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Abstract 

This study aims to identify and analyze the challenges of implementing cognitive computing in small construction projects, 

where decision-making, process optimization, and sustainability enhancements are crucial yet challenging. The research 

adopts a mixed-methods approach, integrating a thorough literature review, quantitative evaluation, and structural equation 

modeling (SEM) to explore the relationships between the identified barriers and the effective application of cognitive 

computing. The findings reveal significant hurdles, including complexity in customization (β = 0.327, t = 9.848, p < 0.001), 

data integrity and integration issues (β = 0.389, t = 14.534, p < 0.001), financial and cultural constraints (β = 0.295, t = 

7.850, p < 0.001), and ethical and privacy concerns (β = 0.319, t = 8.963, p < 0.001). These barriers impede the seamless 

adoption of cognitive computing technologies. This research contributes novel insights into the specific challenges faced 

by small construction projects and provides practical recommendations to overcome these obstacles. By addressing these 

challenges, this study offers valuable guidance for stakeholders aiming to leverage cognitive computing to improve project 

outcomes in the construction industry. The novelty of this research lies in its focus on small-scale projects, a relatively 

underexplored area, and its comprehensive analysis of the multifaceted barriers that hinder the successful implementation 

of cognitive computing. 
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1. Introduction 

Cognitive computing is a promising technology that has the potential to revolutionize the construction industry by 

enhancing decision-making, optimizing processes, and enhancing overall project outcomes. However, effective 

cognitive computing implementation in modest construction initiatives presents unique challenges that must be 

addressed [1]. Small construction projects typically need more resources and encounter obstacles when implementing 

cognitive computing. According to industry statistics, a significant portion of the construction industry comprises minor 

construction initiatives. In the United States, minor construction enterprises account for approximately 99 percent of the 

industry [2]. These initiatives frequently have limited budgets, personnel, and time, making it difficult to surmount the 
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initial costs associated with cognitive computing implementation. According to research, construction projects generate 

immense data, but their management and utilization could be more efficient [3]. In modest construction projects, limited 

data sources, inconsistent data collection methods, and shortened project durations can inhibit the availability of high-

quality data necessary for cognitive computing systems. Studies indicate that data quality issues impact between 30 and 

40 percent of construction projects, which can compromise the efficacy and dependability of mental models. 

In addition, the technical knowledge required to implement cognitive computing successfully can hinder smaller 

construction projects. According to a survey conducted by industry specialists, approximately 70% of construction 

companies need help to locate professionals with the necessary artificial intelligence and machine learning skills [4], 

[5]. Small initiatives may need more resources to employ or train personnel with the specialized cognitive computing 

knowledge required for implementation [6]. Important considerations also include cultural factors such as resistance to 

change. According to a study conducted by a construction research institute, approximately sixty percent of construction 

professionals view resistance to change as a significant barrier to implementing new technologies. To successfully 

implement cognitive computing in modest construction projects, overcoming cultural obstacles and nurturing an 

innovative and receptive culture are crucial [7, 8]. 

Integration complexity exacerbates the difficulties encountered by tiny construction initiatives. According to 

research, approximately forty percent of construction companies need help incorporating various software tools and 

systems [9, 10]. This complexity is amplified in small initiatives with limited technical knowledge and resources, 

hindering the seamless integration of cognitive computing technologies. To overcome these obstacles, a comprehensive 

comprehension of the unique barriers encountered by minor construction projects and the development of tailored 

strategies are required [11]. By overcoming these obstacles, modest construction projects can leverage the benefits of 

cognitive computing, thereby enhancing decision-making, boosting productivity, and attaining superior project 

outcomes. 

This manuscript addresses a cavity in the literature by investigating the obstacles to implementing cognitive 

computing in the context of minor construction projects. In addition, it contributes to the literature by employing an in-

depth methodology based on structural equation modeling (SEM) to analyze the complex relationships between the 

barriers and their influence on the successful implementation of cognitive computing in minor construction projects. 

Prior research examined the difficulties in applying cognitive computing to the construction industry, but relatively little 

attention has been paid to small-scale building projects [2]. This paper takes a fresh look at the limitations and problems 

encountered by small-scale construction projects when employing cognitive computing technologies. This paper 

employs structural equation modelling (SEM) to investigate the connections between the identified obstacles and their 

influence on the effective implementation of cognitive computing in minor construction projects. Utilizing SEM permits 

a systematic investigation of the interdependencies and complex dynamics among the obstacles, yielding significant 

insights into the underlying factors that drive the adoption and integration of cognitive computing technology. 

This paper fills in these gaps in the literature by providing insightful analyses of the specific obstacles faced by small 

construction projects, as well as a sound technique for understanding the complex interactions between these obstacles. 

