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Abstract 

Energy management is now essential in light of the current energy issues, particularly in the building industry, which 

accounts for a sizable amount of global energy use. Predicting energy consumption is of great interest in developing an 

effective energy management strategy. This study aims to prove the outperformance of machine learning models over 

SARIMA models in predicting heating energy usage in an administrative building in Chefchaouen City, Morocco. It also 

highlights the effectiveness of SARIMA models in predicting energy with limited data size in the training phase. The 

prediction is carried out using machine learning (artificial neural networks, bagging trees, boosting trees, and support vector 

machines) and statistical methods (14 SARIMA models). To build the models, external temperature, internal temperature, 

solar radiation, and the factor of time are selected as model inputs. Building energy simulation is conducted in the TRNSYS 

environment to generate a database for the training and validation of the models. The models' performances are compared 

based on three statistical indicators: normalized root mean square error (nRMSE), mean average error (MAE), and 

correlation coefficient (R). The results show that all studied models have good accuracy, with a correlation coefficient of 

0.90 < R < 0.97. The artificial neural network outperforms all other models (R=0.97, nRMSE=12.60%, MAE= 0.19 kWh). 

Although machine learning methods, in general terms, seemingly outperform statistical methods, it is worth noting that 

SARIMA models reached good prediction accuracy without requiring too much data in the training phase. 

Keywords: Energy Management; Tertiary Sector; Energy Prediction; Machine Learning; Statistical Methods. 

 

1. Introduction 

The building sector is one of the most significant energy-consuming sectors in Morocco, representing 33% of definite 

energy utilization and keeping solid development in yearly energy utilization [1]. Integrating intelligent energy 

management strategies in this sector is among the switches that could assist with meeting the Kingdom's energy 

challenges and accomplishing its environmental change targets. Energy prediction in buildings is, therefore, essential 

for intelligent management. Real-time monitoring and decision-making are made possible by approaches based on 

artificial intelligence (AI), which can be particularly useful for reducing energy consumption in this sector. Substantial 

research has been carried out on this objective. Moreover, different machine learning methods can be used to predict 

building energy use. 
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Artificial neural networks (ANN) are among the most studied methods in this field [2]. A back propagation neural 

network has been used to predict cooling demands in a commercial building [3]. To identify the model parameters, 

Yokoyama et al. [3] used the Modal Trimming Method, which, according to them, allows for obtaining appropriate 

values. In another work, Ekici & Aksoy [4] used a back propagation neural network 3-3-1 to predict the building's 

heating energy needs using the building transparency ratio, orientation, and insulation thickness as inputs. An average 

deviation of about 1.48%–5.16% was obtained between calculated and predicted heating energy needs. Yalcintas & 

Akkurt [5] have developed a three-layer artificial neural network model (7-6-1) for the prediction of total building chiller 

plant power consumption in a multipurpose high-rise building. The authors stated that the used ANN model is able to 

successfully predict the outputs (average absolute error of about 10% in the testing phase) and that it could be very 

helpful for the modeling of heating, ventilation, and air conditioning (HVAC). 

In order to enhance the estimation of energy consumption for residential structures during the early design stages, 

Elbeltagi & Wefki [6] provided a methodology based on an artificial neural network. The dataset used to generate the 

model is the outcome of simulating several design possibilities with random input variables and calculating the energy 

consumption. The created ANN model is assessed, validated, and applied to forecast energy usage with a respectable 

level of accuracy (5.36% and 0.98 for MAPE and R², respectively). Moreover, several works were devoted to reviewing 

and analyzing the studies that exploited the artificial neural network method to predict building energy use [7–9].  

Furthermore, other researchers were interested in investigating other machine learning methods. The support vector 

machine (SVM) method was selected by Dong et al. [10] to predict the monthly energy consumed in four commercial 

buildings in Singapore. The effect of the model parameters was evaluated, and three weather parameters were considered 

as inputs: global solar radiation, outdoor temperature, and relative humidity. A coefficient of variance of less than 3% 

and a percentage error of around 4% were obtained. For the energy management of mixed-use buildings, Culaba et al. 

