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Abstract 

Multicellular thin-walled tubes are widely used due to their lightweight, economical design, and superior shear and 

torsional performance. Their design is sometimes governed by the available materials and the required dimensions. The 

current study uses advanced sensitivity analysis with meta-modeling tools to understand how different geometric and 

mechanical factors affect the torsional performance of multicellular thin-walled tubes. The geometric factors include the 

length, thickness, and width of the beams, while the mechanical properties involve the shear modulus. Variance-based 

sensitivity analysis is used to assess how variations in these factors impact the rate of twist, torsional stiffness, and shear 

stress. The interconnected relations between input parameters are exploited for optimal design and superior performance. 

The results revealed that for a three-celled tube, thick horizontal interior elements with thin deep vertical elements and thin 

exterior elements provide an optimal design when the cross-sectional area is constrained. This finding, combined with 

varying the geometrical and material properties, results in an optimal design using CFRP composites when constrained by 

minimizing the total weight and superior torsional performance. The analysis can be extended to include other constraint(s), 

but changing the design constraints might change the optimal design. 
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1. Introduction 

Multicellular thin-walled tubes, either open- or closed-sections, have been in use in structural applications for a long 

time. Their lightweight, economical design and superior performance in terms of reduced shear stresses make them 

attractive options as compared to their solid counterparts [1, 2]. The torsional properties of such structural members 

have been studied extensively since the 1980’s. Numerous amounts of work have been done on analytical and numerical 

solutions of such structures under torsion (i.e., solving this statically indeterminate problem to obtain the distribution of 

shear stresses and deformations) [3-5]. 

The theory behind such structures has been derived for prismatic members with circular and non-circular cross-

sections by the method of mechanics of materials and solved by the elastic-membrane analogy [6]. A solution to such a 

problem has been obtained by various approaches [7–14]. However, the elastic membrane analogy method cannot be 

applied to cross-sections with composite materials (i.e., multiple materials used in fabrication of the cross-section 

resulting from optimization analysis). These composite cross-sections have been used due to their additional reduction 

in weight and increase in stiffness as compared to their homogenous counterparts [15]. They have been modeled and 

solved through various approaches in the previous studies [16–23] and implemented on various applications (e.g., wind 

turbine blades, airplane wings, structural bridge girders, power transmission poles) [24–27]. 
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In order to optimize the performance of cross-sections with composite materials, these structures need to be analyzed 

and their shear stress distributions and deformations need to be assessed to obtain optimized designs. The effect of 

elements’ thicknesses, widths, and material properties affects the overall torsional performance of the cross-section [2]. 

Thus, the sensitivity of these parameters needs to be evaluated to obtain an understanding of their effects. Extensive 

research effort has been devoted to deal with such problems [28–33], but neither has implemented these sensitivity 

studies through advanced sensitivity tools (e.g., Sobol’s analysis with meta-modeling tools, such as Low-Rank Tensor 

Approximation) to assess the importance of each design parameter (i.e., input variable). Additionally, compared to 

traditional uniform structures, some researchers have incorporated graded properties, which have been shown to improve 

the energy-absorbing performance of thin-walled structures with various cross-sectional shapes [34, 35]. For example, 

beams with rectangular cross-sections have been optimized to create lightweight designs for real automobile structures 

while maintaining torsional stiffness [36]. Sensitivity analysis of rectangular tube cross-sections has also been used to 

inform the design of automobile frames [37]. Thin-walled beams (TWBs), typically formed by welding metal sheets, 

are crucial components of automobile frames and often have more complex cross-sectional shapes. Most research efforts 

have focused on simple forms like circular, rectangular, triangular, and basic cell shapes, with less attention given to 

optimizing more complex cross-sections for lightweight automobile frame designs. Moreover, these studies focused 

specifically on automobile applications; thus, the need for a generalized application and optimization process emerges. 

The current study focuses on employing sensitivity tools on torsionally-loaded multicellular thin-walled cross-

sections to obtain the relative importance of each parameter in the cross-section to the torsional performance of the 

whole structure. Key examples and applications are implemented to test the results of the sensitivity study and obtain 

optimized design recommendations. The results of the optimization process are compared with actual structural 

members used in real applications. 

2. Theoretical Derivation of Torsional Properties 

Gere & Goodno [1] presented the derivation of shear stresses in single-cell thin-walled isotropic tubes subjected to 

an external torque (𝑇) as shown in Equation 1: 

𝜏 =
𝑇

2Ω𝑡

     𝑞=𝜏𝑡     
→      𝑞 =

𝑇

2Ω
  (1) 

where, 𝜏 is the shear stress, 𝑇 is the torsional moment, Ω is the total area inside the centerline of the tube wall, 𝑡 is the 

thickness of the tube wall, and 𝑞 is the shear flow in the tube wall. Furthermore, the rate of twist (i.e., the angle of twist 

per unit length) of the member can be obtained by using Equation 2. Note that in Equation 2, the integral over the arc 

length can be approximated as a summation over multiple straight segments. 

