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Abstract 

The Solar Dryer Dome (SDD), a solar-powered agronomic facility for drying, retaining, and processing comestible 

commodities, needs smart systems for optimizing its energy consumption. Therefore, indoor condition variables such as 

temperature and relative humidity need to be forecasted so that actuators can be scheduled, as the largest energy usage 

originates from actuator activities such as heaters for increasing indoor temperature and dehumidifiers for maintaining 

optimal indoor humidity. To build such forecasting systems, prediction models based on deep learning for sequence-to-

sequence cases were developed in this research, which may bring future benefits for assisting the SDDs and greenhouses 

in reducing energy consumption. This research experimented with the complex publicly available indoor climate dataset, 

the Room Climate dataset, which can be represented as environmental conditions inside an SDD. The main contribution 

of this research was the implementation of the Luong attention mechanism, which is commonly applied in Natural 

Language Processing (NLP) research, in time series prediction research by proposing two models with the Luong attention-

based sequence-to-sequence (seq2seq) architecture with GRU and LSTM as encoder and decoder layers. The proposed 

models outperformed the adapted LSTM and GRU baseline models. The implementation of Luong attention had been 

proven capable of increasing the accuracy of the seq2seq LSTM model by reducing its test MAE by 0.00847 and RMSE 

by 0.00962 on average for predicting indoor temperature, as well as decreasing 0.068046 MAE and 0.095535 RMSE for 

predicting indoor humidity. The application of Luong's attention also improved the accuracy of the seq2seq GRU model 

by reducing the error by 0.01163 in MAE and 0.021996 in RMSE for indoor humidity. However, the implementation of 

Luong attention in seq2seq GRU for predicting indoor temperature showed inconsistent results by reducing approximately 

0.003193 MAE and increasing roughly 0.01049 RMSE. 

Keywords: Deep Learning; Sequence-to-Sequence; Seq2seq; Encoder-Decoder; Solar Dryer Dome; Indoor Climate Prediction; Luong 

Attention; Neural Network. 

 

1. Introduction 

In 2018, the Food and Agriculture Organization of the United Nations (FAO) attempted to avoid the future world’s 

hunger crisis with the motto "No Food Loss and Food Waste" [1]. The developments of some technologies, such as 

Artificial Intelligence (AI), cloud computing systems, and the Internet of Things (IoT), impacted the change in the 

agriculture industry in Indonesia, which was supported by the Indonesian Agriculture Ministry by promoting Agriculture 

4.0 [2]. The Solar Dryer Dome (SDD) is a part of the Agriculture 4.0 programs that can support farmers in evaporating 

their agricultural commodities for sustainability or food processing. Compared to the traditional way of drying 
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horticultural products, which is dried in an open area directly under the sun, SDD tackles problems such as product color 

change, fungi growth, animal droppings, rain effect, dust impact, and a longer drying process [3]. 

Although SDD is built using sophisticated technologies, SSD still has some problems pertinent to electricity 

consumption. The first problem is that the differences in solar light intensity based on geographical conditions depicted 

by the latitude line can affect solar power absorption [4]. The second problem is the bad weather conditions, which cause 

solar panels to be unable to absorb solar energy all day. The use of heaters for raising the inner temperature and 

dehumidifiers for improving indoor humidity is the largest power consumer for SDD [5]. To reduce energy consumption, 

attain great drying efficiency, excellent goods quality, optimum temperature, and appropriate air circulation, SDD needs 

to optimize the activities of its actuators, such as heaters, dehumidifiers, and fans, by implementing actuator scheduling, 

which relies on the results of indoor climate prediction [6]. This research discussed indoor climate prediction methods 

that can be implemented for SDD. 

Another insight in the agriculture sector is that the current research in IoT-based smart greenhouses indicates that 

more than 50% of the cost of greenhouse expenditures comes from energy consumption and labor costs [7]. The smart 

greenhouse also has the same problems as the SDD, especially in reducing energy consumption. In a previous study, 

researchers managed to implement an IoT scheme-based automation in a smart greenhouse, which significantly 

impacted its energy efficiency [7]. This research may bring new considerations to implementing AI-based indoor climate 

prediction systems to further optimize the automation of actuator scheduling, which can reduce energy consumption. 

Different construction sites for SDDs or greenhouses can have significantly different needs in terms of local energy 

sources, environmental climatic conditions, and agricultural demands [4]. Some SDDs may need to be constructed in 

extremely remote areas where environmental conditions can change quickly and dramatically. This condition became a 

particular concern in this research, which is why datasets with complex patterns may be beneficial in training 

environmental climate prediction models. To represent the SDD and greenhouse, this research used a complex dataset 

called the Room Climate Dataset, which is composed of various Pearson Correlation Coefficient (PCC) values [8]. This 

challenging dataset intuitively encourages this research to investigate the great fame of deep learning approaches for 

predicting sequence-to-sequence cases by implementing the Luong attention mechanism. 

