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Abstract 

Google Earth, among other online mapping platforms, offers an interactive mapping platform that has become 

indispensable for academic and research applications. It serves as a primary reference and a foundational tool for map 

creation, providing open-source, cost-free imagery that meets the user needs of the mapping community. As a 

contemporary repository of high-resolution images of Earth's landmass, Google Earth has vast potential for scientific 

exploration and remains an underexploited resource. Its rapid expansion and consistent reliability make it a favored source 

for mapping and routing tasks. However, this research underscores the crucial aspect of Google Earth's positional accuracy, 

which is at the heart of this study. A comparative analysis between the positional accuracy of Google Earth and traditional 

ground surveying maps was conducted. The Wilcoxon rank test and quantitative methods were used to evaluate coordinate 

discrepancies, revealing significant discrepancies between the two datasets. This study aims to provide a rigorous 

assessment of Google Earth's utility and accuracy in scientific and academic contexts, emphasizing its role and reliability 

as a critical resource for researchers and practitioners in the field of mapping. The results revealed displacement changes 

in both the northing and the easting coordinates. For the northing coordinates, the displacement increases when moving 

eastward and decreases when moving westward. For the easting coordinates, the displacement increases when moving 

northward and decreases when moving southward. This pattern highlights spatial discrepancies and the varying impact of 

location on the dataset's accuracy, emphasizing the need for targeted corrections to enhance data accuracy. These key 

findings provide valuable insights that could significantly contribute to optimizing mapping practices and efficiently 

exploiting this vast, yet underexplored, digital resource. 
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1. Introduction 

Advances in remote sensing technologies and applications have significantly enhanced the temporal and spatial 

resolution of captured data across a broader range of spectral signatures, fundamentally transforming our methods of 

Earth observation [1]. The swift progress in information and communication technologies offers an unparalleled wealth 

of information, enabling a more detailed and comprehensive understanding of our planet's state than traditional methods 

could provide [2]. In a transformative approach to the digital representation of our planet, Google Earth (GE) plays a 

key role in humanity's efforts to comprehend our surroundings and manage resources more effectively. It stands out for 

its contributions toward realizing the goals set in the United Nations 2030 Agenda for Sustainable Growth [3]. 

Remarkably, the widespread popularity of GEs stems from their superior visualization capabilities, straightforward 

accessibility to an extensive array of geospatial information, and ability to integrate a universal coordinate framework, 
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despite scalability limitations [4]. As a digital globe, GEs facilitate seamless connections across global locales, providing 

open access to geospatial data and thereby fostering international collaboration aimed at achieving sustainable 

development goals (SDGs) [5]. There is an ongoing commitment among global policymakers to pursue sustainable 

development initiatives aligned with the SDGs [4]. These goals are fundamentally linked to geospatial data, 

underscoring its importance; for instance, the concept of location-based services would hardly be feasible in the absence 

of such data [6].  

The role of GEs extends beyond data sharing, bridging the digital divide between the Global North and South by 

democratizing access to vital geospatial data for cross-border partnerships and cooperative efforts [7, 8]. Recently, GE 

has become a pivotal resource in diverse research areas, including social sciences [9], atmospheric studies [10], urban 

research [11], and disaster management [12], indicating its significance in global environmental change research. 

Moreover, GE has found extensive application in educational contexts, particularly in geography instruction, thanks to 

its unparalleled capability for rendering virtual representations of the Earth [13]. The benefits of utilizing GE span six 

distinct domains: visualization and data exploration, data gathering, validation, data merging and compatibility, 

simulation, and user-friendliness [14]. While the popularity of GE as a digital platform continues to grow, owing to its 

user-friendly visual features, it is not without its drawbacks. These limitations include varying quality of imagery, 

restricted options for quantitative analysis, an absence of tools for in-depth analytical work, and limitations in conducting 

accurate worldwide spatial simulations [4, 15]. 

The visualization capabilities of GEs have significantly contributed to various domains, including internet GIS [16], 

land conversion studies [17], urban household surveys [18], health geography research [19], real estate [20], lake 

mapping [21], relief efforts [22], and land use mapping [19]. The historical imagery feature of the GE, which offers 

snapshots from different times, proves invaluable for studies focused on changes in land use [19]. Its accessible and 

user-friendly interface offers a convenient platform for interactive data analysis and algorithm development [23]. 