𝜃 =
𝑞

2Ω𝐺
∮(

d𝑠

𝑡
) → 𝜃 =

𝑇

4Ω2𝐺
∮ (

d𝑠

𝑡
)  (2) 

where, 𝜃 is the rate of twist (𝜃 = 𝜙/𝐿), 𝐿 is the member’s length, 𝜙 is the angle of twist (𝜙 = 𝑇𝐿/𝐺𝐽), 𝐺 is the shear 

modulus, 𝐽 is the polar moment of inertia, and 𝑠 is the arc length. From definition of the rate of twist and torsional 

stiffness (𝐺𝐽/𝐿), the polar moment of inertia (𝐽) can be obtained using Equation 3:  

𝜃 =
𝑇

𝐺𝐽
→ 𝐽 =

4Ω2

∮(
d𝑠

𝑡
)
  (3) 

For multi-cellular thin-walled tubes, the general concept can be extended to obtain shear stresses and torsional 

stiffness. Oden & Ripperger [2] extended Equation 1 to get the equilibrium equation of a multi-cellular thin-walled tube 

under torsional moment as shown in Equation 4:  

𝑇 = 2∑ 𝑞𝑗Ω𝑗
𝑁
𝑗=1   (4) 

where, 𝑞𝑗 is the shear flow in the jth cell, Ω𝑗 is the area enclosed by the centerline of the tube wall of the jth cell, 𝑁 is the 

number of cells. As shown in Figure 1, a three-celled section (i.e., i, j, and k) is used to illustrate the procedure for 

determining the shear stresses and the torsional stiffness of a three-cell thin-walled tube. Assuming that cell j is the only 

effective cell in the section and with using Equation 2, Equation 5 is obtained for the rate of twist of cell j. However, the 

assumption is based on the ith and kth cells having no shear flow. This assumption can be corrected by including the 

effect of the ith and kth cells, which results in Equation 6. Note that the shear flows are assumed to be positive in the 

counterclockwise direction for each of the cells (see Figure 1) and this results in the negative signs for the ith and kth cells 

in Equation 6: 

𝜃𝑗 =
𝑞𝑗

2𝐺𝑗Ω𝑗
∮ (

d𝑠

𝑡
)

𝑠𝑗
  (5) 

where, 𝜃𝑗 is the rate of twist of the jth cell, 𝑞𝑗 is the shear flow in the jth cell, 𝐺𝑗 is the shear modulus of the jth cell, Ω𝑗 is 

the total area inside the centerline of the tube wall of the jth cell, and 𝑠𝑗 is the arc length of the jth cell. 
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𝜃𝑗 =
1

2𝐺𝑗Ω𝑗
(𝑞𝑗 ∮

d𝑠

𝑡𝑠𝑗
− 𝑞𝑖 ∫

d𝑠

𝑡𝑠𝑗𝑖
− 𝑞𝑘 ∫

d𝑠

𝑡𝑠𝑗𝑘
)  (6) 

where, 𝑞𝑖, 𝑞𝑗, and 𝑞𝑘 are the shear flows in the ith, jth, and kth cells, respectively, 𝑠𝑗 is the arc length of the jth cell, 𝑠𝑗𝑖  is 

the mutual arc length between the jth and ith cells, and 𝑠𝑗𝑘 is the mutual arc length between the jth and kth cells. Recalling 

that each of the cells does not distort in its own plane, but rather the whole cross section, and consequently each of the 

cells, rotate by the same rate of twist (𝜃𝑖 = 𝜃𝑗 = 𝜃𝑘 = 𝜃) [2]. 

 

Figure 1. Multi-cellular tube in torsion (adapted from Oden & Ripperger [2]) 

Equation 7 is obtained for the case of the jth cell being bounded by a total number of cells equal to m rather than two 

cells (i.e., i and k). This equation represents a set of equations called “equations of consistent deformation”. Note that 

the shear modulus is included inside the integral in case it is variable over the cross section. 

𝜃 =
1

2Ω𝑗
(𝑞𝑗 ∮

d𝑠

𝐺𝑡𝑠𝑗
− ∑ (𝑞𝑟 ∫

d𝑠

𝐺𝑡𝑠𝑗𝑟
)𝑚

𝑟=1 )  (7) 

where, 𝑚 is the number of cells having boundaries with the jth cell. With some algebraic manipulation, the equation of 

consistent deformation for the jth cell is shown in Equation 8. The shear flow in each cell can be obtained by solving m-

equations with m-unknowns simultaneously, this will calculate the shear flows in terms of the rate of twist of the whole 

cross section. Furthermore, by using Equation 4 (i.e., the equilibrium equation), the rate of twist, and consequently, the 

shear flows are determined. Then the shear stresses can be simply determined by multiplying the shear flows by the 

corresponding wall thicknesses. 

𝛿𝑗𝑖𝑞𝑖 + 𝛿𝑗𝑗𝑞𝑗 + 𝛿𝑗𝑘𝑞𝑘 − 2Ω𝑗𝜃 = 0 (8) 

where; (𝛿𝑗𝑖 = −∫
d𝑠

𝐺𝑡𝑠𝑗𝑖
), (𝛿𝑗𝑗 = ∮

d𝑠

𝐺𝑡𝑠𝑗
), (𝛿𝑗𝑘 = −∫

d𝑠

𝐺𝑡𝑠𝑗𝑘
), where, 𝛿  is the warping flexibilities. Finally, the torsional 

stiffness per unit length (𝐺𝐽) can be obtained by using Equation 9 [2]: 

𝐺𝐽 =
2

𝜃
∑ 𝑞𝑗Ω𝑗
𝑁
𝑗=1   (9) 

Knowing that the torsional stiffness (or the torsional stiffness per unit length) is a cross-sectional and material-based 

property, there must be an alternative procedure to obtain these values without the need to go through the shear flows 

and the rate of twist calculations. Librescu & Song [38] introduced an equation (labelled as Equation 10 in this article) 

in which the cross-sectional stiffness, flexibility, and enclosed areas’ matrices are used to obtain the torsional stiffness 

per unit length (𝐺𝐽) value of the whole cross section. Note that Equation 10 is essentially the same as the above-

mentioned procedure with some algebraic manipulations to rather determine the 𝐺𝐽  value directly from the input 

parameters. It is noteworthy to mention that the previous two procedures can be used for either a composite or a prismatic 

cross section, thus, the 𝐺𝐽 value can be said to be the overall composite stiffness of the cross section. 

