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Abstract 

Carbon dioxide (CO2) is the main greenhouse gas responsible for global warming. Early prediction of CO2 is critical for 

developing strategies to mitigate the effects of climate change. A sophisticated version of the extreme learning machine 

(ELM), the wavelet enhanced extreme learning machine (W-EELM), is used to predict CO2 on different time scales 

(weekly, monthly, and yearly). Data were collected from the Mauna Loa Observatory station in Hawaii, which is ideal for 

global air sampling. Instead of the traditional method (singular value decomposition), a complete orthogonal 

decomposition (COD) was used to accurately calculate the weights of the ELM output layers. Another contribution of this 

study is the removal of noise from the input signal using the wavelet transform technique. The results of the W-EELM 

model are compared with the results of the classical ELM. Various statistical metrics are used to evaluate the models, and 

the comparative figures confirm the superiority of the applied models over the ELM model. The proposed W-EELM model 

proves to be a robust and applicable computer-based technology for modeling CO2 concentrations, which contributes to 

the fundamental knowledge of the environmental engineering perspective. 
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1. Introduction 

1.1. Background of the Study 

Due to the increasing global warming in various spheres of life, the threat of climate change has been considered a 

serious environmental problem for the last twenty years. The intensive expansion of human and industrial activities in 

many countries has put enormous pressure on the environment by releasing large amounts of greenhouse gases into the 

atmosphere. The inefficient, systematic process of releasing gasses into the atmosphere eventually leads to the 

occurrence of ‘climate extremism’ and serious consequences that threaten human health, the economy, and human 

development and increase the concentration of pollutants in the atmosphere. For example, the global average surface 

temperature of the Earth has increased from 0.4 to 0.8°C since the end of the 19th century [1]. Carbon dioxide is the 

main cause of global warming on our planet [2–5] and thus plays an important role in maintaining the stability of the 
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climate system [6, 7]. Recently, the phenomenon of global warming has become the biggest environmental problem in 

human history [8, 9]. Although measures have been taken to reduce carbon emissions into the atmosphere, the 

concentration continues to increase. In this context, international organizations are making great efforts to reduce the 

negative effects of global warming by focusing on policies to reduce carbon dioxide emissions [10]. 

Based on the 1997 climate report, the Kyoto Protocol called for an 85% reduction in greenhouse gas emissions. In 

2009, the United Nations Framework Convention on Climate Change (UNFCCC) took place. As a result of this 

convention, China promised to reduce CO2 emissions by 40–45% by the end of 2020 [10]. Although CO2 concentration 

set a record in May 2019, it reached 415 ppm at Mauna Loa Observatory Station. However, the International Energy 

Agency (IEA) reports that global CO2 emissions from energy generation have decreased to 33 megatons, which is due 

to the reduction of CO2 emissions from power plants in developed countries. The main reason for this decrease in CO2 

emissions in the energy sector is the expansion of the use of renewable energy and the reduction in the use of fossil fuels 

in power plants, as well as the switch to natural gas. It is worth noting that the global CO2 concentration from the energy 

sector accounts for 41% of all CO2 emissions, while the other CO2 emission sources can be divided as follows: 20% 

from industry, 16% from road transport, 6% from other transport, and about 16% from various sectors and households 

[11]. Figure 1 shows the global CO2 emissions of developed and developing countries based on IEA data [12]. 

 

Figure 1. Records of CO2 emissions over the last 30 years 

Consequently, the main goal to preserve our planet is to keep the temperature increase on Earth below 2°C according 

to the recommendations of the Paris Agreement [13]. According to the recommendations of the Paris Agreement, 

developed countries must reduce CO2 emissions from the energy industry. It is important to note that some of these 

countries have responded very well to the demands. For example, CO2 emissions from the energy sector have decreased 

by 2.9% in the United States, 8% in Germany, 2% in the United Kingdom, and 4.3% in Japan. On the other hand, energy-

related CO2 emissions have increased in Asia due to the increased demand for coal for energy facilities [12].  

Recently, the concentration of CO2 emissions has increased dramatically, which puts enormous pressure on the entire 

ecosystem. CO2 gas concentration has already exceeded the normal and safe level of about 350 ppm. Catastrophic 

weather events such as sea level rise and hurricanes can be avoided if the CO2 concentration in the atmosphere is at 350 

ppm. Moreover, the irreversible and dangerous consequences of climate change would be limited if the CO2 level is at 

the safe level (350 ppm). It should be noted that the highest value determined in this study is 415.39 ppm. 

1.2. Related Works and Research Gap 

The prediction of CO2 is an important issue in the environmental field because it significantly affects the temperature 

of the Earth's surface. Moreover, CO2 concentration has increased exponentially in recent years and poses a significant 

threat to human life and the ecosystem. Accurate prediction of CO2 concentration is not only important to provide 

important information to policy makers, but also can improve the quality of CO2 emission management [14]. CO2 

prediction is crucial to monitor the changes of this gas over time and establish a reliable warning system; however, few 

studies have been conducted to predict this gas. Some studies have used artificial intelligence (AI) techniques to predict 

CO2 emissions, including genetic algorithm [15, 16], artificial neural network (ANN) [17], Gaussian processes 
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regression method [18], and logarithmic mean Divisia index method [19, 20]. Mardani et al. [21] conducted a study 

using ANN and an adaptive neuro-fuzzy inference system (ANFIS) for CO2 prediction. These models were validated 

against multilinear regression. The study found that the AI models had excellent prediction accuracy compared to the 

MLR model. In addition, Saleh et al. [22] used support vector regression to predict CO2 emissions from energy 

consumption. As the hyperparameters of the applied model were calculated by trial-and-error method, the result of the 

study was satisfactory.  