[11] used machine learning methods to generate a prediction model for energy usage. To illustrate the created approach, 

a new fusion of clustering (k-means) and regression (support vector regression) techniques was used to accurately 

classify and predict the energy use of 30 buildings. The authors stated that the model performs much better than statistical 

methods used in the literature and within building modeling requirements (with a coefficient of variation of the root 

mean square error of about 4.10% and a mean bias error of about 0.31%). Using the decision tree method, Yu et al. [12] 

predicted and classified buildings' energy use intensity levels for Japanese residential buildings. A good agreement was 

obtained between predicted and actual target values: 93% for the training and 92% for the testing phases. The authors 

have pointed out the advantages of this method compared to the other most commonly used methods, such as traditional 

regression and ANN methods. Edwards et al. [13] employed seven machine learning algorithms based on linear 

regression, support vector machines, and artificial neural networks to predict next-hour residential building 

consumption. The measurements were collected within 15 minutes from three west Knox County, Tennessee, residential 

buildings. Their results showed that Least Square Support Vector Machine (LS-SVM) is the best technique for predicting 

future electrical consumption. In another study, Li et al. [14] evaluated the accuracy of four machine learning models 

(back propagation neural network (BPNN), radial basis function neural network (RBFNN), general regression neural 

network (GRNN), and support vector machine (SVM)) in predicting the hourly cooling load of an office building in 

Guangzhou, China. According to their results, SVM and GRNN outperform the other methods in terms of accuracy and 

generalization. In order to predict the thermal loads of buildings, Papadopoulos et al. [15] evaluated the performance of 

random forests (RF), gradient-boosted regression trees (GBRT), and extremely randomized trees (ET). The authors 

compared their results with other studies' models (ANN, SVM, GP, and RF) and proved that the tree-based ensemble 

learning models accurately predict building energy loads. In another work, Borowski & Zwolińska [16] discussed 

cooling energy prediction methods for a hotel building in southern Poland throughout the summer, using neural networks 

and support vector machines. The input parameters used were meteorological data, time data, and occupancy level. To 

find the model with the highest accuracy, many configurations were tried using the input and output data that had been 

gathered. Results revealed that the application of neural networks led to a rise in prediction accuracy. The Weighted 

Absolute Percentage Error (WAPE) and the Coefficient of Variance (CV) of 19.93% and 27.03%, respectively, defined 

the best of the presented models. 

In another work, Dong et al. [17] proposed an energy consumption prediction technique for buildings based on 

ensemble learning and classification of energy consumption patterns. For this research, hourly weather information from 

a meteorological station and energy usage information from a New York City office building were combined. Energy 

consumption data is first classified into appropriate categories using a decision tree to analyze consumption trends. The 

ensemble learning approach is then used to create energy consumption forecasting models for each pattern. In the end, 

the suggested method's prediction accuracy is compared to that of the other three approaches, namely, ensemble learning 

without energy consumption pattern categorization, SVR, and ANN. By contrasting the accuracy of various systems' 

predictions under varied training data loads, the robustness of different approaches is also evaluated. Results show that 

ensemble learning models with energy consumption pattern classification achieved the best results with Coefficient of 

the Variation of the Root Mean Square Error (CVRMSEs) of 17.7, 16.1, 15.4, 15.8, and 15.6% under the data availability 

thresholds of 20, 40, 60, 80, and 100%. 
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In addition to machine learning, there are statistical methods that deal with time series. One popular and widely used 

statistical method for energy prediction is the autoregressive integrated moving average (ARIMA) model. This method 

is suitable for analyzing and predicting time series data. It is characterized by its convenience and accurate prediction, 

simple computational process, and low data input requirement [18]. When the time series present seasonality, the 

adequate model for energy prediction could be seasonal ARIMA (SARIMA). Numerous studies have investigated 

ARIMA or SARIMA models for energy prediction. Jeong et al. [19] predicted the annual energy cost budget in South 

Korean educational establishments using SARIMA and a hybrid model combining SARIMA and ANN. The proposed 

hybrid model shows better accuracy with lower values of mean average error (MAE), root mean square error (RMSE), 

and mean absolute percentage error (MAPE) compared to the conventional SARIMA model. Based on historical data 

from 1973 to 2015, Camara et al. [20] predicted residential energy consumption in the U.S. using the Neural Networks 

(ANN) and statistical (SARIMA) approaches. Results show that both methods performed well in energy prediction, with 

slightly better performance using the ANN model. In another study, Tarmanini et al. [21] compared the performance of 

two forecasting techniques—Auto Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network 

(ANN) for predicting electricity load. The mean absolute percentage error is used to compare the two forecasting 

techniques' performance. The research was based on daily real-load electricity data collected over an 18-month period 

in Ireland for 709 distinct households. The findings show that for non-linear load data, ANN provides superior results 

over ARIMA. 