Deep learning, an approach that enables multi-level representations of data and their distribution to be learned, can 

be adopted for indoor environmental forecast purposes [9]. The Recurrent Neural Network (RNN) can be illustrated as 

a neural network specialized for modeling time series data [10]. That is the reason why this research implements RNN 

for modeling multivariate time series data containing indoor climate variables, especially LSTM, the prominent type of 

RNN, and GRU, the abridged adaptation of LSTM [11]. The use of deep learning approaches has been deemed 

appropriate for analyzing the complex pattern in the Room Climate dataset. This research implemented sequence-to-

sequence (seq2seq) RNN-based prediction models for indoor climate prediction in sequence-to-sequence cases. 

Seq2seq, an architecture prominent in machine translation, is a deep learning approach that can process output and input 

in the form of sequence data [12, 13]. This research proposed Luong attention-based seq2seq models with LSTM and 

GRU. 

Attention mechanisms have been successfully applied in a wide variety of deep learning application domains, 

although further research is required [14]. Originally implemented in NLP, the attention method with self-attention can 

also be applied to other tasks, such as computer vision, to attain performance improvement. This research aimed to 

investigate the impact of attention mechanisms, especially Luong attention, on predicting time-series data. To the best 

of our knowledge, this is the first comparative study of the Luong attention application in seq2seq models for indoor 

climate prediction. This research contribution is about evaluating the usage of Luong attention mechanism by comparing 

our two proposed models to two simple seq2seq and two adapted baseline models. Our motivation for experimenting 

with Luong attention-based mechanism in our time-series forecasting research was because of the excellence of the 

attention mechanism in NLP research by focusing on the only pertinent information in the word data set, which 

intuitively may have a positive impact on time-series research in memorizing long sequences [15–17]. 

2. Literature Review 

The most similar research to ours was done by Gunawan et al., in which they evaluated four deep learning models, 

which included a two-layered LSTM model, a two-layered GRU model, a Transformer model, and a Transformer model 

with learnable positional encoding applied to the room climate dataset [8, 18]. Unlike this research, which predicted a 

sequence output of five timestamps in the future, the study conducted by Gunawan et al. predicted only one timestamp 

in the future, resulting in extremely strong 𝑅2 scores. Their research showed that both LSTM and GRU were able to 

contend against each other in terms of forecasting accuracy. 

In the agriculture field, there was research conducted by Liu et al. that implemented LSTM in their proposed model 

called GCP_LSTM for predicting indoor climate variables inside greenhouses [19]. Their proposed model was built for 

controlling the indoor climate to ensure the stable growth of some crops, such as tomatoes, cucumbers, and peppers. 
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The results of their experiments showed that the proposed GCP_LSTM outperformed RNN and GRU. Another similar 

study investigating an LSTM model for monitoring indoor conditions, such as air temperature, relative moisture, 

pressure, wind, and dew point in a smart greenhouse was done by Ali et al. [20]. Their research aimed to find the best 

configuration between various hyperparameter settings, such as optimization algorithms and the number of neurons. 

As the origin of deep learning architectures, the reliability of ANN was still investigated in the research done by 

Ullah et al. for predicting the indoor environment in a smart greenhouse [21]. When compared to the conventional 

Kalman filter algorithm, their research showed that implementing ANN can increase the precision of indoor prediction 

using the Kalman filter method by reducing the RMSE by around 23.07% for temperature, 43.17 for CO2, and 44% for 

humidity. Recently, there has been a research project in agronomy related to predicting indoor air temperature inside the 

greenhouse using outdoor data with machine learning approaches [22]. They believe that the greenhouse is not fully 

isolated from the outside since the inside air is impacted by the outdoor climate. Their study compared machine learning 

models such as multiple linear regression, an ensemble of trees, support vector machine-based regression, and Gaussian 

process regression using data gathered from main weather data and indoor temperatures inside a greenhouse in Agadir, 

Morocco. Their research concluded that the Gaussian Process Regression outperformed all other machine learning 

models, even though the computational time of the training process was relatively higher. 