𝐺𝐽 = 2Ω𝑇S−1I (10) 

where: 

𝑆𝑗𝑖 =
1

2Ω𝑗
𝛿𝑗𝑖     ,     𝑆𝑗𝑗 =

1

2Ω𝑗
𝛿𝑗𝑗     ,     𝑆𝑗𝑘 =

1

2Ω𝑗
𝛿𝑗𝑘  

𝑆𝑖𝑖 =
1

2Ω𝑖
𝛿𝑖𝑖      ,     𝑆𝑖𝑗 =

1

2Ω𝑖
𝛿𝑖𝑗      ,     𝑆𝑖𝑘 =

1

2Ω𝑖
𝛿𝑖𝑘  

𝑆𝑘𝑖 =
1

2Ω𝑘
𝛿𝑘𝑖   ,     𝑆𝑘𝑗 =

1

2Ω𝑘
𝛿𝑘𝑗  ,     𝑆𝑘𝑘 =

1

2Ω𝑘
𝛿𝑘𝑘  

 

and, 𝐺𝐽 is the torsional stiffness, and 𝑁 is the number of cells, Ω𝑇  is the transpose of the Ω matrix, and I is the unit vector 

with the same order as the number of cells. 
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3. Sensitivity Analysis Theory 

Sensitivity analysis helps in understanding how any change in the studied random input variables can have an 

influence on the output of the model. It can simplify complex problems in the reliability analysis, which includes 

probabilistic modeling [39]. This analysis shows how variations in input parameters affect the model's output variability 

[40] and identifies which variables are most influential. Thus, the input parameters of the model are split into random 

(i.e., most influential) and deterministic (i.e., other less influential) parameters [41, 42]. Additionally, sensitivity analysis 

also offers insights into how different inputs affect the model and measures changes in the output based on these inputs 

[39]. This is useful for optimizing structural designs and performing cost-benefit analyses by highlighting the most 

important variables [43]. 

Sensitivity analysis can be done in two main approaches: local and global [40, 44]. Local methods involve assessing 

the response of the model with changes in the input around a specific point, such as the average values of variables. An 

example of these methods is the first-order second-moments (FOSM) [39, 45]. These methods rely on linear 

approximations and provide sensitivity measures for that specific point. However, they may not capture the full picture. 

While global methods assess the sensitivity among all input variables and their ranges and can account for interactions 

between them [46]. For complex problems with many uncertain parameters, like the current case of study, local methods 

might not be sufficient because they only offer insight at a single point and may miss interactions that affect the overall 

behavior [46]. Therefore, global sensitivity analysis is often more appropriate for a comprehensive understanding and 

thus is the chosen approach for this study. 

The global approach of the sensitivity analysis in its variance-based fashion measures quantitively how the input 

parameters affect the output’s variance [40]. It breaks down the output variance into parts and calculates how much each 

input parameter contributes to it [40]. This method is superior in its comprehensive assessment of the input space with 

its nonlinearity and interactions between its parameters. Sobol’s method and the Fourier Amplitude Sensitivity Test 

(FAST) are among the widely used methods of the variance-based fashion of the sensitivity analysis [40]. FAST handles 

nonlinear relationships but doesn’t account for interactions between parameters [40]. Thus, Sobol's method is used in 

this study for its effectiveness in dealing with complex systems that have significant nonlinearity and interactions [47]. 

3.1. Sobol Decomposition and Sobol’s Sensitivity Indices 

Let X represent the random vector containing the input parameters of the system and 𝐹(X) be the response function 

within the n-dimensional unit cube 𝑘𝑛. This function can be expressed as [47]: 

𝐹(X) = 𝐹0 + ∑ 𝐹𝑖(𝑋𝑖)1≤𝑖≤𝑛 + ∑ 𝐹𝑖𝑗(𝑋𝑖 , 𝑋𝑗) +⋯+ 𝐹1 2…𝑛(𝑋1, … , 𝑋𝑛)1≤𝑖≤𝑗≤𝑛   (11) 

where, X is the input vector having n random parameters,  𝐹𝑜 represents the average value of the response function, 𝐹𝑖 is 

the portion of 𝐹(X) that is influenced by the parameter 𝑋𝑖, and 𝐹𝑖𝑗  shows how the interaction between 𝑋𝑖 and 𝑋𝑗 affects 

𝐹(X). The right side of the equation (known as Sobol's functions) is determined by integrating the response function: 

𝐹𝑜 = ∫ 𝐹(𝑥)𝑑𝑥
𝐾𝑛

  (12) 

𝐹𝑖(𝑋𝑖) = ∫ 𝐹(𝑥~𝑖 , 𝑋𝑖)𝑑𝑥~𝑖𝐾𝑛−1
− 𝐹𝑜  (13) 

𝐹𝑖𝑗(𝑋𝑖 , 𝑋𝑗) = ∫ 𝐹(𝑥~𝑖𝑗 , 𝑋𝑖 , 𝑋𝑗)𝑑𝑥~𝑖𝑗𝐾𝑛−2
− 𝐹𝑖(𝑋𝑖) − 𝐹𝑗(𝑋𝑗) − 𝐹𝑜  (14) 

In this context, 𝑥~𝑖 is a placeholder that shows the variable 𝑥𝑖  is left out of the calculations. The term 

∫ 𝐹(𝑥~𝑖 , 𝑋𝑖)𝑑𝑥~𝑖𝑑𝑥~𝑖𝐾𝑛−1
 represents an integration concerning all variables except 𝑋𝑖.  