In order to predict the load demand for the upcoming month across the entire country and in each of Dubai's 

municipal areas, Sayed et al. [22] compared four predictive models: multiple linear regression (MLR), random forests 

(RF), artificial neural networks (ANNs), and automatic regression integrated moving average (ARIMA). This analysis 

made use of electricity consumption data from Dubai. The findings showed that ARIMA had an accuracy of about 93% 

when dealing with a single district, whereas ANN and RF consistently delivered good accuracy of about 97%. 

Predicting building energy needs is of great importance in managing and controlling energy consumption, thus 

reducing potential energy and financial losses. According to the literature review, some machine learning methods (such 

as bagging and boosting trees) were not sufficiently exploited. Moreover, few studies were interested in comparing the 

predictive performances of multiple machine learning and SARIMA models. In this research, four machine learning 

methods (artificial neural network, bagging trees, boosting trees, and support vector machine) and 14 statistical methods 

(14 SARIMA models) are used to predict the heating energy consumption of an administrative building in Chefchaouen 

City, Morocco. Only three meteorological parameters (external temperature, internal temperature, and solar radiation), 

in addition to the factor of time, are used as model inputs. An evaluation and comparison between artificial intelligence 

and statistical models are established based on numerous statistical indicators. Emphasis is given to the size of the 

adequate training data for each approach. 

2. Materials and Methods 

2.1. Building Description 

The building case study, located on the periphery of the city of Chefchaouen, northwest Morocco, is an 

administrative building constructed in 2006. The weather in this region is mountainous, with a minimum temperature of 

about 3°C reached in January and a maximum temperature of about 38°C recorded in July. The studied building consists 

of a single level with nine office rooms and other technical rooms (Figure 1). The building's total area is 468.17 m², with 

a conditioned area of about 393.6 m² (the set point temperature is 18° C in winter). The building is occupied from 8 a.m. 

to 4 p.m., five days a week, excluding holidays. Table 1 and Figure 2 summarize the case study building's localization, 

geometrical, and climatic parameters. The HDD (heating degree day) and CDD (cooling degree day) are calculated 

based on balance temperatures of 18 °C and 21 °C, respectively [23]. 

 

Figure 1. Case study building 
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Table 1. Building localization, geometrical and climatic parameters 

Localization 

Location Rural municipality of Laghdir, Douar Barhiouen, Chefchaouen City 

Latitude 35°43'60''N 

Longitude 5°52'60''O 

Altitude 34 m 

Dimensions 

Area 468.17 m² 

Conditioned area 393.6 m² 

Eave height 3.5 m 

Roof top height 6 m 

Climatic parameters 

HDD (balance temperature 18 °C) 896.14 °C 

CDD (balance temperature 21 °C) 250.48 °C 

Maximum temperature 38 °C 

Minimum temperature 3 °C 

 

Figure 2. Case study localization 

2.2. Methodology 

The present study’s aim is to compare machine learning (ANN, SVM, BG, and BT) and statistical (SARIMA) 

methods in predicting the heating energy consumption of the case study building. Due to the lack of measured data, the 

dataset used for the training and validation of the models is obtained from the energy modeling and simulations of the 

case study building in the TRNSYS environment, and the weather data of the studied location is imported from 

Meteonorm software. The TRNSYS (Figure 3) model is used to calculate the heating energy consumption of the 

building, used as an output in machine learning and statistical models. While external temperature, internal temperature, 

solar radiation, and the factor of time served as inputs. 

 

Figure 3. Schematic diagram of TRNSYS building model 
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The present methodology Flowchart (Figure 4) summarizes how the present study is designed and carried out and 

how the data is analyzed. First, building architecture and construction data were provided by Laghdir municipality in 

order to model the building in TRNSYS software. After that, inputs and output database are generated in order to train 

SARIMA and ML models. The rational selection of a particular set of parameters is based on previous studies (for ML 

models) and stationarity check and model diagnosis (for SARIMA models). More details related to models’ setting are 

provided in sections below. The built models are utilized to predict building energy use in the ending stage, and 

performance comparisons based on three performance indicators are made. 

 

Figure 4. Flowchart of methodology 
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2.3. Models Presentation 

2.3.1. Statistical Models 

The statistical method deals with time series. This latter can be defined as a set of data collected sequentially, usually 

at fixed time intervals. The most popular and widely used statistical method is the ARIMA model, which Box-Jenkins 

introduced in 1976. The acronym ARIMA stands for Auto-Regressive Integrated Moving Average. It combines the 

moving average (MA), the AR + MA (ARMA), and the autoregressive (AR) models. ARIMA model is used for non-

stationary series, contrary to AR, MA and ARMA, which are used for stationary time series. When time series present 

seasonality, the appropriate used model is SARIMA. 