Moreover, users can integrate and manage their own data and collections while utilizing Google's cloud resources for 

processing [24, 25]. The application of GE in scholarly endeavors spans several critical areas: visualization, data 

collection and verification, the integration of data, the publication of research findings, modeling, exploratory data 

analysis, and aiding in decision-making processes [4].  

The advent of spatial technologies integrated with the internet has birthed virtual globes, enhancing global access 

to geospatial data [26]. These platforms offer interactive experiences, allowing users to navigate the globe through 

various perspectives, angles, and data overlays, whether they are representations of real or conceptual geographical 

information [27]. Despite GE's widespread use and trust in its precision, there is an implicit assumption among its 

user base regarding its accuracy and reliability [28]. Accurate and up-to-date land cover information is essential for 

land managers and policymakers in developing and implementing effective conservation strategies and policies [29]. 

However, creating high spatial resolution land cover maps over large areas poses significant challenges. These 

challenges include managing large volumes of data, developing complex training and validation datasets, addressing 

data availability issues, and addressing heterogeneous data and landscape conditions [2, 30, 31]. Some specialized 

software programs address these challenges by integrating expert knowledge into the analytical workflow for land 

cover mapping [1, 32]. 

Concerns have been raised about the dependability of GE images due to the obscure nature of their metadata, which 

includes information about the sensors used, the resolution of the imagery, and the methods employed for overlaying 

and stitching together images [33]. It has been noted that Google's geographic data products should be considered 

approximations, as their accuracies are not officially validated [34]. Google has demonstrated reluctance in disclosing 

detailed accuracy specifications of the GE database [35]. Furthermore, GE images are not orthorectified, meaning that 

they lack the adjustments necessary for a flat map representation and do not meet photogrammetric precision standards 

[36]. The vagueness of the horizontal precision of the imagery might lead to the misrepresentation of features and 

subsequent analytical errors [33], casting doubts on the suitability of GE imagery for tasks requiring exactitude, such as 

precision engineering assessments and autonomous navigation systems [37]. The tradition of presenting coordinates 

with a level of precision that surpasses their actual accuracy might falsely assure users of the information's reliability 

[38]. Furthermore, Google officials have conceded that the coordinates and data featured in their geographic products 

are merely estimative, with no guarantees concerning their precision [39]. An examination of historical GE images 

revealed that the degree of horizontal displacement can fluctuate over time [40]. 

In recent years, the integration of GEs has significantly advanced geospatial studies, particularly in assessing 

geospatial accuracy. For instance, Bajaj et al. [41] used GE to monitor changes in mangrove forest cover and carbon 

stocks in the lower Mekong region, achieving 92.10% accuracy. Zurqani [42] estimated forest canopy cover in Arkansas 
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with accuracies between 83.31% and 94.35% using high-resolution imagery and machine learning within GE. Ganjirad 

& Bagheri [43] mapped land use and land cover using Landsat 8 for weather models and achieved 94.92% accuracy. 

Habibie et al. [44] applied GE with deep learning to forecast land utilization in Jambi district, achieving 79.59% 

accuracy. Merchant et al. [45] mapped Arctic wetlands, achieving over 89% accuracy, demonstrating the effectiveness 

of GE with large datasets [46]. Prasai et al. [2] used the GEE Python API for LULC classification in Florida and achieved 

86% accuracy, highlighting the cost-effectiveness of GE. These studies collectively underscore the versatility and 

robustness of GEs in remote sensing and environmental monitoring. However, GE offers the capability to display a 

variety of imagery types superimposed upon the Earth's surface and functions as a client for web map services [47]. The 

foundational technology of GE traces its origins back to intrinsic graphics during the late 1990s. The project to provide 

3D representations of urban areas commenced in 2012 [48].  

By the beginning of 2016, this coverage had grown from just 21 cities across four nations to several hundred cities 

spanning more than 40 countries, covering all U.S. states and every continent except for Antarctica [7]. GE's very high-

resolution satellite imagery boasts a spatial resolution of less than 5 meters [49]. However, the clarity of these images 

varies according to the satellite's specifics, such as its altitude and the equipment it carries [50]. Contrary to appearing 

seamless and uniform, GE imagery is actually a compilation of various images taken at different times, showcasing 

spatial resolutions that range from 15 meters to as much as 10 centimeters, and is sourced from various providers [49]. 

Due to the diverse origins of these images, there is variability in their positional accuracy and spatial resolution [50]. 

