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Abstract 

No attempts have been made in developing the N-M interaction diagram for reinforced concrete columns strengthened 
with steel jackets using the plastic stress distribution method. Therefore, this paper presents an analytical model to construct 
the N-M interaction diagram for reinforced concrete columns strengthened with steel jackets using the plastic stress 
distribution method after assuming the behavior of strengthened column to be like composite column and including the 
effects of confinement on concrete compressive strength. The proposed model was compared with experimental results. 
The comparisons showed that the model is conservative and it reveals the ultimate strength of the strengthened column. A 
parametric study has been also carried out to investigate the influence of various parameters on the N-M interaction diagram 
of the strengthened column. These parameters were: dimensions of steel angle, yield stress of the steel angles, concrete 
compressive strength and the size of the reinforcement bars used in RC columns. The results made clear the effects of these 
parameters on the N-M interaction diagram, and encouraged the use of the model in preliminary strengthening studies. 
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1. Introduction 

There are a number of design proposals that can be used to construct N-M interaction diagram for a composite steel-

reinforced concrete column which are: the Wakabayashi's method, the American Structural Specifications Liaison 

Committee method, the Roik-Bergmann method, the Eurocode No.4 method and others [1]. All these methods did not 

construct the N-M interaction diagram for reinforced concrete column strengthened with steel jacket. 

This paper presents an analytical model for the construction of interaction diagram for RC column strengthened with 

steel angles and strips using the plastic stress distribution method. In this work and due to placing of steel cage, the 

effects of confinement on concrete compressive strength, stress-strain response of confined concrete will be taken into 

consideration by assuming the column is acting like concrete filled tube section. The angles were assumed to be bonded 

to the concrete by filling the gaps between the concrete and steel jacket with injection plaster or a concrete mortar 

forming a layer of binding material between the concrete and steel jacket. At first, the proposed model is verified with 

experimental results, and then a parametric study is carried out to investigate the influence of some parameters.  
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2. Literature Review 

Garzón et al. 2012 [2] presented a finite element model of a RC column strengthened with steel caging subjected to 

bending moments and axial loads. The model is used to obtain the N-M diagrams, studying the difference between fitting 

and not capitals at the end of the strengthened RC column, next to the beam-column joint. In addition the model is used 

to perform a parametric study in which it is investigated the influence of several parameters. 

Equations for a hand computation of moment-axial forced domain of RC columns externally strengthened with steel 

angles and strips are developed by Campione 2013 [3]. The analytical derivation was made assuming equivalent stress-

block parameters for internal force considering the confinement effect induced in concrete core by external cages. The 

proposed model gave results in a good agreement with experimental data. 

Christou et al. 2013 [4] evaluated experimentally the effect of three levels of confinement with the use of a CFRP 

composite grid on the interaction diagram of RC columns. The comparison showed a considerable difference primarily 

in the compression-controlled region where the axial compression and bending moment are significantly enhanced. 

Patel and Panchal 2016 [5] presented a simplified method for development of N-M interaction chart for concrete 

filled tube composite columns. The method was based on simple European buckling curves for composite columns. 

Al-Sherrawi and Salman 2017 [6] presented two analytical models to construct the axial load-bending moment 

interaction diagram of a RC column strengthened with steel jacket. The derivation of expressions was made by assuming 

equivalent stress block parameters for confined concrete. The proposed models show good agreements with available 

experimental data and design proposals. 

3. Methodology 

The four points identified in Figure 1. are defined by the plastic stress distribution used in their determination. Point 

A is the pure axial strength, Point B is determined as the flexural strength of the section, Point D corresponds to 

maximum flexural strength with an axial strength, and Point C corresponds to a plastic neutral axis location that results 

in the same flexural capacity as Point B but with twice the axial load of Point D.  The main dimensions of the 

strengthened concrete column used are given in Figure 2. For any position of neutral axis (c), stresses of reinforcing 

bars and steel angles will be 𝑓𝑦𝑟 and 𝑓𝑦𝑎 respectively, while the stress block of concrete will be 𝑓𝑐 as width due to effects 

of confinement and αc as height, and α was assumed to be 0.85. The description of each one of the four points is 

expressed below: 

 

Figure 1. The interaction diagram for composite column [7] 

 

Figure 2.  Details and dimensions of  RC column and steel cage 
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Point A is defined with the design value of the resistance of the composite section to compressive axial force 𝑁𝐴 while 

the bending moment 𝑀𝐴 is zero (eccentricity 𝑒 = 0) (Figure 3). 