The non-seasonal ARIMA model is defined as presented in the following Equation 1 [24]: 

𝛻𝑑𝑌𝑡 = 𝜇 + 𝛷1𝛻𝑑𝑌𝑡−1 + 𝛷2𝛻𝑑𝑌𝑡−2+. . . +𝛷𝑝𝛻𝑑𝑌𝑡−𝑝 + 𝑈𝑡 + 𝜃1𝑈𝑡−1 + 𝜃2𝑈𝑡−2+. . . +𝜃𝑞𝑈𝑡−𝑞  (1) 

where ∇  is the difference operator; 𝜃  and 𝛷  are the coefficients of the moving average and the autoregressive 

component, respectively; 𝑈𝑡 and 𝑌𝑡 are the white noise and the actual values at time t, respectively; the numbers p, d, 

and q stand for the autoregressive term's order, the degree of difference, and the moving average's order (ARIMA 

(p,d,q)); and 𝜇 is the constant term. 

ARIMA model can be written in the lag operator form as in the Equation below 2: 

𝛷(𝐿) ⋅ (1 − 𝐿)𝑑 ⋅ 𝑌𝑡 = 𝑐 + 𝜃(𝐿) ⋅ 𝑈𝑡  (2) 

where L is the backshift operator;  𝜃 (L) and 𝛷(𝐿) are polynomials of orders q and p, respectively. The The coefficient 

c is calculated based on the following Equation 3: 

𝑐 = 𝜇 ⋅ (1 − 𝛷1 − 𝛷2−. . . −𝛷𝑝)  (3) 

ARIMA (p, d, q) (P, D, Q) is also used to describe seasonal ARIMA (SARIMA), where P specifies the number of 

seasonal autoregressive (SAR) terms, D the seasonal differences, and Q the number of seasonal moving average (SMA) 

terms. 

The lag operator polynomial form of the SARIMA model is written as in Equation 4: 

𝛷𝑝(𝐿) ⋅ 𝛷𝑝(𝐿𝑘) ⋅ (1 − 𝐿)𝑑 ⋅ (1 − 𝐿𝑘)𝐷 ⋅ 𝑌𝑡 = 𝜃𝑞(𝐿) ⋅ 𝛩𝑄 . (𝐿𝑘) ⋅ 𝑈𝑡  (4) 

Some steps are followed to determine the best SARIMA model. First, a time plot of the data is created, and the time 

series' stationarity is tested. If the series are not stationary, data differentiating is required to make them stationary; then, 

the correlogram function is used to find potential models in the next stage. Finally, the seasonal and non-seasonal 

components of autoregressive and moving average parameters must be estimated until a suitable model is found [20, 

25]. To find the optimum SARIMA model, two criteria must be used: "The Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC)" (Equations 5 and 6): 

𝐴𝐼𝐶 = 𝑙𝑜𝑔
∑ (𝑥𝑡−𝑥)2𝑛

𝑡=𝑘

𝑛
+

𝑛+2𝑘

𝑛
  (5) 

𝐵𝐼𝐶 = 𝑙𝑜𝑔
∑ (𝑥𝑡−𝑥)2𝑛

𝑡=𝑘

𝑛
+

𝑘 𝑙𝑜𝑔(𝑛)

𝑛
  (6) 

where n denotes the sample size and k denotes the number of estimated parameters. 

2.3.2. Artificial Neural Networks 

The ANN model is a powerful and flexible machine learning technique inspired by the human brain's system 

structure. It provides an effective modeling algorithm even with non-linearity between output signals and feature 

variables [26]. Various neural network models were proposed in the literature, such as feed-forward, Elman, Hopfield, 

radial basis networks, self-organizing maps, and others [27]. 

In this paper, the feed-forward neural network is used to predict the heating energy consumption of an office located 

in Laghdir, near Chefchaouen City, Morocco. The Levenberg-Marquardt (LM) algorithm is selected as an optimization 

algorithm since it is the most widely used one [28]. Also, it was observed in the literature that the Levenberg-Marquardt 

algorithm and a feed-forward ANN provided good performance [29]. By training the model, neurons weights are 

updated, and the relationship between inputs and outputs can be established. The activation function used in this study 

is the tansig function [30] for hidden and output layers [31]. As shown in figure 5, a feed-forward neural network with 

one hidden layer composed of ten neurons is adopted. 
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Figure 5. The Architecture of ANN Model 

2.3.3. Ensemble Methods 

The principle of ensemble methods is based on the combination of several learners in order to generate an optimal 

predictive model, using the same concept of strength in unity. This technique helps reduce noise, bias, and variance, 

which are the main causes of error in prediction. In this study, the prediction of heating energy consumption is conducted 

using Bagging and Boosting-based decision trees. Produced by random sampling with replacement, Bagging and 

Boosting get N learners from the original set. For Bagging, the models are built independently and trained in parallel. 