Other research related to comparisons between LSTM and GRU in predicting indoor climate was done by Elhariri 

& Taie [23]. They developed microclimate condition prediction models based on LSTM and GRU that were trained 

using the UCI ML Repository SML2010 dataset, which were aimed at forecasting future indoor environmental 

conditions. The findings indicated that the GRU outperformed the LSTM. The study done by Chen et al. was not related 

to indoor climate but can still be considered notable because of the discussion of LSTM and GRU for predicting 

environmental conditions [24]. Their research using an annual national key R&D project grain cloud platform dataset 

showed that the GRU prediction result exceeded the LSTM prediction result, even though their research initially 

proposed the LSTM model. Inspired by this competition between LSTM and GRU, this research was designed to 

implement both LSTM and GRU. 

According to the research done by Fang et al., deep learning with the Seq2seq architecture performed well in time-

series data, particularly for indoor climate prediction [25]. With the dataset obtained from GreEn-ER, a smart building 

containing indoor temperature and CO2 concentration, their research studied prediction models by proposing three 

encoder-decoder models, which were the combination of LSTM layers and dense layers, such as LSTM as encoder and 

dense layer as decoder, LSTM applied in both encoder and decoder, and a dense layer applied between LSTM layers as 

both encoder and decoder. Their results showed that LSTM-dense was the best for their case. Their research stated that 

RNN models such as LSTM and GRU were commonly used for forecasting indoor climate, whereas the seq2seq 

architecture models were rarely used. This statement prompted this study to look into the deep learning approach using 

the seq2seq architecture as well. They also discovered that large-capacity models, such as seq2seq, can overfit quickly 

to their training data. 

The seq2seq deep learning architecture, which is popular for machine translation tasks, has become a curious thing 

to be explored further for this research. Our previous research compared both simple seq2seq models and adapted 

baseline models by showing that simple seq2seq models were superior to the adapted baseline models in predicting 

indoor climate with the room climate dataset [26]. This research further explored the potential of the seq2seq architecture 

by implementing Luong attention, then compared it with simple seq2seq and adapted baseline models. 

3. Research Methodology 

3.1. Datasets 

The Room Climate Dataset, which was acquired from the indoor climate experiment conducted by Morgner et al. 

[8], is publicly available on GitHub and was used in this research. This research continued the previous research done 

by Gunawan et al., which used the same dataset [18]. This dataset is suitable for deep learning experiments as the amount 

of time-series data is huge [8, 27]. The variables used from the Room Climate Dataset in this research were Temp (indoor 

temperature in Celcius), Relh (relative humidity), L1 (light sensor 1 in nanometer wavelength), and L2 (light sensor 2 

in nanometer wavelength). The dataset is illustrated in Figure 1, with an axis describing timesteps with 273,144 timesteps 

and 𝑦 axis describing the value of each variable. The Pearson Correlation Coefficient (PCC) was applied to describe the 

characteristics of a dataset by informing the correlation between each variable in the datasets, with the results illustrated 

in Figure 1. The calculation of PCC is described as 𝑟𝑥𝑦  in Equation 1, where x and y are the two variables in comparison, 

𝑥̅ and 𝑦̅ are the average values of each comparison variable [29]. 

𝑟𝑥𝑦 =
∑(𝑥𝑖−𝑥̅) ∑(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)2
 √∑(𝑦𝑖−𝑦̅)2

  (1) 

Based on Figure 1 and Table 1, the characteristic of the Room Climate dataset in room A has assorted PCC values. 

The correlation between indoor temperature and humidity is moderate. Both light 1 and light 2 also have moderate 

correlations to the indoor temperature variable, but both light 1 and light 2 have negatively negligible correlations to the 

indoor humidity variable. 
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Figure 1. Room Climate Dataset (left) and the PCC values in the dataset (right) 

Table 1. The meaning of PCC value [30] 

The meaning PCC value 

Negligible correlation 0.00 – 0.10 

Weak correlation 0.10 – 0.39 

Moderate correlation 0.40 – 0.69 

Strong correlation 0.70 – 0.89 

Very strong correlation 0.90 – 1.00 

3.2. Model Architectures 

3.2.1. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an impressive RNN, which can tackle vanishing gradient problems when 

learning long-term computations [31]. LSTM is appropriate for addressing time-series forecasting and can also tackle 

issues depending on temporal memory. LSTM is structured from three computations, namely the input, output, and 

forget gate. 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑅𝑖𝑦

(𝑡−1) + 𝑝𝑖 ⊙ 𝑐(𝑡−1) + 𝑏𝑖)  (2) 

The input gate in LSTM is computed as in equation (2), where the result of the input gate is symbolized as 𝑖(𝑡). From 

Equation 2, 𝑥(𝑡), 𝑦(𝑡−1), and 𝑐(𝑡−1) are the entered data, cell value from the last iteration, and output data from the last 

repetitive calculation respectively with 𝑊𝑖, 𝑅𝑖, and 𝑝𝑖  as the weight value. The bias or uncertainty value of this gate is 

symbolized as 𝑏𝑖. The symbol of 𝜎 represents the activation function, which is usually sigmoid. 