Knowing that Sobol's functions are orthogonal, so: 

∫ 𝐹𝑖1,𝑖2,..𝑖𝑠( 𝑋𝑖 , 𝑋𝑗, … 𝑋𝑖𝑠)𝐹𝑗1,𝑗2,..𝑗𝑠( 𝑋𝑗1, 𝑋𝑗2, …𝑋𝑗𝑠)𝑑𝑥 = 0𝐾𝑛
  (15) 

As a result, the total variance 𝐷 of 𝐹(𝑿) can be calculated as: 

𝐷 = 𝑉𝑎𝑟[𝐹(𝑿)] = ∫ 𝐹2(𝑋)𝑑𝑋 − 𝐹0
2

𝑘𝑛
  (16) 

In this case, input parameters are defined within an n-dimensional unit cube 𝑘𝑛. Through performing an integration 

of the square of Equation 11, the variance can be decomposed as: 

𝐷 =   ∑ 𝐷𝑖1≤𝑖≤𝑛 + ∑ 𝐷𝑖𝑗 +⋯+ 𝐷1 2…𝑛1≤𝑖≤𝑗≤𝑛   (17) 

𝐷𝑖 = ∫ 𝐹𝑖
2(𝑋𝑖)𝑑𝑋𝑖𝑘1

  (18) 

𝐷𝑖𝑗 = ∫ 𝐹𝑖𝑗
2(𝑋𝑖 , 𝑋𝑗)𝑑𝑋𝑖𝑑𝑋𝑗𝑘2

  (19) 
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In this context, 𝐷𝑖  represents the partial variance related to the parameter 𝑋𝑖, 𝐷𝑖𝑗  is the partial variance caused by the 

interaction between parameters 𝑋𝑖 and 𝑋𝑗, and 𝐷1 2…𝑛 represents the partial variance caused by the interaction among all 

parameters from 𝑋1 to 𝑋𝑛 . From these, Sobol's sensitivity indices can be calculated as: 

𝑆𝑖 =
𝐷𝑖

𝐷
  (20) 

𝑆𝑖𝑗 =
𝐷𝑖𝑗

𝐷
  (21) 

In this case,  𝑆𝑖  is the first-order sensitivity index, showing how much the output variance changes when only the ith 

parameter is altered. Higher-order sensitivity indices, 𝑆𝑖𝑗 , reflect how interactions between multiple variables affect the 

output variance. Finally, the total Sobol's sensitivity index (𝑆𝑖
𝑇) for a parameter 𝑋𝑖 combines both the first-order and 

higher-order sensitivity indices. 

3.2. Sobol’s Indices Using Low-Rank Tensor Approximation  

Sobol's indices can be determined using Monte Carlo simulation [47], which involves sampling many different 

scenarios considering only one input variable (i.e., other are kept constant) and then estimating the variance uncertainty 

in the model’s output. However, this approach can be costly because it requires a large number of simulations [40]. To 

address this, techniques that involve meta-modeling is employed to reduce computational costs. A meta-model is a 

simplified model that overruns the complex one in its fewer runs, but with similar results [48]. In order to achieve this, 

tools such as the Polynomial Chaos Expansion (PCE) and the Low-Rank Tensor Approximation (LRA) are used [49]. 

According to Konakli & Sudret [48], LRA converges more quickly to the exact solution and is better at predicting 

extreme responses compared to PCE. Therefore, this study will use sensitivity analysis in variance-based fashion 

combined with Low-Rank Tensor Approximation to evaluate how the variability in the input parameters (i.e., the 

geometric parameters and the mechanical properties) affects the overall torsional performance of multicellular thin-

walled tubes. 

In this paper, LRA is employed as the primary meta-modeling tool for sensitivity analysis. LRA is an efficient 

technique for approximating high-dimensional functions by decomposing them into lower-dimensional components. 

This approach significantly reduces the computational cost while maintaining high accuracy. The use of LRA allows 

for capturing non-linear interactions between input parameters, which is crucial for accurate sensitivity analysis. By 

integrating LRA with Sobol’s method, a robust and efficient calculation of Sobol’s indices is achieved, thereby 

enhancing the accuracy and reliability of the sensitivity analysis. The combination of LRA and Sobol’s method ensures 

that the sensitivity indices reflect the real importance of each parameter, providing valuable insights for optimizing the 

design of multicellular thin-walled tubes. 

4. Sensitivity Assessment Framework 

The proposed sensitivity and optimization framework consists of two connected parts. Module I focused on assessing 

how different input parameters impact the structural behavior of multicellular thin-walled tubes. While Module II is 

tasked with finding the best shape (i.e., dimensions) for the structure. Module I begins by defining the statistical 

characteristics of the input variables, which include both geometric and mechanical parameters. Then, it performs a 

sensitivity analysis to pinpoint which parameters most significantly affect the multicellular thin-walled tube’s 

performance and to explore how these parameters interact with each other.  

In Module II, an optimization analysis was carried out with an emphasis on the sensitivity analysis results, the 

primary objective of this optimization analysis is to further enhance the overall torsional performance of 

multicellular thin-walled tubes through minimizing the rate of twist, improving the torsional stiffness, and limiting 

the shear stress (or shear flow). The non-dominated sorting genetic algorithm (NSGA-II) is utilized in this study to 

identify the best shape design. The optimization approach is then expanded to take into account the shape of the 

structure as well as material attributes. The input parameters (i.e., the width and thickness of each element) are 

optimized for several materials with an objective function to obtain the minimum mass of the structure that met 

some specific constraints related to the torsional performance of multicellular thin-walled tubes. Figure 2 shows a 

layout of the proposed framework. Moreover Figure 3 shows a flowchart identifying the process of the 

methodology. 
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Figure 2. A schematic representation of the sensitivity analysis concept 

 

Figure 3. A flowchart of the sensitivity methodology 

5. Analysis and Discussion 

A sensitivity analysis is conducted using the Sobol method in combination with the LRA approximation tensor to 

identify crucial parameters that significantly impact the torsional performance of multicellular thin-walled tubes. The 

analysis conducted in this research focuses on tubes with three cells; the details of the thin-walled tube are shown in 

Figure 4, and it takes into account geometric parameters (such as beam length, thickness, and width) and mechanical 

properties (e.g., shear modulus) as input variables. The analysis and the obtained results can be extended to two or 

multicellular tubes (i.e., other than three). The response parameters, which describe the tubes' torsional characteristics, 

are calculated using Equations 4 and 7 to 10. The study evaluates the effects of the selected input variables (i.e., the 

geometric and the mechanical parameters) on the rate of twist, the torsional stiffness, and the maximum shear stress of 

the three-cell thin-walled tube. 
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Figure 4. Elements labelling of the sample thin-walled tube studied 

5.1. Illustrative Example 

The shown example of a three-cell thin-walled tube in Figure 4 is used to investigate the effect of the constituents’ 

variability (i.e., input parameters) on the overall torsional performance. 