 

Figure 3. Stress distribution for point A 

 

NA =  fcbh + fyaAs + fyrAsr 

MA = 0 
(1) 

Where 𝑏 is the width of column, ℎ is the height of column, 𝐴𝑠 is the total area of steel angles, and 𝐴𝑠𝑟 is the total area 

for reinforcing bars. 

Point D is defined with the maximum design value of the resistance moment 𝑀𝐷 in the presence of a compressive 

normal force 𝑁𝐷 (Figure 4). 

ND = fc  
h

2
 b (2) 

MD = Mmax =  fc [
bh2

8
] + Zafya + fyrAsr [d −

h

2
] (3) 

Where αc is the height of equivalent stress block, 𝑑 is the effective depth for reinforcing bars, and 𝑍𝑎 is the plastic 

section modulus for steel angles. 

 

Figure 4. Stress distribution for point D 

Za = 4 [[(L1 − t)t (
h + t

2
)] + [L1t (

h

2
+ t −

L1

2
)]] (4) 

Point B is defined with the design value of the bending moment resistance the composite section 𝑀𝐵 while the axial 

force 𝑁𝐵 is zero (eccentricity 𝑒 = ∞). The position of neutral𝑐 axis must be assumed and to be checked later. By applying 

∑ 𝐹 = 𝑁𝐵 and using 𝑁𝐵 = 0, 𝑐 can be found. In this paper four possible assumptions may be considered to find c and as 

follows: 

Case 1: (L1 − t) ≤ c <
h

2
   as shown in Figure 5. 
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Figure 5.  Stress distribution for case 1 

𝑁𝐵 = 0 
 

fc bαc +  
As

2
fya +

Asr

2
fyr −

As

2
fys −

Asr

2
fyr = 0 

 

fc bαc = 0 
 

fc bα ≠ 0  
c = 0              (Error) 

 

Case 2:  0 < 𝑐 < (𝐿1 − 𝑡)   𝑎𝑛𝑑  𝑐 ≥ (𝑑′ +
𝑑𝑏𝑎𝑟

2
) as shown in Figure 6. 

 

Figure 6. Stress distribution for case 2 

 

𝑁𝐵 = 0 
 

fc bαc +  
As

2
fya +

Asr

2
fyr −

As

2
fya −

Asr

2
fyr − 4 (tfya(L1 − t − c)) = 0 

c =
4tfya(L1 − t)

α fc b +  4tfya
 (5) 

hn =
h

2
− c 

MB = fc bαc (
h

2
−

αc

2
) + Za fya + Asr fyr (

h

2
− d′) − [4t(L1 − t − c)fya (

h

2
− c − (

L1 − t − c

2
))] (6) 

Case 3:    0 < 𝑐 < (𝐿1 − 𝑡)   𝑎𝑛𝑑  (𝑑′ −
𝑑𝑏𝑎𝑟

2
) < 𝑐 < (𝑑′ +

𝑑𝑏𝑎𝑟

2
)  as shown in Figure 7. 
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Figure 7. Stress distribution for case 3 

𝐴𝑖 = 𝑑𝑏𝑎𝑟ℎ𝑖 

ℎ𝑖 = 𝑐 − 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑣𝑒𝑟 − 𝑑𝑡𝑖𝑒  

Where 𝐴𝑖 is the area of the segment of reinforcing bars under compressive stress and ℎ𝑖 is the height of this segment. 

The center of gravity of this segment can be assumed as  
ℎ𝑖

2
. 