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑅𝑓𝑦(𝑡−1) + 𝑝𝑓 ⊙ 𝑐(𝑡−1) + 𝑏𝑓)  (3) 

The forget gate in LSTM is computed as in equation (3), where the outcome of the forget gate is symbolized as 𝑓(𝑡). 

From equation (3), 𝑊𝑓, 𝑅𝑓, and 𝑝𝑓 are the weight value of 𝑥(𝑡), 𝑦(𝑡−1), and 𝑐(𝑡−1) respectively. The uncertainty value of 

forget gate is parenthesized as 𝑏𝑓. 

𝑐𝑡 = 𝑧(𝑡) ⊙  𝑖(𝑡) + 𝑐(𝑡−1) ⊙ 𝑓(𝑡)  (4) 

𝑜(𝑡) =  𝜎(𝑊𝑜𝑥(𝑡) + 𝑅𝑜𝑦(𝑡−1) + 𝑝𝑜 ⊙ 𝑐(𝑡) + 𝑏𝑜)  (5) 

𝑦(𝑡) = 𝑔(𝑐(𝑡)) ⊙ 𝑜(𝑡)  (6) 

Equation 4 describes the calculation of cell value with the symbol 𝑐𝑡 where block inputs are illustrated with the 

symbol 𝑧(𝑡). The output gate in LSTM is computed as in Equation 5, where the result of the output gate is symbolized 

as 𝑜(𝑡) . From equation (5), 𝑊𝑜 , 𝑅𝑜 , and 𝑝𝑜  are the weight value of 𝑥(𝑡) , 𝑦(𝑡−1) , and 𝑐(𝑡−1)  respectively. The 

unpredictability value of the output gate is symbolized as 𝑏𝑜. The outcome of LSTM is determined by the equation (6) 

as 𝑦(𝑡). 
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3.2.2. Gated Recurrent Unit 

Introduced in 2014, the Gated Recurrent Unit (GRU) is a streamlined LSTM with just two gates, which are the reset 

gate expressed as 𝑟𝑡 and the update gate expressed as 𝑧𝑡 [32]. In many studies, GRU is equivalent to or even outperforms, 

LSTM [33]. 

𝑠𝑡̃ = 𝜙𝑡𝑎𝑛ℎ(𝑊𝑠(𝑟𝑡 ⊙ 𝑠𝑡−1) + 𝑈𝑠𝑥𝑡 + 𝑏𝑠)  (7) 

𝑠𝑡 = (1 − 𝑧𝑡) ⊙ 𝑠𝑡−1 +  𝑧𝑡 ⊙ 𝑠𝑡̃  (8) 

𝑟𝑡 =  𝜎𝑠𝑖𝑔(𝑊𝑟𝑠𝑡−1 + 𝑈𝑟𝑥𝑡 + 𝑏𝑟)  (9) 

𝑧𝑡 =  𝜎𝑠𝑖𝑔(𝑊𝑧𝑠𝑡−1 + 𝑈𝑧𝑥𝑡 + 𝑏𝑧)  (10) 

where: the candidate state and output are defined as 𝑠𝑡̃ in Equation 7 and 𝑠𝑡 in Equation 8 respectively; the input data is 

symbolized as 𝑥𝑡 ; ⊙ is the operation of element-wise multiplication; the weight values of the candidate state, reset gate, 

and update gate are symbolized as 𝑊𝑠, 𝑊𝑟, and 𝑊𝑧 respectively; the unexpected value of each candidate state, reset gate 

update gate are respectively denoted as 𝑏𝑠, 𝑏𝑟, and 𝑏𝑧; both activation functions with tanh and sigmoid are symbolized 

as 𝜙𝑡𝑎𝑛ℎ and  𝜎𝑠𝑖𝑔. 

3.2.3. Adapted Baseline Models 

The first architecture, which this study compared to our proposed models was the adapted baseline model. The 

adapted baseline models were reconstructed based on the LSTM and GRU models experimented and discussed by 

Gunawan et al. [18]. This study modified these models to handle sequence-to-sequence scenarios by forecasting 

humidity and temperature inside the room for the later five timesteps according to data from 150 past timesteps. Since 

the baseline models cannot deal with 3-Dimensional (3D) data portrayed as (𝑗, 𝑘, 𝑙), the input data need to be converted 

into 2-dimensional (2D) data portrayed as (𝑗, 𝑘 ×  𝑙), where 𝑗, 𝑘, and 𝑙 represent the amount of data, the number of 

timesteps, and the number of data features respectively. In the end, the result of adapted baseline models will be in 2D 

data, which needs to be converted back into 3D data for comparison purposes with other seq2seq models. The adapted 

baseline architecture models are depicted in Figure 2. 