The findings of this study will facilitate the successful implementation of cognitive computing technologies by 

contributing to the development of targeted strategies and practical recommendations for stakeholders involved in minor 

construction projects. The remainder of this article is organized as follows: Section 2 provides a comprehensive review 

of the literature related to cognitive computing in construction, highlighting the key challenges and gaps in existing 

research. Section 3 outlines the research methodology, including the mixed methods approach and the application of 

structural equation modeling (SEM) to analyze the data. Section 4 presents the results of the study, focusing on the 

identified barriers to cognitive computing implementation in small construction projects. In Section 5, the findings are 

discussed in the context of existing literature, with an emphasis on practical implications and strategies for overcoming 

the challenges identified. Finally, Section 6 concludes the article by summarizing the key contributions of the research, 

addressing its limitations, and suggesting directions for future studies. 

2. Literature Review 

Various studies have explored the use of cognitive computation in the construction sector and found various 

challenges to its general acceptance. While these research findings provide insightful information, it is vital to look at 

the obstacles to the use of cognitive computing in small-scale building projects [12, 13]. This section surveys related 

work and identified the most significant obstacles to minor construction undertakings. Previous research has highlighted 

the potential and benefits of cognitive computing in the construction industry, including enhanced decision-making, 

safety, and productivity. However, little attention has been paid to the unique obstacles that modest construction projects 

confront when employing cognitive computing technologies [14, 15]. The literature identifies limited resources, 

including financial constraints, inadequate infrastructure, and a need for qualified personnel, as a common barrier. Small 

construction projects frequently have limited budgets, making allocating funds for cognitive computing 

implementation's initial costs difficult [16]. In addition, modest initiatives may need more technical expertise to create 

and maintain cognitive computing systems [17, 18]. The accessibility and integrity of data have also been identified as 
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significant obstacles. Construction projects generate vast data, but their management and utilization could be more 

efficient. Accessing diverse and high-quality data may be difficult for small construction projects due to limited project 

duration, inconsistent data acquisition methods, and data divisions within the organization [19]. 

Ethical and privacy considerations are crucial in the implementation of cognitive computing. A survey conducted by 

an association for the construction industry reveals that 80% of construction professionals are concerned about the 

potential misuse or mistreatment of sensitive data in cognitive computing [20]. Establishing robust data privacy practices 

and resolving ethical data management and security concerns can be complex for small construction projects. Ensuring 

data privacy, complying with regulations, and addressing ethical concerns are essential, but minor construction projects 

may need more resources and knowledge to establish robust data privacy practices. Economic factors, such as the 

difficulty of demonstrating a clear return on investment (ROI), can hinder the implementation of cognitive computing 

in minor construction initiatives [21, 22]. Especially for minor initiatives with limited data and resources, quantifying 

the financial benefits and measuring the impact on project outcomes are complex tasks. In the construction industry, 

cultural factors, such as resistance to change, have been identified as barriers to technology adoption. This includes 

minor construction projects in which a conservative culture and skepticism towards new technologies may impede the 

adoption and incorporation of cognitive computing [23]. 

Integration complexity is an additional substantial barrier. Small construction projects frequently employ diverse 

software tools and platforms, making integrating cognitive computing systems difficult. More technical knowledge and 

assets are needed to complicate the integration procedure [24, 25]. Minor construction project stakeholders can develop 

targeted strategies and interventions to surmount these obstacles by identifying and comprehending them. In the context 

of little construction projects, addressing these obstacles will contribute to successfully incorporating and integrating 

cognitive computing technologies, enhancing decision-making, increasing efficiency, and attaining improved project 

outcomes. Table 1 presents the identified factors considering barriers to adopting cognitive computing in small 

construction projects. 

Table 1. Identified factors considering barriers to adopting cognitive computing in small construction projects 

Category Code Description References 

Complexity and 
Customization 

CC-CC1 
Complex integration with existing workflows and project 

management systems. 
Fernando & Bandara (2022) [22]; Waqar et al. (2023) [23] 

CC-CC2 Customizing cognitive solutions to specific project specifications. Manshahia et al. (2022) [20]; Waqar et al. (2023) [21] 

CC-CC3 
Insufficient data accessibility and difficulties in ensuring data 

quality. 
Waqar & Almujibah, (2023) [17]; Xu et al. (2020) [19]  

Limited Data 

Availability 

CC-LA1 
The limited volume of available data hinders the system's capacity 

to learn and produce precise insights. 
Koc et al. (2020) [15]; Waqar et al. (2023) [18] 

CC-LA2 
The limited availability of historical data hinders the system's 

ability to make accurate predictions. 
Li et al. (2018) [13]; Dushkin & Mohov (2021) [14] 

CC-LA3 
Cognitive models are unreliable when based on inconsistent or 

insufficient data. 
Griffin (2019) [11]; Ustun et al. (2018) [12] 