5.1.1. Sensitivity Analysis of the Rate of Twist 

Variance-based sensitivity analysis, combined with LRA, is employed to assess the influence of input parameter 

variability on the rate of twist, maximum shear stress, and torsional stiffness. A schematic representation of the 

developed sensitivity analysis concept can be seen in Figure 2. The UQ-Lab MATLAB toolbox is used to compute Sobol 

sensitivity indices for the variables considered [50, 51]. Based on convergence analysis results, 1,000 samples are drawn 

from each variable to obtain accurate Sobol indices using the distribution functions of input parameters presented in 

Table 1. Figures 5 and 6 show the sensitivity analysis results for the rate of twist as the primary output of interest. Figure 

5 displays the total Sobol sensitivity indices for the geometric parameters (i.e., beam length, thickness, and width) and 

mechanical properties (i.e., shear modulus). As shown, the variability in the rate of twist depends heavily on the 

variability of the beam width, which contributes approximately 71% to the total variance. Shear modulus and beam 

thickness follow as the second and third dominant factors, with indices of 15% and 14%, respectively. In contrast, the 

variability in the length of the beam does not appear to contribute to the response variability, as indicated by its low 

sensitivity index of zero. 

Table 1. Distribution functions of input parameters for sensitivity analysis 

Input variable Unit Type of Distribution Reference 

Width (w) mm Normal (Gauss) [52, 53] 

Wall thickness (t) mm Normal (Gauss) [52, 53] 

Length (L) m Normal (Gauss) [52, 53] 

Shear modulus (G) GPa Normal (Gauss) [52, 53] 

 

Figure 5. Sensitivity analysis results for the rate of twist as the primary output 
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a) b) 

 
c) 

Figure 6. Sobol indices for each element and their effects on the variability of the rate of twist; a) the effect of element’s 

width, b) the effect of element’s thickness, and c) the effect of element’s shear modulus 

Sobol indices for each element are then calculated to evaluate their individual effects on the variability of the rate of 

twist as shown in Figure 6. In Figure 6-a, the analysis reveals that the beam width, particularly for vertical elements, 

plays a predominant role in influencing variability in the rate of twist. Among the vertical elements, the interior ones 

(i.e., elements 4 and 7) and, to a lesser degree, the exterior ones (i.e., elements 2 and 10) exhibit a more significant 

impact on the rate of twist variability, indicating that alterations in their width are crucial for torsional performance. In 

contrast, the horizontal elements, both exterior (i.e., elements 1, 3, 8, and 9) and interior (i.e., elements 5 and 6), show a 

lower influence on the rate of twist variability. 

Next, the effect of variability in the thickness of each element on the rate of twist is investigated by calculating the 

Sobol index associated with each element when thicknesses are the only variables. The total Sobol's sensitivity indices 

that represent the effect of the variability in the beam thickness for each element on the rate of twist are computed 

next and shown in Figure 6-b. The analysis shows that certain elements exhibit a higher influence on torsional behavior 

owing to the variation in thickness compared to others. Changes in thickness have a greater impact on the rate of twist 

variability for particular elements, such as the interior horizontal elements (i.e., elements 5 and 6). This indicates that 

these elements are more vulnerable to thickness variations, and altering their thickness can result in significant 

variations in torsional performance. In contrast, other elements, such as elements 4 and 7, have a considerably smaller 

influence on the rate of twist variability when their thickness is changed. This indicates that these elements are less 

vulnerable to thickness variations, therefore alterations to this parameter could not significantly alter the torsional 

behavior. Furthermore, the effect of shear modulus on the rate of twist varies among the elements as illustrated in 

Figure 6-c, with the interior horizontal elements (i.e., elements 5 and 6) demonstrating higher Sobol’s indices 

compared to their counterparts. This implies that these elements are more responsive to changes in shear modulus, 

which could substantially influence the torsional performance. These findings are consistent with the findings 

presented by Li & Easterbrook [11] and by Alhawamdeh et al. [54] and Yoo et al. [10] on the effect of geometric and 

material parameters on the rate of twist of multicellular thin-walled tubes. Moreover, Li & Easterbrook [11] state that 

if the cross-section is constructed using two materials with different shear moduli (i.e., one for the outside elements 

and one for the vertical mutual inside elements, these include elements 4 and 7), the angle of twist decrease with the 

increase in the ratio of the two shear moduli. 
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5.1.2. Sensitivity Analysis of the Maximum Shear Stress 

The analysis in the previous section has been extended to investigate the effect of the stated input parameter 

variability on the maximum shear stress. Figures 7 and 8 display the sensitivity analysis results for maximum shear 

stress as the main output of interest. Figure 7 displays the total Sobol sensitivity indices for the geometric parameters 

(i.e., beam length, thickness, and width) and mechanical properties (i.e., shear modulus). As shown, the variability in 

maximum shear stress depends heavily on the variability of the beam width, which contributes approximately 77% to 

the total variance. The beam thickness is the second dominant quantity, with indices of 22%. In contrast, the variability 

in the length of the beam and the shear modulus does not appear to contribute to the response variability, as indicated 

by its low sensitivity index of approximately zero. 