 

Figure 2. The customized baseline models with LSTM (a) and GRU (b) 

3.2.4. Simple Seq2seq Models 

Another architecture, which was examined in this research was a simple sequence-to-sequence (seq2seq) or encoder-

decoder architecture. It is an architecture of deep learning which is prominent to be used for Natural Language 

Processing (NLP) purposes [13]. Earlier implementations of seq2seq architecture were used for machine translation 

purposes from English to French [34]. The simple seq2seq architectures investigated in this research contain RNN-based 

Encoder-Decoder, in which the LSTM layers or GRU layers were implemented into both the encoder and decoder layer. 

Figures 3 and 4 depict the implementations of the seq2seq architecture in simple seq2seq models used in this research 

for comparison purposes [35]. It can be seen that specific RNN layers such as LSTM and GRU were utilized in the 

encoder and decoder layers. Additionally, batch normalization was also adopted to normalize the activation in the model, 

specifically between the encoder and decoder due to its potency for accelerating convergence in loss plots quickly [36]. 

The repeat vector layers in Figures 3 and 4 were used for repeating the input as many as the output target, which in this 

research was 5 timesteps. The time-distributed layer applied in this experiment is the same as the dense layer, but it is 

specialized for 3D tensors. 
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Figure 3. The simple seq2seq models with LSTM 

 

Figure 4. The simple seq2seq models with GRU 
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3.2.5. Proposed Architecture with Luong Attention-Based Seq2seq 

In NLP-related research, the implementation of attentional mechanism had proven capable of improving neural 

machine translation models [37]. This research applied the attentional mechanism by Luong et al. to our proposed 

models. Based on the research done by Luong et al., there are three different scoring content-based functions as described 

in Equation 11. 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠) = {

ℎ𝑡
⊺  ℎ̅𝑠

ℎ𝑡
⊺𝑊𝑎 ℎ̅𝑠       

𝑣𝑎
⊺ tanh(𝑊𝑎[ℎ𝑡; ℎ̅𝑠])

  
𝑑𝑜𝑡

𝑔𝑒𝑛𝑒𝑟𝑎𝑙
𝑐𝑜𝑛𝑐𝑎𝑡

  (11) 

where ℎ𝑡 and ℎ̅𝑠 are the latest hidden target state and all hidden states; 𝑊𝑎 and 𝑣𝑎 are the weight value and vector of a 

respectively. Our proposed Luong attention-based seq2seq architectures are illustrated in Figures 5 and 6. 

 

Figure 5. The Luong attention-based seq2seq models with LSTM 
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Figure 6. The Luong attention-based seq2seq models with GRU 

Based on Figures 5 and 6, both proposed models calculated the attention score by using the first function in Equation 

11 with a dot calculation. This research applied dot calculation using the Keras Dot layer by combining information 

from two hidden states in the encoder and decoder, then calculating the result of it with Softmax activation. The dot_1 

in Figures 5 and 6 is a context vector, which combines the information from the result of attention scoring after the 

activation process with the information from the encoder’s hidden state. This study applied batch normalization to the 

result of the context vector before it was concatenated with the decoder’s hidden state. 

3.2.6. Hyperparameter Settings 

For fair comparisons, the hyperparameter settings used in this research replicated the settings used in the experiment 

conducted by Gunawan et al. [18]. All the models in this research implemented 128 neurons for the LSTM and GRU 
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layers. The learning rate for all models was set to 0.001 Adam optimization was implemented on all models because of 

its preeminence, which can conquer sparse gradients like AdaGrad and non-stationary principle like RMSProp [38]. It 

was determined that the batch size and the number of epochs would be 64 and 50, respectively. 

3.3. Performance Metrics 

In time series prediction with machine learning, the most suitable and popular performance metrics for regression 

cases are Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) [39]. It is 

suggested to use more than one performance metric because one incorrect metric might lead to an inaccurate prediction 

of results [40]. This study considered the use of MAE and RMSE to calculate the error between predicted results and 

ground truth data. Due to the capacity to contrast actual and predicted data based on their distribution, the coefficient of 

determination (R^2) became an important measure to assess. [39]. 