Where necessary, satellite imagery is augmented with aerial photos, which offer greater detail. In areas lacking high-

resolution images, GE switches to Landsat imagery as a standard fallback [51]. 

The concern regarding the accuracy of GE positioning has been somewhat overlooked by the global research 

community. There appears to be a noticeable gap in efforts to evaluate the geospatial precision of mapping, especially 

within the context of Saudi Arabia. Furthermore, an exploration of the literature did not reveal any investigations 

addressing the precision of historical imagery in GE. Positional accuracy is typically categorized into different 

dimensions [52]. There are some instances of geo-registration errors and significant horizontal discrepancies within GE 

imagery [34]. However, the increasing reliance on online mapping applications, particularly GEs, by the academic 

community underscores the pivotal role these platforms play in facilitating a broad spectrum of mapping and scientific 

endeavors. GE's expansive repository of Earth's geographical data offers unprecedented opportunities for scientific 

exploration, yet its rapid expansion and the voluminous nature of its datasets have led to underutilization of its full 

potential. This study critically assesses the geospatial accuracy of GE, addressing a key concern for users who rely on 

its data for precise mapping and routing.  

This research aimed to validate the reliability and accuracy of GE, which is essential for its use in academic and 

professional projects. By examining the positional accuracy of GEs, this study underscores its importance in academia 

and aims to enhance its applicability and reliability for future geospatial research. The literature highlights the extensive 

application of GE in various fields and its role in facilitating global collaborations through geospatial data. However, 

despite its popularity and utility, there is a significant gap in comprehensive evaluations of the positional accuracy of 

GEs, particularly compared to traditional ground surveying maps. This gap is further pronounced in specific regional 

contexts, such as Saudi Arabia, and in the accuracy of historical imagery provided by GE. Current studies have not 

sufficiently addressed the discrepancies and geo-registration errors that may impact the precision and reliability of GE 

for high-accuracy tasks.  

The proposed approach to fill this gap involves conducting a detailed comparative analysis between GE coordinates 

and those obtained from traditional ground surveying methods using the Wilcoxon rank statistical test and other 

quantitative methods. By assessing the coordinate discrepancies and spatial variations, this study aims to provide a 

rigorous evaluation of GE's geospatial accuracy, thereby enhancing its reliability and applicability for academic and 

professional use. For the first time, this study represents an investigation into assessing geospatial accuracy in mapping 

applications, specifically focusing on Google Earth, conducted in Saudi Arabia. Furthermore, it uniquely integrates both 

quantitative and qualitative analyses, employing methods such as the Wilcoxon signed-rank test, which have been 

largely absent in previous research. This approach will not only validate GE's accuracy but also offer targeted corrections 

to improve data precision, ultimately optimizing mapping practices and fully exploiting the potential of this underutilized 

digital resource. In brief, the findings of this study provide valuable insights into the positioning accuracy of Google 

Maps within the context of Saudi Arabia, contributing significantly to the current research community. Figure 1 shows 

the structural diagram of the article. 
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Figure 1. Structural Diagram of the Article 

2. Research Methodology 

2.1. Study Area 

The study area was at Al-Kharj Province, Saudi Arabia, at Prince Sattam Bin Abdulaziz University (PSAU). Al-
Kharj is located in the central region of Saudi Arabia, southeast of the capital, Riyadh, approximately 77 kilometers 
(approximately 48 miles) away. Figure 2 depicts a map of Al-Kharj city and the study area. Al-Kharj falls within the 

Universal Transverse Mercator (UTM) Zone 38 under the World Geodetic System 1984 (WGS 1984) ellipsoid. The 
campus is geographically located between longitudes 47o 16’ 00” E – 47o 17’ 00” E and latitudes 24o 08’ 30” N – 24o 
09’ 30” N. The campus area is approximately 960,000 sq meters at a level terrain. Thirty-six buildings were selected 
from various locations across the campus, featuring a variety of shapes, such as squares, rectangles, triangles, and 
pentagons, as shown in Figure 3. These location spots were divided into four zones, namely, Zone 1, Zone 2, Zone 3, 
and Zone 4, which represent the southern, mid-southern, mid-northern, and northern campus locations, respectively. 

