑯𝟏

 𝝁 =
𝑫

𝑫𝒆

 𝝁𝒎𝒐𝒚

 

4 

El Centro 

1.00 2.98 

2.972 

0.75 2.98 

0.50 2.98 

0.25 2.98 

0.00 2.94 

Cherchell 

1.00 3.15 

3.208 

0.75 3.15 

0.50 3.15 

0.25 3.15 

0.00 3.44 

Kobe 

1.00 2.94 

2.918 

0.75 2.94 

0.50 2.94 

0.25 2.94 

0.00 2.83 
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Figure 8. Distribution of the overall ductility of the structure 1 

 

Figure 9. Distribution of the overall ductility of the structure 2 

 

Figure 10. Distribution of the overall ductility of the structure 3 
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Figure 11. Distribution of the overall ductility of the structure 4 

5. Interpretation of the Results 

The reinforced masonry structures studied are made of products of small elements hollow with reinforcements 

embedded in the horizontal joints. The mortars used are of high strength, which ensures great adhesion between the 

elements of the reinforced masonry. The reinforcement was placed at each interface of the brick. Four structures at 

different levels were excited by three major accelerometers. The software used is the non-linear analysis program 

Drain2D, based on the finite element method, where the shear panel element was introduced. We have kept the same 

height dimensions for all the structures, and the same vertical and horizontal loads have been applied. Thus, we 

considered that the reinforced masonry consists of two elements: the reinforced mortar joints on the one hand and the 

hollow element on the other. The results of the study are summarized in Table 10: 

Table 10. Average values of ductility and behavior factor for reinforced masonry 

Accelerogram μ q μmoy qmoy 

El Centro 2.985 2.99 

2.967 2.968 Cherchell 2.98 2.98 

Kobe 2.935 2.935 

The average value of the behavior factor is of the order of q ≈3.00. This value is comparable to that given in the 

literature for reinforced concrete structures with flexural failure [5, 20, 35]. The accepted values for the overall behavior 

factor of structures through the main research established by the European Union are recorded in Eurocode 8 for 

reinforced masonry and are of the order of 2.5 to 3. 

The value of the behavior factor found in the study is confirmed by tests on a vibrating table realized by Tomazevic 

et al.; the average value given in this experimental study is in the order of 3.74. The ductility value is of the order of 

μ≈3.00. This value was confirmed by the three accelerograms and the different structures studied. The experimental 

study was carried out by Sandoval et al. [22], which the ductility result value ranges between 2.5 to 5.5. 

The ductility is distributed uniformly, it can be concluded that these structures have good behavior in seismic zones. 

The failure of the structure studied occurred by exceeding the displacement between stages. There is no bending or 

shearing appearing during the excitation of the structures by the three accelerograms used: El Centro, Cherchell, and 

Kobe. Akbarzade & Tasnimiin [34] their study of the Behavior of Reinforced Masonry Walls showed that the consequent 

displacement of the panels proving a good ductility. 

The mode of failure by shearing did not appear because the sections of reinforcement arranged in the mortar are 

important; they are placed at each interface of the bricks. Load-deformation response and failures of the masonry were 

affected by the following factors: reinforcement; the ratio of reinforcement steel bars played an important role in the 

behavior of reinforced masonry [22]. Sandoval et al. [19] found the increase in horizontal reinforcement ratio led to a 

large increase in shear capacity. Alcocer & Meli [17] found that the horizontal steel bars increase the shear capacity of 

brick walls by up to 30% compared with unreinforced walls. The behavior of reinforced masonry was quite similar to 

reinforced concrete structural elements [22, 40]. 
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6. Conclusions 

This work is based on a numerical study of the behavior of reinforced masonry structures (RM) under seismic loading 

and the relation between the behavior factor and the ductility. The behavior law and mechanical characteristics of 

reinforced masonry are defined, and the method for calculating the behavior factor and the ductility has been described. 

The study consists of finding a relative inter-stage displacement equal to 3.00 cm. This state corresponds to global 

ductility value at μ = 1 or to a global behavior factor q = 1. This is achieved by multiplying accelerogram a(t) by the 

coefficient λ, until finding an inter-stage displacement equal to 9.00cm. This state corresponds to the ruin of the 

structures. 

As a result, the value of the behavior factor and the global ductility found for reinforced masonry structures at 

horizontal joints is of the order of 3.00. This value is the same for all the structures and is confirmed by the three used 

accelerograms. It is comparable to that given in the literature for reinforced concrete structures' bending failure. The 

breaking of all structures is reached by the displacement of the stages. There is no shearing of the structures or of flexion 

appearing during excitations by the accelerograms. The fracture of the studied structures by displacement between stages 

indicates ductile behavior, which allows the dissipation of the energy transmitted by the earthquake. The results found 

in the present numerical study confirm and complete the experimental studies carried out in other research works. 

In this study, the reinforcement of the structure is placed at each brick interface. It is interesting to study the same 

structures by placing the reinforcements at 2, 3, or 4 different brick interfaces (at different heights, namely 40, 60, and 

80 cm) and carry out a comparative study on the behavior of these structures in the face of seismic actions and analyze 

their modes of ruin at each change in the quantity of reinforcement. In this case, the shear failure mode may occur. Since 

the raw materials that constitute reinforced masonry, whether hollow concrete blocks or terracotta bricks that are found 

in abundance in nature, the manufacture of these materials remains an easy job and does not require sophisticated 

equipment. Since this type of construction does not require a lot of material resources or a large skilled workforce, this 

type of bracing remains advantageous in terms of completion times because the formwork and complicated 

reinforcements are avoided and the construction is done in a single part. In addition, the realization of reinforced masonry 

constructions remains economical because it avoids the maximum amount of steel, which is enormously expensive at 

the present time, and a maximum of types of concrete and expensive admixtures. 

According to the results found in our study, which are confirmed by other research, the codes, and the advantages of 

reinforced masonry, it is interesting to introduce this type of construction into the Algerian seismic code and put it into 

practice. The use of reinforced masonry in construction remains interesting from the points of view of resistance, 

stability, and economy. 
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