𝑀𝐴𝐸 =  
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|

𝑚
𝑖=1   (12) 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑚
𝑖=1   (13) 

𝑅2 = 1 − 
∑ (𝑋𝑖−𝑌𝑖)2𝑚

𝑖=1

∑ (𝑌̅−𝑌𝑖)2𝑚
𝑖=1

  (14) 

The calculations of MAE, RMSE, and 𝑅2 are described in Equations 12 to14. The prediction result and the ground 

truth data are symbolized as 𝑋𝑖 and 𝑌𝑖, respectively. The mean value of ground truth data is symbolized as 𝑌̅. The value 

of 𝑅2 can be categorized as meaningful, moderate, and weak when the results are (𝑅2 ≥ 0.75), (0.25 < 𝑅2 < 0.75), 

and (𝑅2 ≤ 0.25) [41]. 

4. Results and Discussions 

4.1. Data Preprocessing 

Overly high or low values in data observations may lead the models to overfit in learning the data. To overcome that 

problem, Z-score standardization was implemented in this research to boost the models in understanding the pattern of 

data [42]. 

𝑍𝑁(𝑥) =
𝑥− 𝜇(𝑥)

𝜎(𝑥)
  (15) 

The calculation of Z-score standardization 𝑍𝑁(𝑥) is explained in equation (15), where the mean value and the 

standard deviation are symbolized as 𝜇(𝑥) and 𝜎(𝑥). The results of Z-score standardization are depicted in Figure 7. 

Figure 7 shows that this research separated the dataset into train sets colored in red and green, which is 80% of the 

original dataset, and test sets colored in blue and orange, which is 20% of the original dataset. The test set is used to 

compare all the models for comparison purposes. Meanwhile, for training purposes, this research divided the train set 

into two parts, where 80% of the train sets are training sets and 20% of the train sets are validation sets 

 

 

Figure 7. The implementation results of Z-Score standardization of dataset (left) and splitting illustration (right) 
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The sequence-to-sequence case in this research was designed to predict five upcoming timesteps based on 150 prior 

timesteps, which means that sliding window processes had to be implemented in pre-processing the dataset. If the dataset 

were imagined as the symbol of (𝑖, 𝑗), with 𝑖 interpreting the total number of data and 𝑗 interpreting the total data features 

such as temperature, humidity, light 1, and light 2, the result of the sliding window process would be imagined as the 

symbol of (𝑘, 𝑙, 𝑗), with 𝑘 reflecting the number of tiny partitions in total created in the sliding window process and 𝑙 
denoting the number of small partition sizes based on the input timesteps and output time steps (Figure 8). 

 

Figure 8. Sliding window illustration 

4.2. Model Training 

The train datasets depicted in blue and orange in Figure 7 were used to train all the models. The proportion of training 

and validation sets was set at 80% and 20% of training sets, respectively. This research utilized the Google Colaboratory 

PRO+ for the training process, with the loss plot depicted in Figure 9, where the 𝑥 axis represents the epoch and the 𝑦 

axis represents the loss value in MAE. A glance at the training process shows that the simple seq2seq models with LSTM 

and GRU had lower loss values than the adapted baseline models. Meanwhile, our proposed model, the seq2seq LSTM 

with Luong attention, appeared to be the best with the smallest gap between training loss and validation loss. The seq2seq 

GRU with Luong attention appeared not to be remarkable, but in the evaluation phase, the results were stunning. 

 

Figure 9. Training Process in MAE 
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4.3. Evaluation Result and Discussion 

All the models were evaluated on the test set, which is marked with the red and green colors in Figure 7. Tables 2 

and 3 summarized the evaluation results and comparison of the models' performance. Prior to calculating the metrics, 

all the predicted z-score were converted back to the original value ranges. 