In contrast, for boosting, the new learner is built sequentially, taking into account the results of the previous regressor: 

The weights of data elements are updated after each training step. The incorrectly predicted cases are given increased 

weight during the next step [32]. In this study, a minimum leaf size of 8 and 30 learners are chosen for both ensemble 

methods. For boosting trees, the selected learning rate is equal to 0.1, which is a preferred option for the learning rate 

[33]. 

2.3.4. Support Vector Machine 

The SVM model is also among the powerful machine learning algorithms used for approaching any multivariate 

function to any degree of accuracy. This method proved its efficiency in addressing general purpose classification and 

regression problems [34]. SVM aims to find a hyperplane function 𝑓 that has at most 𝜀 deviation from the actual output 

vector 𝑦 (Figure 6). This function is written as presented in Equation 7: 

𝑓(𝑥) = ⟨𝑤, 𝜙(𝑥)⟩ + 𝑏  (7) 

Where 𝑤 and 𝑏 are the function parameters. 

 

Figure 6. Support vector regression parameters 
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This function is written in a dot product form to enable the use of the “kernel function” 𝐾(𝑥𝑖 , 𝑥𝑗), given the 

nonlinearity of the problem. After using the Lagrange multiplier, the dual formulation of the optimization problem is as 

in the Equations 8 and 9 below [35]: 

Maximize: 

{
−

1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑘 − 𝛼𝑘
∗ )⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑘)⟩1

𝑖,𝑘=1

−𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗) + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)1
𝑖=1

1
𝑖=1              

  (8) 

Subject to: 

∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)1

𝑖=1 = 0, 𝛼𝑖 , 𝛼𝑖
∗ ∈ 0, 𝐶  (9) 

Where 𝛼𝑖  and 𝛼𝑖
∗ are Lagrange multipliers. 

After replacing the dot product with the kernel function, the new form of the function is presented in the following 

Equation 10: 

𝑓(𝑥) = ∑ (𝛼𝑗 − 𝛼𝑗
∗) ⋅ 𝐾(𝑥𝑗 , 𝑥) + 𝑑1

𝑗=1   (10) 

The kernel function should be selected depending on the degree of nonlinearity between inputs and outputs. Kernel 

functions could be Gaussian, linear, polynomial, or other types. In this paper, the Gaussian function is selected [35] 

(Equation 11): 

𝐾(𝑥𝑗 , 𝑥𝑖) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑗 − 𝑥𝑖‖
2

)  (11) 

where  is the kernel scale, considered in this study 1.7 [36]. 

2.3.5. Performance Indicators 

In order to compare the performance of the previously cited machine learning and statistical methods, three statistical 

parameters are calculated (Equations 12 to 14): Correlation coefficient R, normalized root mean squared error (nRMSE) 

and mean absolute error (MAE). 

𝑅 =
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥⋅𝜎𝑦
  (12) 

𝑛𝑅𝑀𝑆𝐸 =
1

𝑥
√

1

𝑛
∑ (𝑥 − 𝑦)2𝑛

1   (13) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥 − 𝑦|𝑛

1   (14) 

where x are the target values; y are the predicted values and n is the data sample size. 

The strength of the correlation between the target and predicted values is indicated by the correlation coefficient R. 

Its value lies in the middle between 0 and 1. When the predicted and target values' curve trajectories are similar, the 

correlation coefficient R is close to 1, which denotes greater model performance. The mean absolute error (MAE) does 

not have a limit value because it depends on the calculated parameter. However, a lower value indicates better model 

performance. The normalized root mean square error (nRMSE) makes it possible to assess how widely apart the 

predicted values are from the desired ones. According to nRMSE, Table 2 shows various model accuracy levels [37]. 