However, the standard ANN model has some problems, such as long training time and low generalization [22], while 

other models, such as Gaussian process regression, require accurate tuning of the hyperparameters of this model and 

appropriate selection of the kernel function. It is important to mention that the above studies could not consider the 

analysis of time series of CO2. Moreover, the mentioned researchers obtained the required data from specific stations. 

In other words, these models can provide information on emissions at a regional scale, but not on global emissions. 

Detection of gas emissions at a geographically and climatically delineated location can provide an important indication 

of the increase in carbon dioxide concentration around the globe, which has not been studied before. 

1.3. Research Significance 

Accurate prediction of CO2 gas is very important for establishing an advanced early warning system and can play a 

crucial role in evaluating the adopted global strategies to reduce the concentration of this gas in the air. The main 

challenge is that the atmospheric CO2 concentration increases very rapidly in short time periods. In this study, the ability 

of a novel model called wavelet enhanced extreme learning machine (W-EELM) to predict CO2 emissions is 

investigated. In a recent study [23], the classical ELM was improved by using a robust algorithm called the complete 

orthogonal decomposition algorithm (COD) instead of a classical algorithm (Singular Value Decomposition (SVD)) to 

optimally compute the output weights of ELM. Several studies have shown that the COD algorithm is much better than 

SVD through the calibration process. 

Moreover, COD is more reliable, efficient and faster than SVD in solving technical problems [23, 24]. We integrate 

an enhanced extreme learning machine (EELM) with a discrete wavelet transform approach. The discrete wavelet 

transform technique removes the noise from the data set to obtain more accurate predictions. The proposed (W-EELM) 

was validated in predicting CO2 emissions at different time scales (i.e., weekly, monthly, and yearly) against the standard 

ELM. 

2. Methodology 

2.1. Environmental Data and Site Description 

This study uses CO2 emission data collected from the Mauna Loa Observatory Station in the state of Hawaii, United 

States. This station measures environmental factors and emission gasses that contribute to global climate change. The 

observatory's location is ideal for collecting air samples because it is located in Hawaii on the side of the largest active 

volcano on Earth. Geographically, the station is about 3400 m above mean sea level, far enough away from pollution 

sources to facilitate scientists and researchers studying and analyzing air properties. The other geographic and hydrologic 

features of the observatory are listed in Table 1. In the 1950s, scientists studied atmospheric safety at Mauna Loa 

Observatory. This monitoring station can detect global climate changes by measuring various air gas concentrations. 

Many gas emissions are measured, including carbon dioxide, methane, sulfur dioxide, and nitrous oxide. Among these 

greenhouse gas emissions, CO2 is the most critical pollutant that mainly causes global warming. 

Table 1. General Information about Mauna Loa Observatory Station [25] 

Geographical Information 

Latitude 19.54° N 

Longitude 155.58° W 

Altitude (meters above mean sea level) 3400 m 

Hydrological Information 

Average Temperature Day (9°C), Night (5°C) 

Average Min Temperature Day (4°C), Night (3°C) 

Average Max Temperature Day (12°C), Night (7°C) 

Average Precipitation 1.5" per month 

Average Wind Speed 5 m/sec 

Max Average Wind Speed 20m/sec 

Average Pressure 680 millibars 
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The CO2 concentration data used in this study were collected by the National Oceanic and Atmospheric 

Administration of the U.S. Department of Commerce [26]. In addition, the data span multiple time scales (i.e., weekly, 

monthly, and yearly). The statistical characteristics of the data set with different time scales are shown in Table 2. The 

data set contains some missing values, which we fill by linear interpolation. 

Table 2. statistical criteria 

Time scale Stage Period 𝐍 Rang Mean Standard deviation CV 

Weekly 

Training 

19-5-1974 to 9-4-2000 1435 326.73 ~ 373.93 350.1961 12.3329 0.0352 

Monthly Mar-1958 to May-1995 446 312.66 ~ 363.69 335.0417 13.9753 0.0417 

Yearly 1957 to 1995 36 318.45 ~ 362.61 338.9078 14.3146 0.0422 

Weekly 

Testing 

16-4-2000 to15-3-2020 956 369.88 ~ 415.39 391.6733 11.8726 0.0303 

Monthly June-1996 to Feb-2020 297 358 ~ 414.66 384.9845 15.2106 0.0395 

Yearly 1996 to 2019 23 363.73 ~ 411.44 386.3813 14.4219 0.0373 

*N and CV respectively are the number of observations and variance coefficient. 