 

Figure 2. Map of the city of AL-Kharj and study area, Saudi Arabia 



Civil Engineering Journal         Vol. 10, No. 08, August, 2024 

2619 

 

 

Figure 3. Aerial photography of the study area 

2.2. Data Collection 

The datasets were collected by extracting a total of 144 geospatial points from GE. These points were accurately 
positioned and meticulously selected across the study area. In parallel, a comparable set of points was derived from as-
built drawing (ABD) that meticulously documented the horizontal coordinates (east and north) of these locations. The 
source of the ABD was the Operation and Maintenance Department at PSAU, ensuring the reliability and institutional 
overseen of spatial data for the analysis conducted in this study. However, this study aimed to delineate a systematic 
approach to evaluating the discrepancies in station coordinates (east, E; north, N) obtained from two distinct data 

sources: GE and ABD. The extracted data were initially obtained from station coordinates (E, N) from both sources. 
The primary objective was to calculate the differences between the coordinates from these sources, thereby quantifying 
any discrepancies in spatial data representation via Wilcoxon tests. Then, the differences between these station 
coordinates were used to calculate the vector length errors (VLEs). Furthermore, the length of polygons’ sides, 
representing segments of interest within the study area, were calculated using data from both sources. These calculated 
lengths were then subjected to a comparative analysis, aiming to quantify the variability and consistency across the two 

datasets. Besides, descriptive statistics were deployed to determine the differences between the East (E) and North (N) 
coordinates. This step involved summarizing the data through measures of central tendency, dispersion, and distribution 
shape, thereby providing a comprehensive overview of the spatial discrepancies encountered. Figure 4 depicts the 
methodology flowchart. 

 

Figure 4. Methodology flowchart 
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2.3. Analytical Methods 

2.3.1. Wilcoxon Signed-Rank Test 

The Wilcoxon signed ranks test is a nonparametric test procedure for analyzing matched‐pair data based on 

differences. The signed ranks test is more conservative than the more familiar t-test [53]. Moreover, the application of 

the Wilcoxon signed-rank test across various data types and its robustness under nonnormal conditions make it a 

preferred choice in many geospatial studies. For example, Elwood et al. [54] utilized the Wilcoxon signed-rank test to 

compare GIS-based measurements with traditional surveying methods and reported similar patterns of significant 

coordinate differences but consistent distance measurements. This consistency across different studies underscores the 

reliability of the Wilcoxon signed-rank test in handling geospatial data, particularly when normality assumptions are 

violated. The Wilcoxon signed ranks test was used to examine the relationship between each coordinate pair (i.e., ∆E 

and ∆N). The tested hypotheses are as follows: 

Null hypothesis: There are no significant differences between the coordinates obtained from the GE and the 

coordinates obtained from the ABD. 

Alternative hypothesis: There are significant differences between the coordinates obtained from the GE and the 

coordinates obtained from the ABD. 

The test procedure is as follows: For this study, the sample size (i.e., N) is 144, and there are a total of 2N data 

points𝑥1,𝑖  𝑎𝑛𝑑 𝑥2,𝑖  , 𝑖 → 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟 𝑛𝑢𝑚𝑏𝑒𝑟.  

a) For each i, |𝑥1,𝑖 − 𝑥2,𝑖| and the sign of the difference are calculated. 

b) The pairs with |𝑥1,𝑖 − 𝑥2,𝑖| = 0 are excluded, and the remaining pairs 𝑁𝑟 are ordered in ascending order. 

c) Ranked Paris 𝑅𝑖 is calculated by ranking the pairs starting with the pair with the smallest nonzero absolute difference 

as 1. The ties received a rank equal to the average of the ranks they span. 

d) The sum of the ranks for positive and negative differences is computed. The smallest value is used for the test statistic 

(W), which is compared with the critical value (Wcritical) from the Wilcoxon Table. 

2.3.2. Quantitative Analysis 

The differences in coordinates between reference points on the ABD and their corresponding points on the GE were 

employed as a primary metric. This involved subtracting the coordinates of points on the ABD from those of the 

corresponding coordinate points in the GE. The differences in eastings and northings are given as follows: 

∆𝐸 = 𝐸𝐴𝐵𝐷 − 𝐸𝐺𝐸   (1) 

∆𝑁 = 𝑁𝐴𝐵𝐷 − 𝑁𝐺𝐸  (2) 

where ∆𝐸 is Differences in Eastings, 𝐸𝐴𝐵𝐷 is East selected points on the ABD, 𝐸𝐺𝐸  is North selected points on the GE, 

∆𝑁 is Differences in Northings, 𝑁𝐴𝐵𝐷  is East selected points on the ABD, 𝑁𝐺𝐸 is North selected points on the GE. 