Data Quality and 
Integration 

CC-DI1 
More data quality results in reliable insights and accurate 

forecasts. 
Li et al. (2022) [8]; Sánchez et al. (2020) [7] 

CC-DI2 
Inconsistent data sources and formats impede integration and 

analysis. 
Chen et al. (2018) [9]; Martínez (2021) [10] 

CC-DI3 
More accurate or adequate data is needed to maintain the 

dependability and efficiency of cognitive computing models. 
Behera et al. (2022) [5]; Chen et al. (2020) [6] 

Ethical and Privacy 

Concerns 

CC-EP1 
Noteworthy is the protection of data privacy and compliance with 

privacy regulations. 
Gunasekhar & Teja (2021) [4]; Waqar et al. (2023) [26] 

CC-EP2 
Establishing explicit data ownership and obtaining consent can be 

challenging in modest construction endeavors. 
Caputo (2023) [27] 

CC-EP3 
Transparency and explainability of cognitive computing models 

are crucial but can be challenging to achieve in modest initiatives. 
Wang (2021) [2]; Waqar et al. (2023) [28] 

Economic and Culture 

CC-EC1 
Budgetary and material constraints impede the allocation of funds 

for cognitive computing implementation. 

Fernando & Bandara (2022) [22]; Manshahia et al. (2022) 

[20] 

CC-EC2 
In modest construction initiatives, it can be challenging to 

demonstrate a distinct return on investment (ROI) for cognitive 

computing. 

Behera et al. (2019) [23]; Waqar et al. (2023) [29] 

CC-EC3 
A risk-averse culture may inhibit the adoption of new 

technologies, such as cognitive computing. 
Behera et al. (2019) [29]; Johnson et al. (2021) [30] 

Scalability and 

Integration 

CC-SI1 
Resource constraints limit the viability of minor construction 

initiatives. 
Kajić et al. (2019) [31]; Waqar et al. (2023) [24] 

CC-SI2 
Integration difficulties between cognitive computing systems and 

existing project management and workflows. 
Mutis et al. (2018) [32]; Rawung & Poai (2023) [33] 

CC-SI3 
Difficulties associated with assuring data compatibility and 

seamless data integration. 
Manshahia et al. (2022) [20]; Xu et al. (2020) [19] 
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2.1. Integration of Cognitive Computing in Construction: A Literature Overview 

Cognitive computing has shown tremendous potential in transforming various aspects of the construction industry, 

particularly in enhancing decision-making, optimizing processes, and improving overall project outcomes [34, 35]. 

While the benefits of cognitive computing are well-documented, most existing studies have primarily focused on large-

scale projects [36]. This emphasis leaves a significant gap in understanding the challenges faced by small-scale 

construction projects [37]. Addressing this gap is crucial, as these smaller initiatives often operate under different 

constraints, such as limited resources and tighter timelines [38]. This research seeks to explore these specific challenges 

and provide insights into how cognitive computing can be effectively integrated into small construction projects. 

2.2. Identifying Gaps in Existing Research 

The literature on cognitive computing in construction has extensively discussed its potential advantages, including 

improved safety, productivity, and efficiency in project management [39]. However, there is a lack of focused research 

on the unique obstacles encountered by smaller construction projects [40]. Challenges such as data quality, integration 

issues, and ethical concerns have been identified in broader studies, yet these challenges manifest differently in smaller 

projects, where resource limitations are more pronounced [41]. The complexity of integrating cognitive computing into 

existing workflows in small construction projects requires further investigation. This study aims to fill this research gap 

by providing a detailed analysis of these challenges and offering tailored solutions. 

2.3. The Need for Focused Research on Small Construction Projects 

Small construction projects represent a significant portion of the industry but often face distinct challenges compared 

to larger projects [42]. These projects typically operate with constrained budgets, shorter timelines, and less access to 

specialized expertise, making the implementation of advanced technologies like cognitive computing particularly 

difficult [43]. Despite the recognition of these challenges, much of the existing research has not differentiated between 

the needs of large and small projects [44]. There is a need for a more focused examination of how small projects can 

overcome the barriers to cognitive computing implementation. This research contributes to this area by exploring the 

specific needs and challenges of small construction projects and proposing strategies to address these obstacles. 

2.4. Addressing the Research Gap 

The current body of research provides a comprehensive overview of cognitive computing’s potential in the 

construction industry but often overlooks the unique challenges faced by small construction projects [45]. Given the 

prevalence of small projects within the industry, this oversight is significant [46]. The present study addresses this gap 

by focusing on the challenges and barriers specific to small-scale construction projects. Through a detailed examination 

of these issues and the application of a mixed-methods approach, including structural equation modeling, this research 

offers valuable insights and practical recommendations that are specifically tailored to the context of small construction 

enterprises. 