 

Figure 7. Sensitivity analysis results for the maximum shear stress as the primary output 

Sobol indices for each element are computed to evaluate their individual effects on the variability of maximum shear 

stress, as illustrated in Figure 8. In Figure 8-a, the analysis emphasizes the prominent role of beam width, particularly 

for vertical elements, in influencing the variability of maximum shear stress. Among vertical elements, both interior 

(i.e., elements 4 and 7) and, to a lesser degree, exterior (i.e., elements 2 and 10) ones exhibit a more substantial impact 

on the maximum shear stress variability. This finding suggests that adjusting their width is critical to torsional 

performance. In contrast, horizontal elements, including exterior (i.e., elements 1, 3, 8, and 9) and interior (i.e., elements 

5 and 6), display a lower influence on the maximum shear stress variability. 

  
a) b) 

Figure 8. Sobol indices for each element and their effects on the variability of the maximum shear stress; a) the effect of 

element’s width, b) the effect of element’s thickness 

Next, the effect of thickness variability of each element on maximum shear stress is investigated by calculating the 

associated Sobol index when only thicknesses are considered as variables. As shown in Figure 8-b, the analysis reveals 

that certain elements have a more significant impact on torsional behavior due to thickness changes than others. Similar 
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to the width variability, the vertical interior elements (i.e., elements 4 and 7) demonstrate a more pronounced influence 

on the maximum shear stress variability with thickness alterations. However, the effect of all other elements, except 

elements 5 and 6 which have a lesser effect, have a pronounced effect in reducing the maximum shear stress. This 

observation implies that torsional performance of all elements is sensitive to their thickness changes, and optimizing 

their thicknesses could lead to superior torsional performance. These findings are consistent with the findings presented 

by Li & Easterbrook [11] and by Alhawamdeh et al. [54] and Yoo et al. [10] on the effect of geometric and material 

parameters on the maximum shear stresses in multicellular thin-walled tubes. Moreover, Li & Easterbrook [11] states 

that if the cross-section is constructed using two materials with different shear moduli (i.e., one for the outside elements 

and one for the vertical mutual inside elements, these include elements 4 and 7), the shear stresses in the outside cells 

decrease with the increase in the ratio of the two shear moduli, while the shear stresses in the interior cell increase with 

the ratio of the two shear moduli 

5.1.3. Sensitivity Analysis of the Torsional Stiffness 

The sensitivity of the collective input parameters on torsional stiffness is also investigated by computing their Sobol 

indices. Figure 9 displays the total Sobol sensitivity indices for the geometric parameters (i.e., beam length, thickness, 

and width) and mechanical properties (i.e., shear modulus). As illustrated, the variability in torsional stiffness is heavily 

influenced by the variability of the width of the beam, which contributes approximately 68% to the total variance. Shear 

modulus and beam thickness follow as the second and third dominant factors, with equal indices of 16%. In contrast, 

the variability in the length of the beam does not appear to affect the response variability, as indicated by its negligible 

sensitivity index close to zero. 

 

Figure 9. Sensitivity analysis results for the torsional stiffness as the primary output 

The Sobol indices for each element are then calculated to evaluate their individual effects on the variability of 

torsional stiffness. The analysis highlights the influence of beam width, thickness, and shear stress on torsional stiffness 

across the various elements. Regarding beam width, as shown in Figure 10-a, the analysis reveals that the vertical interior 

elements (i.e., elements 4 and 7) display a greater impact on torsional stiffness variability compared to other elements. 

This suggests that adjusting the width of these specific vertical elements is crucial for optimizing torsional performance. 

Meanwhile, other elements, including horizontal elements (i.e., elements 1, 3, 5, 6, 8, and 9) and exterior vertical 

elements (i.e., elements 2 and 10), exhibit a relatively lower influence on the torsional stiffness variability. 

Next, the effect of thickness variability on torsional stiffness is investigated. The calculated Sobol indices are shown 

in Figure 10-b. The analysis demonstrates that the interior horizontal elements (i.e., elements 5 and 6) have a more 

pronounced influence on torsional stiffness variability due to changes in thickness. This observation is also confirmed 

for the case of shear modulus variability (see Figure 10-c). This indicates that these specific elements are more sensitive 

to thickness and shear modulus changes, and modifying their thickness and shear moduli could lead to noticeable 

differences in torsional performance. Conversely, other elements, such as element 4 and element 7, show a relatively 

smaller impact on torsional stiffness variability when their thickness and shear moduli are altered. In conclusion, the 

torsional stiffness of multicellular thin-walled tubes is influenced by a combination of beam width, thickness, and shear 

modulus. This suggests that adjusting these parameters, particularly for specific vertical and horizontal interior elements, 

could lead to significant improvements in torsional performance. These findings are consistent with the findings 
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presented by Alhawamdeh et al. [54] for optimization of hollow box pultruded FRP profiles and Yoo et al. [10] for 

optimization of thin-walled cellular sections under the effect of geometric and material parameters on the optimized 

torsional stiffness in multicellular thin-walled tubes. Yoo et al. [10] results reveal that the finite element analysis (FEA) 

and the closed-form solution used, match the optimized design suggested herein to achieve maximum torsional stiffness. 

  
a) b) 

 
c) 

Figure 10. Sobol indices for each element and their effects on the variability of torsional stiffness; a) the effect of element’s 

width, b) the effect of element’s thickness, and c) the effect of element’s shear modulus 

5.2. Thin-Walled Tube Optimization for Enhanced Torsional Performance 

The conducted sensitivity analysis is useful for understanding the importance and interactions of various parameters 

affecting the torsional behavior of multicellular thin-walled tubes. It shows how uncertainties in the rate of twist, 

torsional stiffness, and maximum shear stress are influenced by different sources of uncertainties, but it doesn't directly 

measure how changes in one input parameter affect the output. To address this, an optimal shape design for the tubes is 

created using a multi-objective genetic algorithm (MOGA) to enhance torsional resistance. The non-dominated sorting 

genetic algorithm (NSGA-II) is employed in MATLAB to find the best solutions, with the key parameters of the MOGA 

listed in Table 2. For the optimization, the width and thickness of the tube elements are used as input parameters, and 

the process is constrained by a maximum area of 100,000 mm2. The optimization procedure is performed with the goal 

of minimizing rate of twist, maximizing torsional stiffness, and minimizing shear stress. 