The VLE is defined as the distance between two pairs of coordinates from two different datasets (GE and ABD) 

(Figure 5) and can be calculated via the following formula: 

𝑉𝐿𝐸 = √∆𝐸2 + ∆𝑁2  (3) 

 

Figure 5. Illustration of the vertical length error/shift between a point on the reference ABD and the corresponding position 

on the GE 
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This methodological framework underpins this study's analytical rigor, ensuring a thorough and systematic 

examination of spatial data discrepancies between GEs and ABDs. This approach aims to offer insights into the precision 

and reliability of spatial data derived from different sources, contributing valuable knowledge to the field of geospatial 

analysis. 

3. Results and Discussion 

3.1. Statistical Tests 

In the analysis of the datasets comprising paired observations from 144 geospatial points, the Wilcoxon signed-rank 

test [55] was selected as the statistical analysis tool because this test has the ability to effectively handle paired samples 

without presupposing a normal distribution of the data differences [53]. A preliminary examination of the dataset 

suggested deviations from normality, thereby underscoring the appropriateness of a nonparametric approach. The 

Wilcoxon signed-rank test, known for its applicability across various data types and its robustness in situations where 

the normality assumption is violated, offers an optimal methodological fit [53]. The Wilcoxon signed-rank test was 

conducted to compare GE coordinates and ABD coordinates. For the eastern points, W= 0.0 and a p-value of 2.23×10−25 

indicate a statistically significant difference between the paired variables. For the North points, the test statistic was 

W=359.0, and the p-value was approximately 3.19×10−22. This extremely low p- value indicates a statistically significant 

difference between the paired observations of the North points. The Wilcoxon signed-rank test was then applied to the 

length of the polygon side from GE, and ABD yielded a test statistic of W=4625.0 and a p-value of approximately 0.235. 

This p-value was greater than the typical significance level of 0.05, indicating that there was no significant difference 

in the median values of the estimated distances between the GE- and ABD-measured distances. 

The paradigm of geospatial data collection is evolving from being data-sparse to data-rich. In the past, capturing 

geospatial data required technically demanding, highly accurate, expensive, and complex devices, often making the 

measurement process an art in itself. However, the current scenario shows a significant shift, where geospatial data 

acquisition has become a commonplace activity integrated into everyday devices such as smartphones, which are widely 

used [56, 57]. These modern devices can capture environmental geospatial information with remarkable geometric 

accuracy, temporal resolution, and thematic detail. Additionally, they are compact, user friendly, and capable of 

collecting data, sometimes even without conscious effort [58]. Similarly, Goodchild & Li [59] highlighted notable 

discrepancies in geospatial data arising from variations in data collection methods, sensor accuracies, and processing 

techniques. Li et al. [60] supported these observations, indicating that different data sources could lead to considerable 

differences in spatial data accuracy. Moreover, the impact of these discrepancies on spatial analysis necessitates a 

thorough examination of data source characteristics to ensure accuracy. This notion is further corroborated by recent 

research, including a study by West Meiers et al. [61], which noted significant differences in urban density over time 

when using satellite imagery for geospatial impact assessments. Advances in geospatial artificial intelligence (GeoAI), 

as discussed by Li & Hsu [62], have also underscored the capacity of AI to detect subtle discrepancies in geospatial 

data, enhancing the precision of spatial analytics. Despite significant differences in the coordinate data, consistency in 

the distance measurements between points was maintained. This finding supports earlier research by Fisher and Tate 

[63], which suggested that discrepancies in positional data do not necessarily translate into differences in measured 

distances. This stability, as demonstrated in further studies [62, 64], is vital for applications requiring accurate distance 

estimations, such as in urban planning and infrastructure development, where GeoAI techniques can enhance data 

integration and maintain measurement consistency despite positional variances. It has also been reported that positional 

accuracy and referencing can vary widely [65]. This range includes highly precise coordinates, relative positions, and 

information that either lacks geometric reference altogether or is only implicitly identified through location names [56]. 

In this manner, it becomes feasible to utilize big data across a broad spectrum of practical applications. Achieving this 

would necessitate an enhanced database structure and, specifically, a highly adaptable spatial statistical analysis process. 