3. Research Methodology 

This investigation consists of three main phases. The first phase entails conducting a literature review to identify the 

most significant obstacles to implementing cognitive computing in minor construction projects. In the second phase, 

quantitative analysis and hypothesis testing are performed to investigate the relationships between the identified barriers 

and their influence on the successful adoption of cognitive computing [47]. The final phase employs structural equation 

modeling to validate the hypothesized relationships and gain a deeper understanding of how the barriers interact and 

influence the implementation of cognitive computing in minor construction projects [18]. Figure 1 is a flowchart 

depicting the sequential progression of the study through these three phases. 

3.1. Main Questionnaire Development and Data Collection 

A questionnaire was created to quantify cognitive computing implementation difficulties in modest construction 

projects. The questionnaire was carefully constructed to gauge the identified impediments on a 5-point Likert scale 

from strongly disagree to agree strongly. 230 questionnaires were sent to respondents and personally given to 

construction experts [20]. The response rate is the number of valid replies per total surveys issued. T he 230 surveys 

yielded 103 helpful replies, a 44 % response rate [25]. The sample size of 103 respondents is suitable for this study 

since it matches past cognitive computing implementation research in the construction sector [20, 21]. These studies 

show that 100-200 respondents are sufficient for examining study objectives-related correlations and trends. 

Respondents may rate each obstacle on a 5-point Likert scale in the questionnaire. This approach allowed quantitative 

analysis and hypothesis testing by quantifying answers on a standardized scale [23, 24]. The proposed technique draws 

on past research in the field.  
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Figure 1. Flow chart of the study 

3.2. Data Collection Process 

Sample Size and Selection Criteria: 

The data collection process for this study involved distributing a structured questionnaire to professionals working 

in the construction industry. The target population consisted of individuals involved in small construction projects, 

including project managers, engineers, architects, and other stakeholders. A total of 230 questionnaires were distributed, 

and 103 valid responses were collected, resulting in a response rate of approximately 44%. The sample size of 103 

respondents is consistent with similar studies in the field, providing sufficient data for the quantitative analysis and 

hypothesis testing. The selection criteria for participants were based on their involvement in small construction projects, 

with an emphasis on those who had experience or familiarity with the challenges of implementing cognitive computing 

technologies. 

Questionnaire Design: 

The questionnaire was carefully designed to capture the various barriers and challenges associated with cognitive 

computing implementation in small construction projects. It was divided into several sections, each focusing on different 

aspects such as complexity and customization, data quality and integration, financial and cultural constraints, and ethical 

and privacy concerns. Each item in the questionnaire was measured using a 5-point Likert scale, ranging from "strongly 

disagree" to "strongly agree." This approach allowed for the quantification of respondents' perceptions and provided a 

standardized method for evaluating the identified barriers. 

Quantitative Evaluation Methods: 

The quantitative evaluation was conducted using a combination of exploratory factor analysis (EFA) and structural 

equation modeling (SEM). These methods were chosen for their ability to identify underlying relationships between 

observed variables and to validate the hypothesized relationships between barriers to cognitive computing 

implementation. 

3.3. Validation and Reliability of the Survey Instruments 

During and after the data collection phase, several measures were implemented to ascertain the validity and 

dependability of the survey instruments employed in this inquiry. Initially, the questionnaire was developed with the 

assistance of industry experts and after a comprehensive review of the existing literature. An exclusive subset of 

construction industry experts, not comprising the primary study population, engaged in an experimental testing phase to 

evaluate this initial iteration. To ensure the content's veracity, the pilot test's responses were incorporated into the queries 

to enhance their lucidity, comprehensiveness, and relevance. In addition, to evaluate the dependability of the survey 

instruments, we calculated the Cronbach's alpha coefficient for the questionnaire items that pertained to each identified 

obstacle to the deployment of cognitive computing. As a rule, Cronbach's alpha values of 0.7 or greater are considered 
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adequate indicators of the dependability of an internal consistency measure. It was extremely important to ensure that 

the components of each scale consistently assessed the same construct. As an extension of the reliability analysis, the 

internal consistency of responses was verified by recalculating Cronbach's alpha for the entire dataset after data 

collection. In addition, an examination was conducted on item-to-total correlations to identify any items that exhibited 

weak correlations with the overall scale. Such correlations would indicate potential issues with the questions' relevance 

or the respondents' comprehension. The exhaustive process of validation guarantees the validity and reliability of the 

survey instruments, so augmenting the credibility of the study's outcomes. By adhering to rigorous methodological 

principles and addressing specific concerns related to the reliability of survey instruments and the design of 

questionnaires, this study establishes a solid foundation for subsequent investigations concerning the obstacles posed by 

cognitive computing in small-scale building projects. 