Table 2. Main parameters used by MOGA 

Input variable Unit 

Population size 150 

Generation 60 

Pareto fraction 0.4 

Crossover fraction 0.8 

Migration 0.2 

The results of the optimization analysis are depicted in Figure 11, these results reveal helpful guidance for enhancing 

the torsional performance of multicellular thin-walled tubes. Figure 11-a depicts the situation with the rate of twist as 
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the output of interest, Figure 11-b focuses on torsional stiffness, and Figure 11-c investigates maximum shear stress. As 

shown, deeper vertical and thicker horizontal interior elements in the top-performing designs lead to superior torsional 

stiffness, reduce rate of twist, and a lower maximum shear stress, resulting in a superior shear performance overall. 

These findings are consistent with the sensitivity results, emphasizing the significance of precise geometric 

characteristics for reaching optimal tube design for enhanced performance. These findings provide valuable guidance 

for engineers and designers in the development of efficient and high-performance thin-walled tubes for various industrial 

applications. For example, the design of a Clipper C96 wind turbine blade’s cross section is shown in Figure 12 to 

compare it with the optimized design obtained herein (see Figure 11). As can be seen, the overall design consists of a 

thin aerodynamic shell, and thin and long vertical shear webs, and thick horizontal spar caps (note that the vertical shear 

webs and the aerodynamic shell are composed of sandwich structure intended for buckling resistance, but the composite 

material used is thin). Thus, this example illustrates how the design of wind blades is based on optimization tools that 

will produce a lightweight and structurally adequate structure, bearing in mind that the overall design of the wind blade’s 

cross section takes into account multiple design objectives (e.g., bending moments, torsional moments, axial and shear 

forces, and vibration) [55, 56]. 

 

Figure 11. Optimal design configurations for three-cellular thin-walled tube; a) minimizing rate of twist, b) maximizing 

torsional stiffness, and c) minimizing shear stress 

 

Figure 12. Clipper C96 wind turbine blade’s cross section 

The optimization analysis is then extended to consider the material and shape of the structure. The analysis includes 

employing three categories of materials, which are identified in Table 3. The input parameters for the optimization 

process include the width and thickness of each element in the thin-walled structure. The maximum rate of twist, 

minimum torsional stiffness, and maximum shear stress are considered as the constraints utilized in the optimization 

process, and their thresholds are given in Table 4. The objective function attempts to minimize the mass of the structure 

based on the acquired dimensions (i.e., the width and thickness of each element) and the density of the chosen material. 

This procedure is executed for each material listed in Table 3. Subsequently, the optimal design is chosen based on the 

material that results in the minimum mass while satisfying the constraints. Note that shear moduli were calculated to be 

in the range of E/3 to E/2, where E is the Young’s modulus of the material [1]. 
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Table 3. Characteristics for the different materials that were considered in the optimization analysis, including shear 

modulus, elastic modulus, and density (adapted from Ashby [57]) 

Material 
Emin 

(GPa) 

Emax 

(GPa) 

Gmin 

(GPa) 

Gmax 

(GPa) 

Density 

(kg/m3) 

Cross-sectional 

Area (mm2) 

Mass 

(kg/m) 

Metals 

Cast irons 170 180 57 90 7200 12817 92.3 

High carbon steels 200 220 67 110 7850 10827 85.0 

Medium carbon steels 200 220 67 110 7850 10827 85.0 

Low carbon steels 200 220 67 110 7850 10827 85.0 

Low alloy steels 210 220 70 110 7850 10629 83.4 

Stainless steels 190 210 63 105 7850 11424 89.7 

Aluminum alloys 68 82 23 41 2700 18320 49.5 

Copper alloys 110 150 37 75 8900 15137 134.7 

Lead alloys 13 15 4 8 10500 21768 228.6 

Magnesium alloys 42 47 14 24 1850 20044 37.1 

Nickel alloys 190 220 63 110 8900 11093 98.7 

Titanium alloys 90 120 30 60 4600 16596 76.3 

Zinc alloys 68 95 23 48 6000 17856 107.1 

Ceramics 

Borosilicate glass 61 64 20 32 2250 19116 43.0 

Silica glass 68 74 23 37 2200 18585 40.9 

Soda-lime glass 68 72 23 36 2450 18652 45.7 

Brick 15 30 5 15 1850 21238 39.3 

Concrete 15 25 5 13 2450 21370 52.4 

Stone 20 60 7 30 2300 20110 46.3 

Composites 

Aluminum/silicon carbide 81 100 27 50 2780 17458 48.5 

CFRP 69 150 23 75 1550 16066 24.9 

GFRP 15 28 5 14 1900 21304 40.5 

Table 3. The constraints utilized in the optimization process 

Constraints Value 

Maximum rate of twist 0.01 rad/m 

Minimum torsional stiffness 1.2 × 1012 N⸱mm 

Maximum shear stress 16 MPa 

Then, the optimal cross-sectional area of each material, as well as the mass of the structure, were obtained and 

shown in Table 3 and Figure 13. Among the metals, magnesium alloys had the lowest mass, at 37.1 kg/m, with a 

required cross-sectional area of 20,044 mm2, leading to make it a possible lightweight alternative in this category. 