2.2. Extreme Learning Machine 

Extreme learning machine (ELM) can be defined as a learning algorithm presented by Huang for training single 

hidden layer feedforward neural network (SLFN) [27]. Training classical SLFN can be performed using a 

backpropagation algorithm, which has several shortcomings, including time consumption, computational cost, and 

overfitting problems. Therefore, the ELM algorithm is proposed for training SLFN to achieve faster and more accurate 

modeling with better generalization [28-30]. The hidden layer of SLFN is the most important element in the structure 

of SLFN and significantly affects the efficiency of the model. According to Huang [27], if the transfer function of the 

hidden layer is infinitely differentiable in each interval and there are enough hidden nodes, it is not necessary to adjust 

all the weighting values of the network. In accordance with this fact, the ELM algorithm initializes the weight and bias 

values of the hidden layer randomly. For this reason, the ELM model requires less learning time than the classical neural 

network system. It is important to mention that the weights of the output layer can be calculated using the least squares 

method based on the Moore-Penrose generalized inverse function. Figure 2 shows the general structure of the modeling 

approach of ELM. 

 

Figure 2. General structure of ELM modeling approach 

The mathematical expression of the ELM model can be expressed by Equation 1: 

∑ 𝐵𝑖𝑔𝑖(𝑎𝑖𝑥𝑡 + 𝛽𝑖) = 𝑧𝑡 , 𝑖 = 1, … , 𝑁 𝐿
𝑖=1   (1) 

where L is the number of hidden nodes, 𝑔𝑖(𝑎𝑖𝑥𝑡 + 𝛽𝑖) is the output function of the hidden layer, 𝑎𝑖  and 𝛽𝑖  are the 

parameters (i.e., weights and biases) of the hidden nodes determined randomly, 𝐵𝑖  refers to the weight values that map 

the 𝑖𝑡ℎ hidden nodes to the output node, and 𝑧𝑡 is the output target of the ELM model. To achieve good generalization 

and more stable modeling, the required number of hidden nodes in the hidden layer should not exceed the number of 

input samples. 
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In the modeling approach of ELM, the parameters of the hidden nodes are determined randomly without iteratively 

tuning and adjusting their values, as is the case in various types of artificial intelligent modeling approaches [31]. The 

main matrix of ELM is the randomly generated values of the weights of the hidden layer. This can lead to zero error and 

provides an opportunity to analytically configure the weight values of the output neural network layer (B) for the training 

samples. Moreover, the parameter values of the internal activation function (𝑎𝑖 , 𝛽𝑖 ) are assigned according to the 

probability distribution. Finally, the general matrix describing the ELM model can be expressed in Equations 2 and 3 

[32, 33]: 

𝐻(𝑎, 𝛽, 𝑥) =

[
 
 
 
 
𝑔(𝑥𝑖)

.

.

.
𝑔(𝑥𝑛)]

 
 
 
 

=

[
 
 
 
 

𝑔𝑖(𝑎1. 𝑥1 + 𝛽1 )… 𝑔𝐿(𝑎𝐿 , 𝛽𝐿 , 𝑥𝑖)
.
.
.

𝑔𝑖(𝑎𝑁 . 𝑥𝑁 + 𝛽1 ) … 𝑔𝐿(𝑎𝐿 , 𝛽𝐿 , 𝑥𝑁)]
 
 
 
 

𝑁∗𝑁

  (2) 

and 

𝐵 =

[
 
 
 
 
𝐵1

𝑇

.

.

.
𝐵𝐿

𝑇]
 
 
 
 

𝑁∗1

      𝑎𝑛𝑑, 𝑌 =  

[
 
 
 
 
𝑦1

𝑇

.

.

.
𝑦𝐿

𝑇]
 
 
 
 

𝑁∗1

  (3) 

where H is the matrix of the hidden layer and T is the matrix transpose. The matrix of ELM can be simplified as Equation 

4: 

𝐻𝐵 = 𝑌  (4) 

The least square method of Equation 3 can be expressed in Equation 5: 

�̂� = 𝐻†𝑌  (5) 

The 𝐻† is the Moore-Penrose inverse of Hussain (H) matrix. Conventionally, the singular value decomposition 

(SVD) method has been used primarily for ELM learning. 

2.3. Enhanced Extreme Learning Machine (EELM) Model 

The SVD approach is often used to solve linear problems using the least squares error method. However, the 

complete orthogonal decomposition (COD) algorithm can be used as an alternative to the traditional SVD method 

because it gives excellent results in solving linear problems with a simple and reliable computation [34]. In the present 

study, the COD algorithm is used to calculate the output weight values in order to improve the learning method and the 

efficiency of the model ELM. It should be noted that the COD method has special features that distinguish it from the 

usual SVD method. One of these advantages is that the COD algorithm can provide much more accurate results with a 

simpler computational process. 

It is important to point out that the COD approach generally provides very efficient computational results regardless 

of the size of the H matrix. Moreover, the results of this algorithm are stable, and the required weights can be calculated 

using the least squares norm and in a shorter time. More details about the COD algorithm and its applications in tuning 

the ELM modeling technique can be found in Guo et al. [35]. 

2.4. Wavelet Transform 

Wavelet transform (WT) is a mathematical approach used to remove noise and decompose data series. In WT 

analysis, a time series process includes two main components, low-frequency, and high-frequency components. The 

general characteristics of time series data include seasonal and cyclical trends, which are processed by the low-frequency 

components, while the chaotic and detailed elements are preserved in the high-frequency components. This strategy is 

similar to the variable separation approach in time series analysis, which can be used to identify inherent patterns in raw 

time series data. 