3.4. EFA Analysis 

Exploratory Factor Analysis (EFA) was used to evaluate data and identify impediments to cognitive computing 

deployment in modest construction projects. EFA is a statistical method for finding hidden components that explain 

observed variable correlations. EFA determined the obstacles' factor structure using questionnaire answers. Principal 

component and common factor analyses were used to analyze the obstacles' interrelationships [25, 30]. EFA extracted 

factors using eigenvalues, factor loadings, and variances explained. Eigenvalues and factor loadings show how much 

variation each element explains. Eigenvalues larger than 1, scree plot analysis, and theoretical considerations determined 

the number of retained components. Based on high-factor loading items, the factors were labeled and interpreted. This 

method revealed cognitive computing implementation obstacles in modest building projects [31, 33]. This research used 

EFA to examine the factor structure of the barriers and their interactions and patterns. The EFA analysis helped with 

hypothesis testing and exploring the factors' connections with other variables. In conclusion, the EFA analysis used in 

the methodology identified the underlying issues and structures that hinder cognitive computing application in small 

construction projects. 

3.5. PLS Measurement Model 

The suggested model was tested using SmartPLS 4 and Partial Least Squares Structural Equation Modeling (PLS-

SEM). PLS-SEM can analyze complicated latent construct-observed variable connections. PLS-SEM examined 

convergence and discrimination. Convergent validity assesses how well the model's construct elements represent a 

shared notion. Each construct's factor loadings, AVE and CR, were examined [22, 32]. Factor loadings show the strength 

of the association between items and their construct, AVE measures the variation contained by the construct, and CR 

evaluates item internal consistency. Discriminant validity measures how different conceptions are. The square root of 

the AVE was compared to create relationships. Discriminant validity is demonstrated if the square root of the AVE for 

each concept exceeds its correlation with other constructs [17, 19]. SmartPLS 4 PLS-SEM study assessed convergent 

and discriminant validity. The factor loadings, AVE, CR, and construct correlations revealed the model's constructs' 

reliability and uniqueness. Convergent and discriminant validity in the PLS-SEM analysis ensures that the measurement 

model is trustworthy, and the constructs differ, making the research more robust [30, 31]. This approach verifies data 

veracity and quality, boosting research credibility. To ensure methodological transparency, the SEM was conducted 

using a two-step approach. Initially, a measurement model was established to validate the reliability and validity of the 

constructs. Subsequently, a structural model was developed to examine the relationships between the barriers and 

cognitive computing implementation. The model specifications included the assessment of model fit using indices such 

as the Chi-square/df ratio, Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and Root Mean Square Error of 

Approximation (RMSEA). Diagnostics were performed to assess the robustness of the statistical analysis, ensuring that 

the findings are reliable and valid indicators of the barriers' impacts on cognitive computing implementation in the 

construction industry. 

3.6. PLS Structural Model 

In addition to EFA and PLS-SEM, a structural model analysis was performed. The bootstrap analysis tested the 

study's five hypotheses in structural model analysis. Bootstrap methodology resamples the dataset to estimate model 

parameter standard errors and significance levels. The procedure generates bootstrap samples to estimate model 

parameters and test hypotheses. Bootstrap analysis calculated each hypothesis's O, M, STDEV, t-statistics, and p-values 

[24, 25]. The sample means, and standard deviation are determined from the resampled bootstrap datasets, whereas the 

original sample value is the dataset estimate. To evaluate the estimated coefficients, t-statistics, and p-values were 

calculated. T-statistics show the ratio of the estimated coefficient to its standard error, and p-values indicate the 

likelihood of receiving a value as extreme as the observed estimate under the null hypothesis. This determines the model 

variable associations' relevance. This research used bootstrap analysis to test hypotheses [17, 20]. The study estimated 

standard errors, calculated t-statistics and p-values, and assessed structural model linkages. The bootstrap technique 

improves hypothesis testing's validity and reliability, offering a firm statistical basis for evaluating data and forming 

conclusions. 
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3.7. Predictive Relevance 

Predictive relevance (Q2) was examined with structural model analysis. Q2 compares the model's endogenous 

components' predictive performance to a simple mean to assess its predictive power and relevance. Each endogenous 

construct's Q2 value represents the model's exogenous constructions' variance explanation [23, 25]. It shows the model's 

predictive power. The model captures variable correlations and makes meaningful predictions if Q2 is high. Q2 assessed 

the structural model's predictive value in explaining endogenous construct variance. The simple mean model, which 

assumes the mean of the dependent variable is the best predictor, was compared to the Q2 data. Structural models have 

higher Q2 values than simple mean models, indicating more incredible predictive performance. Q2's assessment helps 

cognitive computing in small construction projects forecast outcome characteristics [30, 31]. It assesses the model's 

prediction capability and helps evaluate the practical importance of the structural model's linkages. This research 

investigates the variables' correlations and the model's practical significance in predicting and explaining the outcomes 

of interest by examining Q2. 