3.2. Changes in Coordinates 

The change in Easting coordinates between the GE and ABD datasets across four campus zones provides several 

critical insights. Figure 6 illustrates the displacement changes in Easting coordinates between the GE and ABD datasets 

across four campus zones. In zone 1 (south), there are eight points with minimal displacement, ranging from a maximum 

of 23.66 meters to a minimum of 22.90 meters, with an average displacement of 23.32 meters. Zone 2 (mid-south) 

includes 109 points and shows a displacement range from a maximum of 36.45 meters to a minimum of 25.10 meters, 

averaging 29.15 meters. The displacement values in zones 3 (mid-north) and 4 (north) exhibit a pronounced upward 

trend, indicating significant and increasing discrepancies. Zone 3 has 14 points with displacements ranging from a 

maximum of 48.03 meters to a minimum of 45.31 meters, with a mean of 46.67 meters. Zone 4 has 13 points with 

displacements ranging from a maximum of 61.17 meters to a minimum of 57.93 meters, with a mean of 59.15 meters. 

This trend in the northern areas of the campus is likely due to distortion at the edge of UTM Zone 38 [66]. In summary, 

while the southern zones maintain minimal displacement, the mid-north and northern zones show greater and greater 

discrepancies in Easting coordinates. Similarly, these findings are consistent with previous research highlighting the 

challenges of positional accuracy in geospatial data, particularly at the edges of UTM zones. For instance, Li et al. [64] 

emphasized the increased positional errors in satellite imagery near the boundaries of UTM zones. This boundary effect 
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can exacerbate coordinate distortions, as seen in our analysis of the northern zones. Similarly, the growing accessibility 

of land-use information derived from satellite imagery has significantly enhanced researchers' ability to model land-use 

at the microlevel [67]. Numerous studies utilize early satellite data to model land-use, particularly in developing regions 

where alternative data sources are scarce. These models explore various land-use issues, including agricultural trends 

[68], climate change impacts [69], wildlife habitat loss [70], deforestation [71], and ecosystem services [72]. The advent 

of recent satellite-based land-use datasets, such as raster datasets, which offer high-resolution contiguous spatial 

coverage across extensive areas, prolonged temporal coverage, and specific land cover classifications (e.g., rye or winter 

wheat), is opening up new avenues for future research [73]. 

 

Figure 6. The displacement changes in Easting coordinates across four campus zones by location 

The variation in Northing coordinates is influenced by the location of points on the PSAU campus, whether they are 

situated to the east or west. Figure 7 presents the distribution of data points on both sides of the campus. On the east 

side, Zone 1 includes 8 points, Zone 2 encompasses 100 points, and Zone 3 contains 7 points, totaling 115 points. In 

contrast, on the west side, Zone 2 has 9 points, Zone 3 has 7 points, and Zone 4 has 13 points, resulting in a total of 29 

points. The data revealed that the displacement change in the Northing coordinates tends to increase when moving 

eastward, whereas it decreases when moving westward. This pattern highlights the spatial discrepancies and the varying 

impact of location on the dataset's accuracy. Similarly, research has identified significant spatial discrepancies among 

various cropland datasets, largely due to the high omission rates of croplands in Africa, particularly in Tanzania, Kenya, 

and Somalia [74]. A comparison of three datasets revealed substantial disagreement (43%) in mapping vegetation types 

such as forest, shrubland, grassland, and cropland in mountainous mining regions and the Sahel zone in Africa [75]. 

Despite these findings, there is limited research investigating the underlying causes of these discrepancies, particularly 

in the mapping of African croplands [76]. 

 

Figure 7. The displacement changes in Northing coordinates across four campus zones by location 
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In Zone 1 (east), there are eight points with displacements ranging from a maximum of -13.78 meters to a minimum 

of -7.72 meters, with an average displacement of -10.64 meters. Zone 2 (east) includes 100 points and shows a 

displacement range from a maximum of -12.30 meters to a minimum of -18.53 meters, averaging -15.79 meters. Zone 

2 (west) includes 9 points and shows a displacement range from a maximum of 6.63 meters to a minimum of 1.59 meters, 

averaging 3.92 meters. Zone 3 (east) has 7 points with displacements ranging from a maximum of -8.62 meters to a 

minimum of -12.13 meters, with a mean displacement of -10.48 meters. Zone 3 (west) also has 7 points with 

displacements ranging from a maximum of -1.47 meters to a minimum of -4.64 meters, with a mean displacement of -

2.90 meters. Zone 4 has 13 points with displacements ranging from a maximum of 13.99 meters to a minimum of 0.83 

meters, with a mean displacement of 7.14 meters. Similarly, the observed skewness in a specific direction, which 

strongly suggests the presence of a systematic error, needs to be considered when utilizing imagery [7]. Nonetheless, 

GE continues to offer significant benefits due to its user-friendliness and contextual awareness, and additional research 

in other areas is necessary to ascertain whether this skewness is a widespread issue with GE imagery. 