For ceramics, Silica glass had the lowest mass of 40.9 kg/m and the necessary cross-sectional area is 18,585 mm2, 

this indicates that this material can be a potential for applications needing low mass and high stiffness. In the 

composites category, it is apparent that using CFRP yields the most attractive design since it had the lowest mass of 

just 24.9 kg/m and cross-sectional area of 16,066 mm2, making it the best lightweight alternative among all 

categories. When comparing the three material categories (i.e., metals, ceramics, and composites), the composites 

group appears to provide the best balance of mass and the necessary cross-sectional area. Bearing in mind that the 

total cost might be another constraint, thus the use of ceramics (e.g., concrete) might be a more suitable selection for 

such constraints. This conclusion emphasizes the importance of material selection in achieving maximum str uctural 

performance while minimizing structure weight. 
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Figure 13. Mass per unit length that is needed for different materials in the optimized design 

6. Conclusion 

This study pinpointed the findings from analyzing and optimizing the torsional performance of multi-cellular thin-

walled tubes. The sensitivity analysis was used to identify which key parameters most significantly affect the torsional 

performance and to find the optimal design for these thin-walled structures. The analysis took into account variations in 

both the mechanical properties and the geometric dimensions of the thin-walled structure. The sensitivity of the overall 

torsional performance (i.e., consisting of the rate of twist, the torsional stiffness, and the maximum shear stress or shear 

flow) for each of the input parameters provides a trade-off in the optimized design. For example, reducing the rate of 

twist in a three-cell thin-walled tube requires increasing the width of the interior vertical elements while increasing the 

thickness of all other elements. Thus, the optimized design will have interconnected relations between various elements 

to obtain the desired properties. 

The optimal design of a three-cell thin-walled tube consists of using deeper vertical and thicker horizontal interior 

elements leading to superior torsional stiffness, a reduced rate of twist, and a minimized maximum shear stress. These 

findings are consistent with the widely used design of wind turbine blades where thick spar caps (i.e., horizontal interior 

elements) and thin aerodynamic shells (i.e., exterior elements) and vertical webs (i.e., vertical interior elements) are 

used. Thus, emphasizing the significance of precise geometric characteristics for reaching optimal thin-walled tube 

design for enhanced torsional performance. Optimization of the cross-section of the tube by considering the material 

and the shape of the structure results in a more attractive design bearing in mind that the mass or the cost of the structure 

might provide an additional constraint. By considering the design to be controlled by maximizing shear stiffness, 

minimizing mass, and minimizing maximum shear stress and rate of twist, optimal designs were obtained in the 

categories of composite materials and ceramics rather than metals. Furthermore, the composites group appears to provide 

the best balance of mass and the necessary cross-sectional area. If the cost is sought to be minimal, ceramics (e.g., 

concrete) might be a more suitable selection for such constraints. 
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8. Nomenclature 

𝐷= Total variance; 𝐷1 2…𝑛= Partial variance due to the interaction between parameters 𝑋1 to 𝑋𝑛; 

𝐷𝑖= Partial variance of parameter 𝑋𝑖; 𝐷𝑖𝑗= Partial variance due to the interaction between parameters 𝑋𝑖 and 𝑋𝑗; 

𝐸𝑚𝑎𝑥= Maximum Young’s modulus; 𝐸𝑚𝑖𝑛= Minimum Young’s modulus; 

𝐹(𝐗)= Response function within the n-dimensional unit cube 𝑘𝑛;  𝐹𝑜= Average value of the response function 𝐹(𝐗); 

𝐹𝑖= The part of 𝐹(𝐗) affected by parameter 𝑋𝑖; 𝐹𝑖𝑗= The part of 𝐹(𝐗) resulting from the interaction between 𝑋𝑖 and 𝑋𝑗; 

𝐺 = Shear modulus; 𝐺𝑗= Shear modulus of the jth cell; 

𝐺𝑚𝑎𝑥= Maximum shear modulus; 𝐺𝑚𝑖𝑛= Minimum shear modulus; 

𝐺𝐽 = Torsional stiffness; I = The unit vector with the same order as the number of cells; 

𝐽 = Polar moment of inertia; 𝑘𝑛= Unit cube with n-dimensions; 

𝐿 = Member’s length; 𝑚 = Number of cells having boundaries with the jth cell; 

𝑁 = Number of cells; 𝑛 = Number of random parameters; 

𝑞 = Shear flow in the tube wall; 𝑞𝑗= Shear flow in the jth cell; 

𝑆𝑖= First-order sensitivity index; 𝑆𝑖𝑗= Higher-order sensitivity indices; 

𝑆𝑖
𝑇= Total Sobol's sensitivity index one parameter 𝑋𝑖; 𝑠 = Arc length; 

𝑠𝑗= Arc length of the jth cell; 𝑠𝑗𝑖= The mutual arc length between the jth and ith cells; 

𝑠𝑗𝑘= The mutual arc length between the jth and kth cells; 𝑇 = Torsional moment; 

𝑡 = Thickness of the tube wall; 𝑤 = Width of the element; 

𝐗 = Random vector of system input parameters; 𝑋𝑖= ith input variable; 

𝑥~𝑖= 
Placeholder that shows the variable 𝑥𝑖  is left out of the 

calculations; 
𝛿 = Warping flexibilities; 

Ω = Total area enclosed by the centerline of the tube wall; Ω𝑗= Area enclosed by the centerline of the tube wall of the jth cell; 

𝛀𝑇= Transpose of the 𝛀 matrix; 𝜙 = Angle of twist; 

𝜏 = Shear stress; 𝜃 = Rate of twist; 

𝜃𝑗= Rate of twist of the jth cell;   
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