The mathematical expression of the temporal wavelet transforms of a continuous time series, x(t) can be defined as 

shown in Equation 6 [36, 37]: 

𝑊(𝑚, 𝑛) =
1

√𝑚
∫ 𝑀∗+∞

−∞
(

𝑡−𝑛

𝑚
)  𝑥(𝑡). 𝑑𝑡  (6) 
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Here, 𝑛 describes the time shift of the function that supports a careful study of the signal; 𝑚 represents the dilation, 

the symbol ∗ describes the complexity formula used for the conjugation, and 𝑀(𝑡) represents the mother wavelet. This 

transformation approach is primarily concerned with determining the time scale of the process. In practice, ecologists 

usually do not prefer the continuous wavelet transform because it generates redundant information that can affect the 

effectiveness of simulation models. Therefore, the discrete wavelet transform is often used instead of the continuous-

time signal process. The formula of the discrete mother function can be expressed in Equation 7 [36]: 

𝑀𝑎,𝑏(𝑡) =
1

√𝑚𝑎
𝑜
𝑀 (

𝑡−𝑏𝑛𝑜𝑚𝑎
𝑜

𝑚𝑎
𝑜

)  (7) 

n this equation, 𝑎  and 𝑏  are integers. Wavelet dilation and wavelet translation are controlled by 𝑎  and 𝑏 , 

respectively. Normally, the parameters 𝑛𝑜  and  𝑚𝑎
𝑜  are equal to 1 and 2, respectively. 𝑛𝑜  describes the location 

parameter and its value should be greater than zero, while 𝑚𝑎
𝑜 indicates the step of refined dilation, which should be 

greater than one.  

This logarithmic scaling for dilation and translation is called dyadic grid management. The dyadic wavelet function 

is presented in Equation 8 [36]: 

𝑀𝑎,𝑏(𝑡) = 2−𝑎/2 x 𝑀(2−𝑎𝑡 − 𝑏)  (8) 

For a discrete-time series, 𝑥𝑖, the dyadic wavelet transform is represented in Equation 9 [38, 39]: 

𝑇𝑎,𝑏 = 2−𝑎/2  ∑ 𝑀(2−𝑎𝑖 − 𝑏)𝑥𝑖
𝐿−1
𝑖=0   (9) 

Thus, 𝑇𝑎,𝑏 is the wavelet coefficient for the discrete wavelet with scale 𝑚 = 2𝑎 and location 𝐿 = 2𝑎 (where 𝑖 =  0, 

1, 2, …, 𝐿 − 1). In addition, the smoothed signal component, which represents the overall trend of the time series, is 

considered as 𝑇. Thus, the discrete inverse transform function reconstructs the signal 𝑥𝑖 as shown in Equation 10 [38, 

39]: 

𝑥𝑖 = 𝑇(𝑡) + ∑ 𝑇𝑎,𝑏(𝑡)
𝐴
𝑎=1   (10) 

where 𝑇(𝑡) is the approximation sub-signal at level 𝐴, while 𝑇𝑎,𝑏 is the details sub-signal at the level 𝑎 = 1, 2, … , A and 

the time dimension of 𝑡 (𝑡 = 1, 2, … , 𝑏). 

2.5. Modeling Development 

In this study, the ability of the wavelet enhanced extreme learning machine (W-EELM) model with a single hidden 

layer to predict CO2 emissions is investigated. The experiment of the modeling approach was conducted using 

MATLAB 2018b software environment. For this purpose, the experimental data set is divided into two stages; the 

first stage is used for training and constructing the proposed technique, while the second stage is used for testing. The 

assumed input combinations used to develop predictive models are expressed in Equations 11, 12, and 13: The input 

layer of W-EELM contains wavelet neurons (nodes) fed with subseries of CO2 time series obtained by discrete wavelet 

transform (Equation 9). 

The combination of artificial intelligence approaches and WT techniques provided a good level of accuracy in several 

disciplines [35-42]. 

𝑚1 = 𝑓(𝐶𝑂2∗
𝑡−1)  (11) 

𝑚2 = 𝑓(𝐶𝑂2∗
𝑡−1, 𝐶𝑂2∗

𝑡−2)  (12) 

𝑚3 = 𝑓(𝐶𝑂2∗
𝑡−1, 𝐶𝑂2∗

𝑡−2 , 𝐶𝑂2∗
𝑡−2)  (13) 

where the symbol * refers to the time scale of CO2 concentration (i.e., weekly, monthly, and yearly). 

Determining the hidden layer nodes in the middle layer of a neural network is critical to the development of the 

proposed model and has significant implications for model accuracy. For this reason, various combinations of hidden 

nodes ranging from 1 to 25 are used. Figure 3 clearly shows the methodology used to develop the proposed and 

comparable model to achieve the objective of this study. 
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Figure 3. The methodology of the W-EELM models 

The type of wavelet mother and the level of decomposition are crucial to increase the efficiency of the predictive 

model. In this study, the Daubechies wavelet was selected to decompose the raw time series data because it can extract 

useful information features from the data. Moreover, it has been widely used to deal with problems related to carbon 

dioxide emissions [40-43]. Moreover, the minimum decomposition level [44, 45] was calculated using log (N). Here, N 

denotes the number of original data used for the analysis of the five types of disappearance used in this study. The main 

steps of conduct the study can be summarized as follows: 

 Preparation of the CO2 time series data (weekly scale) and subsequent calculation of the monthly and yearly time 

scales. 