NB = 0 
 

fc bαc +
As

2
fya +

n

2
Aifyr − (

Asr

2
−

n

2
Ai) fyr −

Asr

2
fyr −

As

2
fya − 4(t(L1 − t − c)fya) = 0 

Where 𝑛 is the number of reinforcing bars. 

c =
4t(L1 − t)fya +  (Asr − nAi)fyr

fc αb +  4 tfya
 (7) 

hn =
h

2
− c 

MB = fc bαc (
h

2
−

αc

2
) + Zs fya − [4t(L1 − t − c)fya (

h

2
− c − (

L1 − t − c

2
))] +

n

2
Aifyr (

h

2
− c +

hi

2
)

− [(
Asr

2
−

n

2
Ai) fyr (

h

2
− c − (

dbar − hi

2
))] +

Asr

2
 fyr (

h

2
− d′) 

(8) 

  

Case 4:   0 < 𝑐 < (𝐿1 − 𝑡)   𝑎𝑛𝑑  𝑐 ≤ (𝑑′ −
𝑑𝑏𝑎𝑟

2
)  as shown in Figure 8. 

 

Figure 8. Stress distribution for case 4. 

NB = 0 

fc bαc +  
As

2
fya − Asrfyr −

As

2
fya − 4(t(L1 − t − c)fya) = 0 

 

c =
4t(L1 − t)fya +  Asrfyr

fcαb +  4fya t
 (9) 
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hn =
h

2
− c 

MB = fc bαc (
h

2
−

αc

2
) + Zs fys − [4t(L1 − t − c)fya (

h

2
− c − (

L1 − t − c

2
))] (10) 

Point C corresponds to a neutral axis location that results in the same flexural capacity as Point B and twice the axial 

load of Point D. 

NC = 2ND 

MC = MB 

4. Validation of Analytical Model 

A set of an experimental investigations presented by Garzon et al. [8] (A-800-a, A-1200-b) and Ezz-Eldeen [9] 

(CS22e1, CS22e2, CS22e3 and CS22e4) were used to validate the presented model. The Details of these models are 

illustrated in Table 1. For each set, an N-M interaction diagram has been drawn (Figures 9 and 10). 

Table 1. Details of selected columns and obtained results. 

Model 
Cross-section 

(mm) 

Steel angle 

(mm) 

Longitudin

al bars 

𝒇′
𝒄
 

(MPa) 

𝒇𝒚𝒂 

(MPa) 

𝒇𝒚𝒓 

(MPa) 

e 

(mm) 

Experimental 

results 

Analytical 

results 
Comparison 

𝑵𝒆𝒙𝒑. 𝑴𝒆𝒙𝒑. 𝑵𝒂𝒏𝒂. 𝑴𝒂𝒏𝒂. 
𝑵𝒂𝒏𝒂

𝑵𝒆𝒙𝒑

 
𝑴𝒂𝒏𝒂

𝑴𝒆𝒙𝒑

 

A-800-a 260 × 260 4 L 60 × 6 4 φ 12 mm 12 275 500 ---- 800 99.7 900 105 1.12 1.05 

A-1200-b 260 × 260 4 L 60 × 6 4 φ 12 mm 12 275 500 ---- 1200 72.6 1190 72 0.99 0.99 

              

CS22e1 120 × 160 4 L 20 × 2 4 φ 8 mm 25 380 260 10 643 6.4 603 6.0 0.94 0.94 

CS22e2 120 × 160 4 L 20 × 2 4 φ 8 mm 25 380 260 20 552 11.0 519 10.4 0.94 0.94 

CS22e3 120 × 160 4 L 20 × 2 4 φ 8 mm 25 380 260 30 474 14.2 457 13.7 0.96 0.96 

CS22e4 120 × 160 4 L 20 × 2 4 φ 8 mm 25 380 260 40 420 16.8 407 16.3 0.97 0.97 

5. Comparison with Experimental Results 

Figures 9 and 10. show the compression of the experimental results with N-M interaction diagram for the analytical 

model. However, the results are presented in Table 1. Comparisons show that the interaction diagrams obtained by the 

analytical model give good values comparative with experimental results. 

 

Figure 9. Comparison of experimental results of Garzon et al. [8] with N–M interaction diagram for the analytical model 
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Figure 10. Comparison of experimental results of Ezz-Eldeen [9] with N–M interaction diagram for the analytical model 

As it can be seen, the analytical model gives nearby values compared to experimental results. The proposed model is 

almost conservative, which is preferable in design works. 