Table 2. Model accuracy according to nRMSE 

Classes nRMSE (%) State of precision 

1 nRMSE < 10% Excellent 

2 10% < nRMSE < 20% Good 

3 20% < nRMSE < 30% Fair 

4 nRMSE > 30% Poor 

3. Results and Discussion 

The major findings from the case study's prediction of the building's heating energy usage are presented in this 

section. The performance of each model in predicting the output is assessed for each studied method, namely, machine 

learning (ANN, SVM, bagging trees, and boosting trees) and statistical (SARIMA) methods. 
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3.1. SARIMA Models 

In this section, a selection of SARIMA models is presented. To build the models, 231 values of the data are used for 

modeling and parameter estimation, while 91 values are utilized to test and evaluate the models' performance. At first, 

the stationarity of the time series is checked by applying a unit root test to the data. The results of the augmented Dickey-

Fuller test show that the data is stationary, with p-values of 0.0044 smaller than 0.05. The correlograms of residuals are 

presented in Figures 7 and 8. In both the autocorrelation function (ACF) and the partial autocorrelation function (PACF) 

graphs, the spikes show a significant seasonal distribution (of about 9). Subsequently, a logarithm transformation is 

applied to the data in order to stabilize the variance [25]. 

 

Figure 7. Sample autocorrelation function 

 

Figure 8. Sample partial autocorrelation function 



Civil Engineering Journal         Vol. 9, No. 05, May, 2023 

1016 

 

Several possible SARIMA models of candidates are obtained. After the determination of the parameter values, the 

Akaike information criteria (AIC) and the Bayesian Information Criteria (BIC) are used to select the best models 

(Equations 5 and 6). 14 SARIMA models with close and lower AIC and BIC values are chosen as presented in Table 3. 

Table 3. AIC and BIC of SARIMA models 

SARIMA models AIC BIC 

SARIMA (1,1,1)*(1,0,1)(9) 1.38 21.98 

SARIMA (2,1,1)*(1,0,1)(9) -1.81 22.19 

SARIMA (3,1,1)*(1,0,1)(9) -3.6 23.78 

SARIMA (4,1,1)*(1,0,1)(9) -4.52 26.25 

SARIMA (5,1,1)*(1,0,1)(9) -4.07 30.08 

SARIMA (3,1,2)*(1,0,1)(9) -5.26 25.5 

SARIMA (3,1,3)*(1,0,1)(9) -4.95 29.29 

SARIMA (3,1,4)*(1,0,1)(9) -6.7 30.9 

SARIMA (2,1,3)*(1,0,1)(9) -6.9 23.9 

SARIMA (2,1,2)*(1,0,1)(9) -1.7 25.72 

SARIMA (4,1,3)*(1,0,1)(9) -7.66 29.9 

SARIMA (4,1,2)*(1,0,1)(9) -8.37 25.8 

SARIMA (5,1,3)*(1,0,1)(9) -8.11 32.88 

SARIMA (6,1,3)*(1,0,1)(9) -6.8 37.5 

SARIMA (3,1,1)*(1,0,1)(9) model is chosen randomly in order to examine the ACF and the residual Quantile-

Quantile (Q-Q) plot as presented in Figures 9 and 10. 

According to the correlogram of residuals (ACF) of the selected model, all the spikes are within the significance 

limits, and the residuals seem to have white noise. The plot of the residual Q-Q curve shows that the SARIMA model 

tracks the observed values with good accuracy. After SARIMA models pass the required checks, they are used to predict 

heating energy consumption. Table 4 presents the models' performance. 

Table 4. SARIMA models' predicting performance 

SARIMA models nRMSE (%) R MAE (kWh) 

SARIMA (1,1,1)*(1,0,1)(9) 20.70 0.90 0.36 

SARIMA (2,1,1)*(1,0,1)(9) 21.07 0.90 0.37 

SARIMA (3,1,1)*(1,0,1)(9) 21.28 0.90 0.38 

SARIMA (4,1,1)*(1,0,1)(9) 21.40 0.90 0.38 

SARIMA (5,1,1)*(1,0,1)(9) 21.60 0.90 0.38 

SARIMA (3,1,2)*(1,0,1)(9) 21.40 0.91 0.37 

SARIMA (3,1,3)*(1,0,1)(9) 22.13 0.92 0.38 

SARIMA (3,1,4)*(1,0,1)(9) 21.90 0.91 0.38 

SARIMA (2,1,3)*(1,0,1)(9) 22.16 0.91 0.38 

SARIMA (2,1,2)*(1,0,1)(9) 21.20 0.91 0.37 

SARIMA (4,1,3)*(1,0,1)(9) 22.20 0.91 0.38 

SARIMA (4,1,2)*(1,0,1)(9) 21.50 0.91 0.37 

SARIMA (5,1,3)*(1,0,1)(9) 22.00 0.91 0.38 

SARIMA (6,1,3)*(1,0,1)(9) 21.90 0.91 0.38 

According to the results presented in Table 4, the performance indicators show that the 14 SARIMA models have 

very close accuracy. In fact, the nRMSE, R, and MAE of all SARIMA models range between 20.7% and 22.20%, 0.90 

and 0.92, 0.36 kWh, and 0.38 kWh, respectively. Based on the nRMSE, SARIMA (1,1,1)*(1,0,1)(9) slightly 

outperformed the other models (20.70%). 
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Figure 9. Residual sample autocorrelation function of SARIMA (3,1,1)*(1,0,1)(9) model 