 Select the possible input vectors for each time scale for the classical ELM model (Equations 11 to 13). 

 Apply the WT approach to the selected inputs for the W-EELM model. 

 Determine the number of hidden nodes and assign the ELM and W-EELM hidden layer weights and biases. 

 Normalized the input and output variables (data training and data testing). 

 Calculate the H matrix for both models according to Equation 2 

 Activate the H matrix using the hyperbolic tangent sigmoid transfer function [46]. 

 For the classical ELM, compute the output weighting using SVD and the COD algorithm for W-EELM, and then 

perform the prediction. 

 Denormalize the predicted and actual CO2. 

 Select the best models based on various statistical criteria, as shown in the following section and comparable plots. 

2.6. Performance Measures 

Each predictive model developed in this study was evaluated using several performance measures (see Equations 14 

to 21). The statistical measures are correlation coefficient (R), Nash-Sutcliffe efficiency (NSE), mean absolute error 

(MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), relative error (RE), mean absolute 

relative error (MARE), and residual. The mathematical expressions of these metrics can be written as follows [47-50]: 

𝑅 =
∑ (𝐶𝑂2𝑖𝑂𝑏𝑠

−𝐶𝑂2𝑖𝑂𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(  𝐶𝑂2𝑖𝑝𝑟𝑒

−𝐶𝑂2𝑖𝑝𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   )𝑛

𝑖=1

√∑ (𝐶𝑂2𝑖𝑂𝑏𝑠
−𝐶𝑂2𝑖𝑂𝑏𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1 √∑ (𝐶𝑂2𝑖𝑝𝑟𝑒

−𝐶𝑂2𝑖𝑝𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )2𝑛

𝑖=1

  (14) 
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MSE=√
1  

𝑁
 ∑ (𝐶𝑂2𝑖𝑂𝑏𝑠

− 𝐶𝑂2𝑖𝑝𝑟𝑒
)2   𝑁

𝑖=1  (15) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |(𝐶𝑂2𝑖𝑂𝑏𝑠

− 𝐶𝑂2𝑖𝑝𝑟𝑒
)|𝑛

𝑖=1   (16) 

𝑀𝐴𝑃𝐸 (%)  =
1

𝑁
∑ |

(𝐶𝑂2𝑖𝑂𝑏𝑠
− 𝐶𝑂2𝑖𝑝𝑟𝑒

)

𝐶𝑂2𝑖𝑂𝑏𝑠

| × 100𝑛
𝑖=1   (17) 

𝑁𝐸 = 1 − [
∑ (𝐶𝑂2𝑖𝑂𝑏𝑠

− 𝐶𝑂2𝑖𝑝𝑟𝑒
)2𝑛

𝑖=1

∑ (𝐶𝑂2𝑖𝑂𝑏𝑠
− 𝐶𝑂2𝑖𝑂𝑏𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

]  (18) 

𝑅𝐸 (%) =
𝐶𝑂2𝑖𝑂𝑏𝑠

− 𝐶𝑂2𝑖𝑝𝑟𝑒

𝐶𝑂2𝑖𝑂𝑏𝑠

× 100  (19) 

𝑀𝐴𝑅𝐸 (%) =
1

𝑁
∑ |

𝐶𝑂2𝑖𝑂𝑏𝑠
− 𝐶𝑂2𝑖𝑝𝑟𝑒

𝐶𝑂2𝑖𝑂𝑏𝑠

| × 100𝑁
𝑖=1   (20) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝐶𝑂2𝑖𝑂𝑏𝑠
− 𝐶𝑂2𝑖𝑝𝑟𝑒

  (21) 

where 𝐶𝑂2𝑖𝑂𝑏𝑠
 and 𝐶𝑂2𝑖𝑝𝑟𝑒

 are the observed and predicted 𝑖th values of CO2, 𝐶𝑂2𝑖𝑂𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐶𝑂2𝑖𝑝𝑟𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the average 

observed and predicted CO2 values in a trained and tested sample, n denotes the total number of data points. 

3. Result and Discussion 

The ability of the wavelet-enhanced extreme learning machine (W-EELM) and the classical extreme learning 

machine (ELM) modeling approaches to predict CO2 emissions over Mauna Loa Observatory Station in the United 

States is presented. In this study, three different time scales (weekly, monthly, and yearly) were selected to predict CO2 

gas emissions one step ahead based on previous data points. The short-term (weekly) prediction is important for 

developing advanced early warning systems, while the medium-term (monthly) prediction is critical for evaluating 

overall mitigation strategies and reducing CO2 concentrations. In addition, the long-term (yearly) data can help with 

global management, policies, and strategies for countries exporting more CO2, as well as monitoring the improvements 

achieved. 

The reason for modeling short- and long-term predictions is to intensively study the behavior of the proposed models 

in capturing the patterns of CO2 gas emissions over different time series. In general, the analysis of time series data 

becomes more complex over time as some of the key data features are lost due to averaging. Therefore, the qualifications 

of a reliable model are effectively considered in short- and long-term predictions. In this study, three different input 

combinations (m1, m2, and m3) were introduced in the previous section (see Equations 11 to 13) and used to develop 

the models for one-step ahead prediction of CO2. For the W-EELM models, the input data were denoised using the 

wavelet transform (WT) to obtain clean and stationary data. These data were fed into the input nodes of the EELM 

approach. It is worth noting that Daubechies (db) was used as the wavelet mother and that two different decomposition 

levels were used for each time scale (weekly, monthly, and yearly).   