4. Results and Analysis 

4.1. Demographic Details 

This study's demographics include participants' education, age, professional experience, and vocations. 27% have a 

Bachelor's degree, whereas 49% have a Master's. 9% have PhDs, and 15% have other degrees. Participants' ages vary. 

31% are 26–30, and 28% are 31–35. 9% of participants are over 40, 15% are 21–25, and 17% are 36–40. Professionally, 

the participants vary. 26% had 0-5 years of experience, 28% had 5-10 years, and 26% had 11-15 years. 10% of 

participants have 16-20 years or more of experience. 53% of participants are civil engineers, followed by 18% architects. 

Safety managers make up 3%, project managers 14%, and others 12%. The biggest professional experience category is 

34%, with 11-15 years. 31% and 13% have 5-10 and 16-20 years of experience. 16% and 6% of participants are under 

5 and over 20 years old, respectively. This study's participants are varied in education, age, professional experience, and 

vocation, offering a broad view of cognitive computing deployment in modest construction projects (See Figure 2). 

 

Figure 2. Demographic details respondents 

4.2. Exploratory Factor Analysis 

Table 2 shows the item-underlying factor connection strength. EFA factor loadings indicate each item's importance 

with the specified factors. In Table 2, most items have factor loadings over 0.6, showing a strong link with their factors. 

CC-CC1 is strongly associated with Factor 1 (Cognitive Computing - Critical Challenges) with a factor loading of 0.917. 

CC-LA1, CC-LA2, and CC-LA3 had high factor loadings of 0.902, 0.845, and 0.795, demonstrating a significant 

association with Factor 2 (Cognitive Computing - Limited Availability). Two variables, CC-EP3 and CC-EC3, did not 

fulfill the minimal threshold and were eliminated from further study. Low factor loadings or cross-loading errors imply 

a weak or inconsistent link with any specified factor. EFA factor loadings reveal the intensity and direction of item-
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factor correlations. The item is a good predictor of the factor if its factor loading is high [17, 19]. These findings help 

identify and evaluate cognitive computing implementation hurdles in small construction projects. Factor loadings are 

essential for assessing item relevance to factors. EFA analysis uses a minimum threshold of 0.6 to confirm that the 

chosen items have a significant association with their factors and are trustworthy indicators of the obstacles under 

examination. 

Table 2. Exploratory factor analysis 

Activities 1 2 3 4 5 6 

CC-CC1 0.917      

CC-CC2 0.819      

CC-CC3 0.789      

CC-LA1  0.902     

CC-LA2  0.845     

CC-LA3  0.795     

CC-DI1   0.881    

CC-DI2   0.732    

CC-DI3   0.687    

CC-EP1    0.785   

CC-EP2    0.755   

CC-EP3       

CC-EC1     0.798  

CC-EC2     0.678  

CC-EC3       

CC-SI1      0.787 

CC-SI2      0.682 

CC-SI3      0.655 

Excluded Variables = CC-EP3; CC-EC3 due to low loading or cross-loading errors. 

4.3. PLS Measurement Model Development 

Table 3 shows the convergent validity analyses' Cronbach's alpha (CA), composite reliability (CR), and average 

variance extracted (AVE) for each concept. These measurements determine the measurement model's convergent 

validity and build internal consistency and reliability. Cronbach's alpha (CA) measures internal consistency, 

demonstrating each construct's items' dependability. Internal consistency increases with Cronbach's alpha. Composite 

reliability (CR) uses item correlations to evaluate construct consistency. CR over 0.7 is acceptable. AVE assesses the 

construct's variation relative to measurement errors. Convergent validity increases with AVE, indicating that concept 

elements share much variation. Table 3 shows internal solid consistency and convergent validity [24, 29]. Most 

constructions have good internal consistency, with Cronbach's alpha scores from 0.713 to 0.865. Composite reliability 

values exceed 0.7. The constructs capture more variation than measurement errors, as seen by the AVE values of 0.631 

to 0.846. Most notions have convergent validity with these AVE values. CC-DI3 (Data Quality and Integration 3) was 

removed from the analysis owing to low factor loadings or cross-loading problems. Thus, CC-DI1 and CC-DI2 form the 

Data Quality and Integration construct. The constructs' internal consistency and convergent validity support the 

measuring model's reliability and validity, indicating that they capture the desired notions. 

Heterotrait-Monotrait (HTMT) examination of concept discriminant validity is shown in Table 4. The HTMT ratio 

evaluates discriminant validity by comparing correlations across constructs to average correlations within the same 

construct [19]. The table shows HTMT values and the ratio of construct correlations to construct average correlations. 

The constructions are different if the value is below 0.85. The HTMT values in Table 4 show discriminant validity for 

most constructs. Since they compare a construct to itself, diagonal values are ignored. The HTMT scores below the 

diagonal show construct discriminant validity. 