 

Figure 10. Residual Quantile-Quantile of SARIMA (3,1,1)*(1,0,1)(9) model and target values 

3.2. Machine Learning Models 

In this section, the performance of the four-studied machine learning algorithms (artificial neural network (ANN), 

bagging trees (BG), boosting trees (BT), and support vector machine (SVM)) is presented. About 1000 values for each 

input parameter are used to train the machine learning models. Some 91 data are kept for the testing phase. The models' 

performance is evaluated and compared based on the three statistical indicators: R, nRMSE, and MAE (section 2.3.5). 

The results presented in Table 5 show that the studied machine learning models predict with good performance the 

heating energy consumption of the studied building [37–41]. The ANN model shows better performance compared to 
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the other machine learning models. It has the lowest nRMSE and MAE (12.6% and 0.19 kWh, respectively) and the 

highest correlation coefficient (0.97). The ANN model is followed by SVM (nRMSE of about 16.7%, MAE of about 

0.25 kWh, and R of about 0.95), then Bagging Trees (nRMSE of about 17.3%, MAE of about 0.26 kWh, and R of about 

0.95), and finally, Boosting Trees (nRMSE of about 19.5%, MAE of about 0.32 kWh, and R of about 0.95). 

Table 5. Machine learning models' predicting performance 

 nRMSE (%) R MAE (kWh) 

ANN 12.60 0.97 0.19 

BG 17.30 0.95 0.26 

BT 19.50 0.95 0.32 

SVM 16.70 0.95 0.25 

3.3. Evaluation and Discussion 

Comparing the results presented in Tables 4 and 5, it is observed that the machine learning models outperform the 

SARIMA models. The Boosting Trees model, the last ranked model in terms of performance, outperformed all the 

SARIMA models and reached a higher correlation coefficient (0.95 against 0.92 reached by SARIMA models) and 

lower nRMSE and MAE (19.5% and 0.32 kWh against 20.7% and 0.36 kWh, respectively). These results are similar to 

the findings of Tarmanini et al. [21] and Sayed et al. [22]. In fact, according to their case studies, machine learning 

models (ANN, as an example) provide superior results over ARIMA models. For Tarmanini et al. [21], the MSE and 

MAPE results and the regression factor being closer to one all demonstrate that ANN had a lower error than ARIMA. 

According to the results, both ANN and ARIMA have the ability to predict consumption; however, ANN is superior at 

handling non-linear data. Moreover, ANN performs better when it comes to handling multiple tasks at once. For many 

predictive data mining applications, neural networks are the go-to technology because of their simplicity, effectiveness, 

and usability. According to Sayed et al. [22], when dealing with a single district, ARIMA had an accuracy of about 93%, 

whereas ANN and RF consistently provided good accuracy of about 97%. 

When comparing the performance of the ANN model with the performance of the selected SARIMA 

(1,1,1)*(1,0,1)(9) model, it is clear that the prediction of the ANN model is much better. This outperformance is proved 

by a higher correlation coefficient R (0.97) and lower nRMSE (12.6%) and MAE (0.19 kWh) values. Figure 11 

highlights the performance of the two competitive methods: ANN and SARIMA (1,1,1)*(1,0,1)(9). The ANN model 

approaches with very good accuracy the target values in most 91-testing data. On the contrary, the curve of the SARIMA 

model shows some deviations from the target values. 

 

Figure 11. Graph of comparison between target values and heating energy consumption prediction of ANN and 

SARIMA(1,1,1)*(9,1,1) models 
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It is worth noting that, although the statistical approach shows less accuracy in energy prediction, SARIMA models 

have proven the efficiency of modeling the time series of heating energy consumption without requiring too much data 

in the training phase. In fact, with just 231 data introduced for training the model, the SARIMA model reached an 

nRMSE of about 20.7%, which can be considered an acceptable performance (20% < 𝑛𝑅𝑀𝑆𝐸 < 30%). In addition, it 

is very close to the 19.5% reached by boosting trees, which required 1000 data points for each input parameter in the 

training phase. This result is of great interest. In fact, researchers who frequently struggle to obtain historical data may 

find it very useful to predict the energy consumption of their case studies using just few data in the training phase. 