In this study, 60% of the data set was used to build the model, and the rest was used for testing purposes. Various 

statistical matrices and graphical representations were used to evaluate the predictive quality of each model. Table 3 

lists the statistical evaluation matrices for each predictive model in the training and testing phases. According to the 

quantitative analysis, several prediction models show good performance in predicting the weekly CO2 concentrations in 

the training phase. The statistical measures such as RMSE, MAE, MAPE, and NE ranged from 0.4575 to 0.9893 (ppm), 

0.3699 to 0.8074 (ppm), 0.1058% to 0.2325%, and 0.9936 to 0.9986, respectively. The Wm2-WEELM3 model with 

only two input variables (m2) and three decomposition levels showed the highest prediction accuracy compared to other 

similar models. However, the training phase cannot provide a meaningful impression of the most reliable modeling 

approaches because the trained models are based on label input data. Therefore, the testing phase is crucial for the 

selection of a reliable predictive model because unlabelled input data is fed to the model, which can accurately determine 

the generalizability of the model at this stage. The superiority of the Wm2-WEELM3 model was shown in comparison 

to other comparable models, which had the lowest values for RMSE (0.5899 ppm), MAE (0.4745 ppm), MAPE 

(0.1206%), and the highest value for NE (0.9975). In addition, the accuracy of predictive models decreases when the 

number of input variables is increased because unnecessary information is added, which can hinder the training process 

of the model and decrease the generalization efficiency. This phenomenon can be clearly demonstrated by the 

 Wm3-WEELM4 model, where 15 input variables are introduced into the system, which complicates the mathematical 

operations of the model and reduces the prediction accuracy to the lowest level. 
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Table 3. Performance prediction capabilities for predictive models in training and testing phases 

Time Scale 𝐌𝐨𝐝𝐞𝐥∗ Training Set Testing Set 

Weekly 

 RMSE MAE MAPE (%) NE RMSE MAE MAPE (%) NE 

Wm1-ELM 0.5228 0.4119 0.1178 0.9982 0.6103 0.4747 0.1211 0.9974 

Wm1-WEELM3 0.4634 0.3759 0.1076 0.9986 0.5924 0.4766 0.1212 0.9975 

Wm1-WEELM4 0.9893 0.8074 0.2325 0.9936 1.0053 0.8017 0.2042 0.9928 

Wm2-ELM 0.5221 0.4113 0.1176 0.9982 0.6097 0.4741 0.1209 0.9974 

Wm2-WEELM3 0.4615 0.3741 0.1071 0.9986 0.5899 0.4745 0.1206 0.9975 

Wm2-WEELM4 0.8869 0.7188 0.2066 0.9948 1.0313 0.8167 0.2079 0.9924 

Wm3-ELM 0.7557 0.6243 0.1786 0.9962 0.84 0.6859 0.175 0.995 

Wm3-WEELM3 0.4575 0.3699 0.1058 0.9986 0.6101 0.4914 0.1253 0.9974 

Wm3-WEELM4 0.8293 0.6696 0.1922 0.9955 1.0277 0.8135 0.2071 0.9925 

Monthly 

Mm1-ELM 1.206 1.0382 0.3106 0.9925 1.3213 1.1848 0.3081 0.9924 

Mm1-WEELM2 1.0967 0.8738 0.2618 0.9938 1.1501 0.929 0.2421 0.9943 

Mm1-WEELM3 1.1919 0.9736 0.2912 0.9927 1.3323 1.1061 0.2875 0.9923 

Mm2-ELM 1.1896 1.0507 0.3137 0.9928 1.302 1.1563 0.3005 0.9926 

Mm2-WEELM2 1.1458 0.914 0.2743 0.9933 1.2275 0.9807 0.2559 0.9934 

Mm2-WEELM3 2.587 2.1455 0.6428 0.9658 2.485 2.0939 0.5457 0.9731 

Mm3-ELM 1.2116 1.0837 0.3237 0.9925 1.3285 1.1944 0.3107 0.9923 

Mm3-WEELM2 1.1006 0.8681 0.2601 0.9938 1.1601 0.9297 0.2424 0.9941 

Mm3-WEELM3 1.2514 1.0157 0.305 0.992 1.3302 1.0556 0.2759 0.9923 

Yearly 

Ym1-ELM 0.3342 0.2506 0.0748 0.9994 0.5743 0.446 0.1162 0.9985 

Ym1-WEELM1 0.2747 0.1975 0.0585 0.9996 0.4674 0.3783 0.0983 0.999 

Ym1-WEELM2 0.5039 0.3936 0.1192 0.9986 0.7902 0.6663 0.1725 0.9971 

Ym2-ELM 0.3961 0.3062 0.0908 0.9992 0.5513 0.3797 0.0978 0.9985 

Ym2-WEELM1 0.2996 0.2389 0.0706 0.9995 0.4953 0.4023 0.1042 0.9988 

Ym2-WEELM2 0.4158 0.3339 0.0986 0.9991 0.524 0.3932 0.1017 0.9986 

Ym3-ELM 0.4075 0.3224 0.0959 0.9992 0.5413 0.3791 0.0973 0.9985 

Ym3-WEELM1 0.2991 0.2359 0.0695 0.9995 0.5259 0.4265 0.1104 0.9986 

Ym3-WEELM2 0.4323 0.3513 0.1042 0.999 0.536 0.4003 0.1038 0.9986 

Note: The bold fonts represent the best model accuracy; the symbol * represents the wavelet decomposition level; m1, m2 and m3 are the input 

variables as shown in the methodology section; and W, M, and Y refer to the time scale (i.e., weekly, monthly, and yearly). 