The analysis of displacement changes in Easting and Northing coordinates between the GE and ABD datasets 

across four zones revealed significant shifts in the coordinates. Figure 6 shows an example of coordinate shifting. The 

UTM coordinate system divides the globe into sixty north-south zones, each spanning 6 degrees of longitude. UTM 

Zone 38 [66] covers the area between longitudes 42°E and 48°E. The campus is located at the edge of this zone, 

specifically between 47° 16' 00" E and 47° 17' 00" E, which exacerbates coordinate distortions. These findings are 

consistent with previous studies that investigated the impact of geographical positioning on geospatial data accuracy. 

For instance, Elwood et al. [54] reported that areas near the edges of UTM zones or other coordinate system boundaries 

often suffer from higher positional inaccuracies. This phenomenon is primarily due to the inheren t distortion effects 

of the map projection systems used in these zones. In addition, recent advancements in geospatial technologies and 

methodologies have highlighted the need for precise calibration and validation of geospatial data in complex 

environments.  

Meiers et al. [61] emphasized that accurate geospatial analysis requires careful consideration of positional errors and 

targeted corrections, especially in regions prone to high distortion levels. It has been reported that numerous projects 

have focused on land cover dynamics, particularly in map comparisons for change detection analysis. Research indicates 

that even minor location errors can significantly impact the accuracy of change detection [77], necessitating precise 

registration to ensure that the error rate remains below 10% [78]. Moreover, the heterogeneity of land cover influences 

the effect of positional error; more fragmented land cover maps exacerbate change detection errors due to positional 

inaccuracies [79]. To mitigate the impact of positional errors on change detection accuracy, aggregation-based or object-

based methods have been proposed [80, 81]. 

3.3. Magnitude of the VLE 

Figure 8 displays vector length errors across four distinct zones, represented by different colors, and plotted against 

coordinate numbers on the x-axis. In Zone 1 (south), the error magnitude is minimal and consistent, with an average of 

25.7 meters, a maximum of 27.2 meters, and a minimum of 24.2 meters. Zone 2 (mid-south) exhibited periodic 

fluctuations, with an average error of 32.9 meters, a maximum of 36.8 meters, and a minimum of 26.2 meters. Zones 3 

(mid-north) and 4 (north) show a pronounced upward trend in error magnitude. Zone 3 has an average error of 48.6 

meters, with a maximum of 52.5 meters and a minimum of 45.4 meters. Zone 4 displays the highest error values, with 

an average of 59.3 meters, a maximum of 61.2 meters, and a minimum of 58.1 meters. These increasing discrepancies 

are likely due to the positioning of the campus at the edge of UTM Zone 38, which can cause coordinate distortions. In 

general, while the southern zones maintain minimal length errors, the northern zones experience greater and greater 

discrepancies. This emphasizes the need for targeted corrections in these areas to enhance data accuracy. In GIS data, 

accuracy refers to how closely the data represent the true value of the measured entity, while precision indicates the 

exactness of the data description [82].  

Errors can arise from various sources, such as outdated data, measurement inaccuracies, and improper data handling 

[83]. Precision without accuracy can lead to systematic errors, requiring adjustments to align data with real-world 

conditions [84]. In climate studies, such as those conducted in Ghana, discrepancies between different agro-ecological 

zones highlight the challenges in maintaining data accuracy across diverse geographical areas [85]. The analysis of GE 

imagery indicates that the most recent data from 2018 exhibit the highest accuracy, whereas the data from 2000 show 

the least accuracy [7]. This trend underscores a consistent improvement in the precision and dependability of satellite 

imagery, which underpins the data utilized by GE. Ensuring high data accuracy involves several quality assurances 

processes, such as validation checks, data cleansing, and regular audits, to maintain the integrity and reliability of the 

data throughout its lifecycle. Addressing these aspects helps minimize errors and improve the overall quality of the data 

used for decision-making and analysis [86]. 
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Figure 8. Vector length error magnitude by location 

Figure 9 depicts a comparative analysis of spatial data derived from ABD, GE, and VLE, each distinguished by color 

coding in red, black, and blue, respectively. The figures, comprising mainly quadrilaterals and triangles, are annotated 

with numerical values, which likely indicate measurements pertinent to geometric assessments or discrepancies between 

the different data sources. 