Since the HTMT score of 0.505 between CC (Complexity and Customization) and DI (Data Quality and Integration) 

is below 0.85, these two constructions are separate. HTMT scores for additional concept pairings, such as EC (Economic 

and Culture) and EP (Ethical and Privacy Concerns), EP and LA (Limited Data Availability), and EC and LA, also 

suggest discriminant validity. The HTMT values between DI and EC, DI and EP, and DI and SI (Scalability and 
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Integration) are substantially more significant, but they still satisfy the 0.85 criterion, showing adequate discriminant 

validity [18]. The HTMT analysis findings in Table 4 show that the constructs in the research have discriminant validity 

and are different and not strongly linked. This suggests that each construct reflects a distinct obstacle to cognitive 

computing deployment in modest building projects. 

Table 3. Convergent validity results indicating Cronbach alpha, composite reliability, and average variance extracted. 

Category Code Loadings VIF CA CR AVE 

Complexity and Customization 

CC-CC1 0.727 1.388 

0.713 0.836 0.631 CC-CC2 0.825 1.375 

CC-CC3 0.826 1.427 

Limited Data Availability 

CC-LA1 0.760 1.489 

0.865 0.888 0.727 CC-LA2 0.971 1.485 

CC-LA3 0.814 1.765 

Data Quality and Integration 

CC-DI1 0.901 1.760 

0.729 0.88 0.786 CC-DI2 0.872 1.978 

CC-DI3 Deleted 1.920 

Ethical and Privacy Concerns 

CC-EP1 0.928 2.459 

0.818 0.916 0.846 CC-EP2 0.911 1.938 

CC-EP3 Deleted 2.560 

Economic and Culture 

CC-EC1 0.920 2.143 

0.793 0.906 0.828 CC-EC2 Deleted 2.147 

CC-EC3 0.900 1.389 

Scalability and Integration 

CC-SI1 Deleted 1.375 

0.844 0.928 0.865 CC-SI2 0.936 1.427 

CC-SI3 0.924 1.489 

Table 4. HTMT analysis for discriminant validity 

Constructs CC DI EC EP LA SI 

Complexity and Customization=CC       

Data Quality and Integration=DI 0.505      

Economic and Culture=EC 0.248 0.317     

Ethical and Privacy Concerns=EP 0.233 0.414 0.286    

Limited Data Availability=LA 0.121 0.054 0.036 0.081   

Scalability and Integration=SI 0.215 0.271 0.226 0.171 0.127  

Table 5 shows the Fornell-Larcker criteria analysis findings for concept discriminant validity. The Fornell-Larcker 

criteria contrast the square root of each construct's average variance extracted (AVE) with construct correlations. This 

criterion determines if AVE values exceed inter-construct correlations, demonstrating discriminant validity. The top 

triangular matrix shows construct correlations, whereas the diagonal shows AVE values [14]. To measure discriminant 

validity, the Fornell-Larcker criteria advise comparing each construct's square root AVE with its correlations with other 

components. Discriminant validity is demonstrated when the square root of the AVE for a concept exceeds its correlation 

with other constructs [25]. Table 5 shows that AVE square roots are diagonal. Comparing these values with the top 

triangular matrix correlations, the square root of each construct's AVE is consistently more enormous than the 

correlations with other constructs. 

The square root of the AVE for the CC (Complexity and Customization) construct is 0.794, which is higher than its 

correlations with other constructs. Discriminant validity suggests CC is unique from the other conceptions. DI, EC, EP, 

LA, and SI follow similar patterns. The square roots of their AVE values are more significant than the correlations with 

other variables, demonstrating their discriminant validity. Table 5's Fornell-Larcker criteria analysis shows that the 

study's constructs are discriminant [29]. The square root of each construct's AVE is consistently more extensive than the 

correlations with other constructs, demonstrating that the constructs are different and represent distinctive hurdles to 

cognitive computing application in modest construction projects. 
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Table 5. Fornell-Larcker criterion for discriminant validity 

Constructs CC DI EC EP LA SI 

Complexity and Customization=CC 0.794      

Data Quality and Integration=DI 0.383 0.887     

Economic and Culture=EC 0.165 0.247 0.91    

Ethical and Privacy Concerns=EP 0.185 0.32 0.232 0.92   

Limited Data Availability=LA -0.043 0.024 -0.012 0.051 0.853  

Scalability and Integration=SI 0.175 0.216 0.183 0.144 0.115 0.93 

Table 6 shows variable construct cross-loading values. These numbers show the strength of the association between 

each variable and its intended construct and the possibility for cross-loading onto additional constructs [22]. The table 

shows that variables load more on their intended construct than others. Compared to other constructions, Complexity 

and Customization variables like CC-CC1, CC-CC2, and CC-CC3 have greater loadings on the CC construct (0.727, 

0.825, and 0.826). These factors are strongly correlated with Complexity and Customization. Other factors also have 

more extraordinary relationships with their intended constructions. Compared to other constructs, variables in the Data 

Quality and Integration construct (CC-DI1 and CC-DI2) load more fantastically on the DI construct (0.901 and 0.872). 