However, in the case of having enough historical data, it is better to use machine learning models for energy prediction, 

so as to reach better precision in terms of predictions and to score better results on indicators of performance. When 

there is a lack of data, which is the main problem faced during experimental research, statistical models are 

recommended to be used and give acceptable prediction performances. 

4. Conclusions 

This study aimed to develop a predictive model for the heating energy consumption of an administrative building on 

the periphery of the city of Chefchaouen using statistical and machine learning methods. 

The main goal of this study is to demonstrate the effectiveness of machine learning models in predicting energy and 

to emphasize the crucial role that statistical models play in providing precise predictions with a limited database. At the 

first stage, 14 competitive SARIMA models were selected based on lower values of AIC and BIC in the training phase. 

The 14 models have comparable results, with a slight outperformance of SARIMA (1,1,1)*(1,0,1)(9) that has a lower 

nRMSE value (20.7%). After that, the prediction of heating energy consumption was conducted using four machine 

learning models: ANN, SVM, BG, and BT. Results show that the ANN model outperformed all other models with the 

lowest nRMSE and MAE and the highest R (12.6%, 0.19 kWh, and 0.97, respectively). 

The results of this study demonstrate that, in estimating heating energy usage, machine learning methods perform 

better than statistical methods. An extremely large data set is required for the training phase of machine learning models 

in order to execute the prediction step effectively. Even with a minimal amount of data, statistical models can still be 

used to construct an energy predictive model. This means that statistical models like the ARIMA and SARIMA models 

are the best option for energy prediction when there is a lack of historical data. The best prediction method is machine 

learning when there is sufficient data. As a result of this study, it is possible to assert that the issue of an insufficient 

database, which affects the majority of researchers, might be resolved because statistical models are, according to this 

research, capable of providing predictions with acceptable accuracy with a limited database. 
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6. Nomenclature 

ANN Artificial Neural Networks; ACF Autocorrelation Function; 

AI Artificial Intelligence; AIC Akaike Information Criterion; 
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ARIMA Auto Regressive Integrated Moving Average; BG Bagging Trees; 

BIC Bayesian Information Criterion; BPNN Back Propagation Neural Network; 

BT Boosting Trees; CDD Cooling Degree Day; 

𝑐𝑜𝑣(𝑥, 𝑦) Covariance; CV Coefficient of Variance; 

CVRMSE Coefficient of the Variation of the Root Mean Square Error; ET Extremely randomized Trees; 

𝑓 SVM hyper-plane function; GBRT Gradient Boosted Regression Trees; 

GP Gaussian Process; GRNN General Regression Neural Network; 

HDD Heating Degree Day; HVAC Heating, Ventilation and Air Conditioning; 

𝐾 Kernel function; k SARIMA number of estimated parameters; 

𝐿 Backshift operator; LM Levenberg-Marquardt algorithm; 

LS-SVM Least Square Support Vector Machine; MAPE Mean Absolut Error percentage; 

MAE Mean Absolute Error; ML Machine Learning; 

MLP Multilayer Perceptron; 𝑛 Number of observations; 

nRMSE Normalized Root Mean Square Error; PACF Partial Autocorrelation Function; 

𝑅 Correlation coefficient; RBFNN Radial Basis Function Neural Network; 

RF Random Forest; RT Regression Trees; 

SARIMA Seasonal Auto Regressive Integrated Moving Average; SAR Seasonal Autoregressive; 

SMA Seasonal Moving Average; SVM Support Vector Machine; 

SVR Support Vector Regression; 𝑈 White Noise; 

WAPE Weighted Absolute Percentage Error; 𝑤, 𝑏 SVM hyper-plane function parameters; 

𝑥 Input variables; 𝑦 Output variables; 

Greek letters 

𝛼𝑖 , 𝛼𝑖
∗,  Lagrange multipliers; ∇ Difference operator; 

𝛷  Autoregressive component coefficients; 𝛾 Kernel scale; 

𝜎 Standard deviation; 𝜃 Moving average coefficients; 

𝜇 Constant term; 𝜀  Term of deviation; 

Subscripts 

𝑑 Differencing degree; 𝐷 Seasonal difference; 

𝑝 Autoregressive term order; 𝑃 Number of seasonal autoregressive; 

𝑞 Moving average order; 𝑄 Number of seasonal moving average; 

𝑡 Time;   
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