 

Figure 9. Example of coordinate shifting and VLE 

In scientific and engineering contexts, ABDs are crucial for capturing the exact specifications of a constructed 

environment, while GEs provide geospatial data from a global perspective, which may be less precise due to satellite 

imaging limitations. The VLE possibly quantifies the deviations or inaccuracies between the ABD and the GE data, 

providing insights into the reliability and accuracy of remote sensing data compared to ground-truth architectural 

documents. 
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In brief, ABCs provide a reliable baseline for verifying spatial data, ensuring that construction aligns with design 

specifications [87]. VLEs, arising from instrument precision and human error, can distort spatial relationships, 

necessitating mitigation strategies [88]. GE offers accessible geospatial data, although its precision varies, making it 

useful for preliminary assessments but requiring careful consideration of its limitations [4]. Integrating GE with accurate 

ABCs and addressing VLEs enhances the reliability of geospatial analyses. 

Figure 9 serves as a critical tool for visualizing and quantifying the spatial discrepancies that often arise in remote 

sensing applications, urban planning, and civil engineering. The numerical labels on each edge could represent the 

magnitude of vector discrepancies, which are essential for error analysis and correction in precision-dependent projects. 

By mapping these errors, researchers and practitioners can identify inconsistency patterns and apply corrective measures 

to enhance data reliability and application accuracy. Moreover, the structured presentation of these data through clear, 

color-coded distinctions facilitates an intuitive understanding of complex relationships and variations across the datasets, 

aiding in more accurate interpretations and decisions in project management and planning. Overall, this approach is 

indicative of a sophisticated analysis aimed at enhancing the accuracy and utility of spatial data in practical applications, 

reflecting a deep integration of theoretical knowledge and practical execution in GIS and construction management. 

4. Conclusions 

This study embarked on an incisive evaluation of geospatial accuracy within Google Earth (GE), a cornerstone tool 

for those requiring precise navigational and mapping capabilities. Our findings underscore the robust potential of GE in 

both academic and professional domains, confirming its reliability and precision. The research presented herein not only 

offers significant insights into the optimization of mapping practices but also underscores the strategic application of 

GE in future geospatial endeavors. This comparative analysis, which juxtaposes Google Earth's coordinates with actual 

on-ground measurements, serves as a pivotal step toward augmenting the tool's practical utility and securing its sustained 

prominence in the evolving digital mapping arena. The key findings of this study include the following: 

• The adoption of the Wilcoxon signed-rank test, chosen for its versatility across varied data types and its robustness 

to non-normal distributions, proved to be an optimal fit for our methodological framework. This test highlighted 

statistically significant discrepancies between GE coordinates and actual surveyed data (ABD coordinates), 

notably with a Wilcoxon W-value of 0.0 and a p-value of 2.23×10−25 for East coordinates and a W-value of 359.0 

with a p-value of approximately 3.19×10−22 for North coordinates. 

• A regional analysis revealed varying degrees of coordinate displacement: southern zones exhibited minimal 

discrepancies, whereas northern zones showed significant divergence, particularly in the eastward measurements. 

This spatial variability underscores the necessity for region-specific adjustments to enhance the accuracy of GEs. 

• This study further demonstrated the indispensable role of as-built drawings (ABDs) in capturing precise 

specifications of the built environment. Conversely, GE's global geospatial data, derived from satellite imaging, 

often lack the same level of precision, highlighting a critical area for improvement. 

Furthermore, it is found that by synthesizing these insights, this research not only advances the precision and utility 

of spatial data in practical applications but also integrates theoretical knowledge with empirical analysis in the realms 

of GIS and construction management. This confluence sets a new benchmark for meticulousness and application in 

geospatial research, paving the way for future studies aimed at further refining the accuracy of digital mapping tools. It 

is also revealed that by elucidating the limitations in Google Maps' positioning accuracy, this study underscores potential 

usability issues and offers a foundation for future technological enhancements, thereby advancing the discourse in 

geospatial accuracy research. 

Based on the key findings of this study, it is recommended that scholars investigate alternative mapping technologies 

and evaluate their accuracy across various regions of Saudi Arabia. Furthermore, an in-depth examination of the impact 

of environmental factors on the positioning accuracy of diverse mapping services could provide significant insights into 

optimizing geospatial data reliability. 
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