6. Parametric Study 

A parametric study based on the column presented by Garzon et al. [8] was carried out to investigate the influence of 

various parameters on the interaction diagram of the strengthened column. Some of these parameters related to the steel 

cage and others related to the RC column itself. These parameters were: dimensions of steel angle, yield stress of the 

steel angles, concrete compressive strength and the size of the reinforcement bars used in RC columns. Table 2 

summarizes the characteristics of the specimens analyzed in this parametric study. The results of parametric study are 

discussed below. 

Table 2. The characteristics of the specimens analyzed in the parametric study 

Specimen 
Cross-section 

(mm) 

Steel angle 

(mm) 
Longitudinal bars 

𝒇′
𝒄
 

(MPa) 

𝒇𝒚𝒂 

(MPa) 

𝒇𝒚𝒓 

(MPa) 

1 260 × 260 4 L 60 × 6 4 φ 12 mm 12 275 500 

2 260 × 260 4 L 50 × 5 4 φ 12 mm 12 275 500 

3 260 × 260 4 L 70 × 7 4 φ 12 mm 12 275 500 

4 260 × 260 4 L 80 × 8 4 φ 12 mm 12 275 500 

5 260 × 260 4 L 60 × 6 4 φ 12 mm 12 355 500 

6 260 × 260 4 L 60 × 6 4 φ 12 mm 20 275 500 

7 260 × 260 4 L 60 × 6 4 φ 12 mm 30 275 500 

8 260 × 260 4 L 60 × 6 4 φ 10 mm 12 275 500 

9 260 × 260 4 L 60 × 6 4 φ 16 mm 12 275 500 

10 260 × 260 4 L 60 × 6 4 φ 20 mm 12 275 500 

6.1. Dimensions of Steel Angle 

Figure 11. shows the effect of changing the dimensions of the steel angles on N-M interaction diagram. Using a larger 

size of the steel angles increases the axial resistance of a strengthened RC column. Also, Using a larger size of the steel 

angles gives higher flexural resistance due to increasing of 𝑍𝑎. The axial resistance in points D and C did not change 

because the axial resistance in these points depend on the concrete compressive strength only.  
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Figure 11. Parametric study; steel angle dimensions 

It is interesting to note that the effectiveness of the strengthening highly depends on the dimensions of the steel angles.  

An increase in it provides a significant improvement in the maximum bending moment.  

6.2. Yield Stress of the Steel Angles 

As can be seen in Figure 12, the increasing in the yield stress of steel angles will increase the axial resistance of a 

strengthened RC column; also the larger value of the yield stress gives higher flexural resistance. The axial resistance 

in point D and C did not change because the axial resistance in these points depends on the concrete compressive strength 

only. 

 

Figure 12. Parametric study; yield stress of steel angles 

6.3. Concrete Compressive Strength 

The concrete compressive strength (𝑓𝑐) in the column has no considerable influence on the bending resistance of the 

strengthened RC column unlike the axial resistance, as shown in Figure 13. 
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Figure 13. Parametric study; Concrete compressive strength. 

6.4. Size of Reinforcement Bars 

As can be seen in Figure 14, an increase in reinforcement bars size will increase both of the axial and the flexural 

resistance. The axial resistance in point C and D did not change because the axial resistance in these points depends on 

the concrete compressive strength only. 

 

Figure 14. Parametric study; Size of reinforcement bars 

7. Conclusion 

In the present work an analytical model is derived for the hand computation to construct the N-M interaction diagram 

for a RC column strengthened with steel jacket using the plastic stress distribution method by assuming the strengthened 

column behaving as a composite column. The results obtained by the proposed analytical model showed fairly good 

agreement with the experimental results. Comparisons showed that the analytical model gives almost lower values than 

experimental results. A parametric study also has been adopted in this work to investigate the effect of four factors. 

Results obtained from the parametric study show a clear increase in the ultimate strength of a RC column 

strengthened with steel jacket with increase in dimensions of steel angles, yield stress of the steel angles, concrete 

compressive strength and the size of the reinforcement bars. The model is an encouraging trend which may be useful 

for many practical applications. 
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