Table 2. Results of indoor temperature forecast 

Time 
Error 

Metrics 

Adapted 

LSTM Baseline 

Adapted 

GRU Baseline 

Seq2seq 

LSTM 

Seq2seq 

GRU 

Seq2seq LSTM with 

Luong Attention 

Seq2seq GRU with 

Luong Attention 

Overall 

MAE 0.247795 0.262086 0.238384 0.231953 0.229914 0.228760 

RMSE 0.297591 0.319735 0.271810 0.263993 0.262190 0.274486 

𝑅2 0.698649 0.675929 0.688091 0.690382 0.678793 0.626864 

t+1 

MAE 0.241546 0.259527 0.223866 0.219808 0.214564 0.216244 

RMSE 0.297327 0.326616 0.261480 0.257351 0.251095 0.270169 

𝑅2 0.710160 0.697923 0.720847 0.703546 0.720374 0.626380 

t+2 

MAE 0.244814 0.269762 0.238407 0.231612 0.229262 0.225108 

RMSE 0.296138 0.332542 0.272649 0.262974 0.261729 0.274468 

𝑅2 0.690974 0.657433 0.683891 0.692170 0.682608 0.623607 

t+3 

MAE 0.248486 0.251062 0.243020 0.235858 0.234530 0.233483 

RMSE 0.296802 0.299626 0.274552 0.266179 0.265351 0.276395 

𝑅2 0.685892 0.677411 0.681828 0.688460 0.665454 0.617513 

t+4 

MAE 0.251623 0.264656 0.242899 0.236308 0.235669 0.234871 

RMSE 0.298455 0.319825 0.274364 0.266475 0.266346 0.276339 

𝑅2 0.696339 0.666647 0.680263 0.688070 0.661802 0.630890 

t+5 

MAE 0.252506 0.265424 0.243727 0.236181 0.235544 0.234091 

RMSE 0.299222 0.319102 0.275751 0.266866 0.266112 0.275011 

𝑅2 0.709879 0.680233 0.673623 0.679660 0.663708 0.635929 

Table 3. Results of indoor humidity forecast 

Time Error Metrics 
Adapted 

LSTM Baseline 

Adapted 

GRU Baseline 

Seq2seq 

LSTM 

Seq2seq 

GRU 

Seq2seq LSTM with 

Luong Attention 

Seq2seq GRU with 

Luong Attention 

Overall 

MAE 1.513766 1.591998 1.513978 1.432427 1.445932 1.420797 

RMSE 1.836297 1.961468 1.790792 1.688866 1.695257 1.666903 

𝑅2 0.798833 0.793007 0.827590 0.852563 0.836392 0.843962 

t+1 

MAE 1.513445 1.624598 1.464352 1.394732 1.399928 1.347251 

RMSE 1.889512 2.045878 1.765818 1.659910 1.677112 1.614535 

𝑅2 0.781031 0.764142 0.841039 0.860186 0.845905 0.856947 

t+2 

MAE 1.486392 1.604786 1.506154 1.434247 1.446125 1.401542 

RMSE 1.813392 2.014651 1.782136 1.689829 1.693149 1.647303 

𝑅2 0.814321 0.797122 0.825263 0.849830 0.836582 0.848743 

t+3 

MAE 1.527277 1.613337 1.533574 1.440880 1.460044 1.435678 

RMSE 1.837693 1.961990 1.800642 1.691234 1.698876 1.669283 

𝑅2 0.795172 0.780698 0.823725 0.851950 0.833728 0.843309 

t+4 

MAE 1.526774 1.551911 1.533732 1.440244 1.459864 1.476602 

RMSE 1.818440 1.882200 1.803479 1.689539 1.701203 1.721956 

𝑅2 0.800738 0.811948 0.823810 0.854497 0.833078 0.829814 

t+5 

MAE 1.514941 1.565358 1.532079 1.452033 1.463701 1.442912 

RMSE 1.821386 1.897437 1.801586 1.713393 1.705801 1.679540 

𝑅2 0.802902 0.811126 0.824115 0.846355 0.832665 0.840999 

This research only predicted temperature and relative humidity, so the predictions of light intensity were ignored. 

Compared to the adapted baseline models, the proposed models achieved astoundingly lower MAE and RMSE in both 

predicting indoor temperature and humidity [18]. Such findings may be attributed to the fact that the dataset has varying 
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PCC values, implying that its pattern may be more complex to be modeled and may be more suitable for more complex 

models. Based on our previous research, when the dataset was dominated by very strong correlation PCC values, the 

seq2seq models were too complex for the data [35], which is not the case in this study. Another way to look at why our 

proposed models were superior to the adapted baseline model is that this research brought the experiment scenario to 

the sequence-to-sequence problem, which is similar to an NLP problem. 

The proposed models were also compared to the simple seq2seq models, which did not implement any attention 

mechanism. The implementation of Luong attention in seq2seq LSTM gave an overall improvement of 0.00847 in MAE 

and 0.00962 in RMSE for forecasting indoor temperature. It also reduces 0.068046 MAE and 0.095535 RMSE for 

forecasting indoor humidity. The implementation of Luong attention in seq2seq GRU also improved the accuracy in 

predicting indoor humidity by 0.01163 in MAE and 0.0219963 in RMSE. But in predicting indoor temperature, the 

implementation of Luong attention gave inconsistent results by reducing approximately 0.003193 MAE and increasing 

roughly 0.01049 RMSE. The error reduction in predicting indoor climate may lead to the conclusion that attention 

mechanisms in the NLP field can also be implemented in time series prediction, which must further be validated using 

statistical testing. 