Regarding the prediction of the monthly time scale of CO2, the accuracy of the predictions varies from one model to 

another. The statistical metrics are tabulated in Table 3, and the values of RMSE, MAE, MAPE, and NE ranged from 

1.0967 to 2.587 (ppm), 0.8681 to 2.1455 (ppm), 0.2601% to 0.6428%, and 0.95658 to 0.9938 separately. In this phase, 

the Mm1-WEELM2 model had the highest accuracy, while the Mm2-WEELM3 model (with eight input variables) had 

the lowest prediction accuracy compared with the other eight similar models. However, in the phase test, the 

Mm1-WEELM2 maintained its excellent prediction performance and provided the lowest RMSE of 1.501 ppm, MAE of 

0.929 ppm, MAPE of 0.2421%, and the highest value of NE (0.9943). 

From Tables 3 and 4, it can be seen that both models are sensitive to the number of hidden nodes and input 

combinations. For the weekly scale, the best model is Wm2-WEELM3. The model requires two raw input variables 

to achieve the best accuracy in this case. However, for the monthly and yearly time scales, the model needs only one 

raw input variable. Another important observation is that the models for predicting weekly CO 2 generally require a 

higher number of hidden models than for the monthly and yearly time scales. This could be related to the nature of 

CO2 records, where data are fluctuating and scattered on a short time scale, while fluctuating on the medium and 

long-term scales. 
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Table 4. The parameters of the applied models at different time scale 

Time scale Model Hidden nodes 

Weekly 

Wm1−ELM 7 

Wm1-WEELM3 12 

Wm1-WEELM4 4 

Wm2−ELM 7 

Wm2-WEELM3 25 

Wm2-WEELM4 8 

Wm3−ELM 4 

Wm3-WEELM3 6 

𝑊𝑚3−𝑊𝐸𝐸𝐿𝑀4 11 

Monthly 

Mm1-ELM 5 

Mm1-WEELM2 3 

Mm1-WEELM3 2 

Mm2-ELM 3 

Mm2-WEELM2 1 

Mm2-WEELM3 8 

Mm3-ELM 6 

Mm3-WEELM2 3 

Mm3-WEELM3 5 

Yearly 

Ym1-ELM 21 

Ym1-WEELM1 13 

Ym1-WEELM2 14 

Ym2-ELM 10 

Ym2-WEELM1 10 

Ym2-WEELM2 2 

Ym3-ELM 10 

Ym3-WEELM1 7 

Ym3-WEELM2 2 

Note: Bold font is the best model. 

Finally, Table 3 lists the quantitative assessments of nine predictive models used to predict one year ahead. The 

statistical parameters of all predictive models for the training phase ranged from 0.2747 to 0.5039 ppm, 0.1975 to 0.3936 

ppm, 0.0585% to 0.1192%, and 0.9986 to 0.9969 for RMSE, MAE, MAPE, and NE, respectively. The superiority of the 

Ym1-WEELM1  model in predicting CO2 yearly emissions over the other eight predictive models was clearly 

demonstrated in both the training and testing sets. Moreover, with only two input variables, this model achieved lower 

values for RMSE (0.4674 ppm), MAE (0.3783 ppm), and MAPE (0.0983%) and the highest value for NE (0.999) during 

the testing set. The superiority of the proposed modeling approach was demonstrated by the reduction of RMSE criteria 

during the training and testing phases (see Figure 4). Thus, the proposed model has shown a significant improvement in 

prediction compared to the classical model in the yearly time interval with 13.65% during the testing phase, as shown 

in Figure 4.  

 

Figure 4. Superiority of W-EELM models over classical ones in reduction RMSE values 
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However, the percentage performance improvement varies from 3.25% to 11.67% for the weekly and monthly time 

scales, respectively. The main observation is that the highest improvement occurs when predicting CO2 yearly, followed 

by the monthly and weekly time scales. The explanation for this phenomenon is that the accuracy of long-term 

predictions using conventional models (e.g., ELM) decreases significantly because these approaches cannot effectively 

capture the dynamics of the environmental system. In addition, the dynamic trend of the time series data is lost when 

larger time scales are used and the observed data points are averaged. 

To further investigate the adequacy of each predictive model, various graphical representations were created, 

including scatter plots, relative error counts, and boxplots. The scatter plots for the training and testing phases, shown 

in Figures 5 through 10, serve as a better means for comparative evaluation of the classical and hybrid modeling 

approaches. In addition to the correlation coefficient (R), these figures show a more meaningful visualization of the 

variance between the observed and predicted values of CO2 gas emissions. Regarding the weekly time scale, the 

graphical representations (Figures 5 and 6) showed that the hybrid models with two decomposition levels achieved the 

best prediction accuracy compared to the classical models. Moreover, these figures provided a deep understanding of 

how each model predicted the scattering values around the ideal line. For example, the Wm2-WEELM3 exhibited lower 

scatter and achieved the highest prediction efficiency with R of 0.994 and 0.991 for the training and testing phases 

separately.  

Similarly, the standard models based on Figures 7 and 8 for the monthly time scale had lower prediction accuracy 

and relatively more scattered points than the hybrid models. It is obvious that the Mm1-WEELM2 model is superior 

to all other predictive models and achieves perfect accuracy with R between 0.9969 and 0.9972 for the training and 

testing phases. Finally, the general situation regarding the yearly predictions for CO 2 emissions has not changed 

significantly, as the hybrid models show great ingenuity and high prediction accuracy with the highest R values for 

both phases compared to the classical models (see Figures 9 and 10). The Ym1-WEELM1 model exhibited lower 

scatter and deviation from the ideal line, resulting in a higher R-value (0.9998 to 0.9996) for the training and testing 

series, respectively, compared to other predictive models. It is worth noting that the complex models, especially the 

hybrid models that require many inputs, did not predict the weekly, monthly, and yearly CO2 gas emissions very 

well. 

 

Figure 5. Weekly time scale of the training phase: classical ELM and W-EELM models 
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Figure 6. Weekly time scale of the testing phase: classical ELM and W-EELM models 

 

Figure 7. Monthly time scale of the training phase: classical ELM and W-EELM models 
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Figure 8. Monthly time scale of the testing phase: classical ELM and W-EELM models 

 

Figure 9. Yearly time scale of the training phase: classical ELM and W-EELM models 
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Figure 10. Yearly time scale of the testing phase: classical ELM and W-EELM models 

The RE value is calculated for each observation during the testing phase to provide a much more meaningful 

graphical assessment of the prediction error. In addition, the RE value can provide a meaningful and clear explanation 

of the ability of the predictive models to predict CO2 gas emissions on different time scales. The results presented in 

Figures 11 to 13 show that for each time scale (i.e., weekly, monthly, and yearly), the hybrid models provide less RE 

and MARE than the classical prediction approaches, except for the models that require the highest decomposition level. 

For example, the weekly CO2 prediction models provided the lowest value of RE, with only one observation just above 

0.5%. The classical models, on the other hand, provided approximately larger values of RE and a number of observations 

above the benchmark of 0.5%, ranging from 3 to 10. 

 

Figure 11. Distribution of relative error for each predictive model during the testing phase: weekly time scale 
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Figure 12. Distribution of relative error for each predictive model during the testing phase: monthly time scale 

 

Figure 13. Distribution of relative error for each predictive model during the testing phase: yearly time scale 

In addition, the Mm1-WEELM2 and Ym1-WEELM1 models have much lower relative error in the other predictions 

at monthly and yearly time scales compared to the traditional models. Finally, the best MARE criterion of all proposed 

models was found to be 0.1206%, 0.2421%, and 0.0983% for weekly, monthly, and yearly time series forecasts, 
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respectively. The boxplot was created for all the models used in this study to give a more informative and clear overview 

of the outliers and robustness of the models during the testing phase [51]. 

Figures 14 to 16 show the boxplots of the residuals between the actual and predicted CO2 levels for all models. As 

Figure 14 shows, all predictive models for weekly scale had higher outliers than Wm1-WEELM3, Wm2-WEELM3 

Wm3-WEELM3 models. However, the Wm3-WEELM3 model shows a tendency toward the third quartile, while the 

other models show smaller interquartile range (IQR) errors. As for the monthly time scale, only three models 

(Mm1-WEELM2, Mm2-WEELM2 and Mm3-WEELM2) had smaller residual error among all nine models, as shown in 

Figure 15. In addition, Mm2-WEELM2 model showed a slight trend toward the third quartile. Finally, for the yearly 

estimates, the following models (Ym1-WEELM1, Ym2-WEELM1, and Ym3-WEELM1) performed best among all nine 

models, as shown in Figure 16. The Ym2-WEELM1  and Ym3-WEELM1 models had the highest range of suspected 

outliers (1.5 IQR). 

 

Figure 14. The box plots graphical presentation over the testing phases for all applied predictive models: weekly 

 

Figure 15. The boxplots for the testing phases for all applied predictive models: weekly scale 
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Figure 16. The box plots for the testing phases for all applied predictive models: yearly scale 

4. Conclusion 

Reliable predictions can help decision makers to take effective actions to reduce CO2 concentration. In this work, 

the efficiency of W-EELM and the classical model ELM in predicting CO2 emissions at different time scales (i.e., short-

, medium-, and long-term) is investigated. The main contribution of this study is to improve the predictive capacity and 

stability of the classical model ELM by denoising the input data using the technique WT and using the algorithm COD 

instead of SVD to calculate the weights of the hidden layer of ELM more accurately. The CO2 data were collected from 

Mauna Loa Observatory Station, 60% of the data sets were used for training and calibration, and the rest (end of the 

time series) was used for model accuracy testing. The predictive capacity of the two models was evaluated using various 

statistical metrics. The superiority of the proposed model capacities over the classical models was clearly shown in the 

reduction of the value of the RMSE criterion in the testing phases. The greatest improvement was obtained in the 

prediction on the yearly time scale (16.65%), followed by the monthly (11.67%) and weekly (3.25%). 
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