Tables 2 and 3 showed that all models achieved 𝑅2 values below 0.70 in predicting indoor temperature and below 

0.86 in predicting indoor humidity. The Room Climate dataset from room A was challenging because the PCC values 

in the training dataset were different from the PCC values in the testing dataset. To investigate the differences between 

training and testing data, this research used PCC values on the separated subsets as in Figure 10 for the train set and 

Figure 11 for the test set. 

 

Figure 10. PCC values on the train set 

 

Figure 11. PCC values on the test set 
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This research conducted a Mann-Whitney U test to verify the impact significance of Luong attention implementation 

on the model based on the test results. The Mann-Whitney U test, which is also known as the Wilcoxon rank-sum test 

or the Wilcoxon-Mann-Whitney test, is a nonparametric test to verify the null hypothesis that both independent groups 

come from populations with the same distribution [43]. All seq2seq models were compared to the seq2seq models with 

Luong attention. This research defined that the null hypothesis statement was that there is no impact from the 

implementation of Luong attention and the alternative hypotheses statement was that there is an improvement from the 

implementation of Luong attention. This result decided that the threshold 𝛼  was set to 0.05 [44]. The results of 

hypothesis testing are depicted in Table 4 showed that all testing results were below the threshold value, which 

interpreted that the implementation of Luong attention significantly impacted the accuracy of seq2seq models. The 

closest P-value score to 𝛼 value was the impact of the implementation of Luong attention on seq2seq GRU, which 

explains why loss values in the training process for seq2seq GRU with Luong attention were not as low as the loss values 

for seq2seq LSTM with Luong attention. 

Table 4. Mann-Whitney U test results on the implementation of Luong attention 

Comparison models In predicting P-value Inference 

Seq2seq LSTM vs Seq2seq LSTM with Luong attention Indoor temperature 1.0753 × 10−87 Reject null hypothesis 

Seq2seq LSTM vs Seq2seq LSTM with Luong attention Indoor humidity 1.5199 × 10−162 Reject null hypothesis 

Seq2seq GRU vs Seq2seq GRU with Luong attention Indoor temperature 8.6477 × 10−3 Reject null hypothesis 

Seq2seq GRU vs Seq2seq GRU with Luong attention Indoor humidity 9.2928 × 10−50 Reject null hypothesis 

Based on the results of the experiments, the Seq2seq architecture, which was originally developed for NLP cases, 

has been shown to be applicable in time series prediction. Furthermore, the implementation of the Luong attention 

mechanism enhanced the seq2seq model’s performance to predict time series data more accurately, which has been 

proven with hypotheses testing. 

The implementation of Luong attention mechanism on seq2seq architecture models also has consequences, such as 

increasing model runtime during the model training process and making the models more complex. This research is not 

aimed to find the best model between LSTM and GRU, but to investigate the improvement of the models after the 

implementation of the Luong Attention mechanism by comparing them to the simple seq2seq models and adapted 

baseline models. 

5. Conclusion 

For the development of SDD and greenhouses in agricultural fields, this research contributed by experimenting with 

a complex indoor climate dataset named the Room Climate Dataset, which contained time-series data, and implementing 

deep learning models for time-series data. The results showed that our proposed models outperformed the adapted 

baseline models and the simple seq2seq models on sequence-to-sequence cases by predicting the next five timesteps 

based on 150 prior timesteps. The implementation of Luong attention in seq2seq architectures has proven to be capable 

of improving their accuracy, and the results are supported by statistical hypothesis testing using the Mann-Whitney U 

test. This research focused on giving new ideas about AI-based indoor climate prediction. As a result, the implementation 

impact of proposed AI models for energy consumption reduction needs to be investigated in future research for real-

world application at SDD or greenhouse facilities. 

The content scoring illustrated in Equation 11 based on the Luong attention mechanism has three different 

calculations, but this research was limited by only investigating the first calculation using dot scoring. So there are 

chances for future observations using general and concept calculations. For future research, the real complex indoor 

dataset from SDD will be investigated, which may contain indoor climate data such as temperature and humidity from 

outdoor environments, as well as information about treatments for the contained food product such as microstructural 

features and microscale properties related to the physical product. For fair comparison purposes, this research 

implemented the same hyperparameter settings. For the following research, hyperparameter optimization may be 

implemented to determine optimal hyperparameter values by performing a grid search or random search approach. The 

Seq2seq architectures popularly used for NLP purposes have been investigated to also be suitable for processing time 

series data, which may imply that other NLP models such as Transformers can be investigated for processing time-series 

data as well in future studies. 
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