Economic and Culture, Ethical and Privacy Concerns, Limited Data Availability, and Scalability and Integration factors 

follow the same trend. The variables match their intended constructions, indicating construct validity. Other 

constructions have modest cross-loading values [23]. The dimensions' discriminant validity suggests they reflect distinct 

impediments to cognitive computing application in small construction projects. Table 6's cross-loading values support 

the variables' associations with their constructs, proving the measurement model's construct and discriminant validity. 

Table 6. Cross-loading criterion for discriminant validity 

Variables CC DI EC EP LA SI 

CC-CC1 0.727 0.185 0.013 0.101 -0.069 0.033 

CC-CC2 0.825 0.419 0.152 0.124 -0.018 0.17 

CC-CC3 0.826 0.271 0.189 0.204 -0.031 0.179 

CC-DI1 0.364 0.901 0.236 0.291 0.031 0.252 

CC-DI2 0.312 0.872 0.2 0.276 0.01 0.125 

CC-EC1 0.139 0.31 0.92 0.216 -0.03 0.14 

CC-EC3 0.162 0.131 0.9 0.207 0.01 0.197 

CC-EP1 0.201 0.292 0.24 0.928 0.056 0.161 

CC-EP2 0.136 0.297 0.184 0.911 0.037 0.102 

CC-LA1 -0.126 0.007 -0.031 0.02 0.76 0.082 

CC-LA2 -0.018 0.05 -0.006 0.039 0.971 0.113 

CC-LA3 -0.07 -0.056 -0.02 0.078 0.814 0.091 

CC-SI2 0.195 0.205 0.179 0.145 0.079 0.936 

CC-SI3 0.127 0.197 0.162 0.123 0.137 0.924 

CC= Complexity and Customization; DI= Data Quality and Integration; EC= Economic and Culture; EP= Ethical and Privacy Concerns; 

LA= Limited Data Availability; SI= Scalability and Integration. 

The research tested the associations between the independent constructs (CC, DI, EC, EP, LA, SI) and the dependent 

construct (CCI - Cognitive Computing Implementation) in Table 7. The table shows each hypothesis's O, M, STDEV, 

t-statistics, and p-values. Statistical analysis determines whether hypotheses are accepted or rejected. Accepted 

hypotheses show a substantial link between the independent and dependent constructs, whereas rejected hypotheses 

suggest a non-significant relationship. 

This research accepted all hypotheses except H5 (Limited Data Availability →  Cognitive Computing 

Implementation). Accepted hypotheses: 

The t-statistics and p-values support these assumptions, demonstrating that these separate constructs substantially 

influence cognitive computing implementation in the research. 

Hypothesis testing findings in Table 7 show how constructs affect Cognitive Computing Implementation. The 

accepted hypotheses emphasize crucial elements that promote cognitive computing adoption in the investigated area. 
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Table 7. Hypothesis testing of the study 

Hypothesis Relation (O) (M) (STDEV) T statistics P values Results 

H1 CC → CCI 0.327 0.325 0.033 9.848 0 Accepted 

H2 DI → CCI 0.389 0.382 0.027 14.534 0 Accepted 

H3 EC → CCI 0.295 0.287 0.038 7.85 0 Accepted 

H4 EP → CCI 0.319 0.311 0.036 8.963 0 Accepted 

H5 LA → CCI 0.041 0.057 0.074 0.558 0.577 Rejected 

H6 SI → CCI 0.267 0.259 0.041 6.519 0 Accepted 

(O)= Original sample; (M)=Sample mean; (STDEV) =Standard deviation; CC= Complexity and Customization; DI= Data Quality and Integration; EC= Economic 

and Culture; EP= Ethical and Privacy Concerns; LA= Limited Data Availability; SI= Scalability and Integration; CCI= Cognitive Computing Implementation. 

Figure 3's path loadings and p-values reveal the strength of the latent construct-observed indicator correlations. These 

values affect the strength of the links and how much the indicators assess their structures. Researchers may use route 

loadings and p-values to determine construct correlations and the most important markers for each construct [30]. This 

study clarifies the measurement model's validity and reliability and the structural model. Figure 3 and the p-values show 

the measurement model in PLS-SEM and the path loadings between latent constructs and observable indicators. 

 

Figure 3. PLS SEM measurement model indicating path loadings with p values 

PLS-SEM measurement model Figure 4 shows route loadings between latent components and indicators. These route 

loadings show the links between unobserved constructs (factors or variables) and measured variables or items. Path 

loadings show connection strength and direction. They show how closely indications match constructions [23]. Figure 

4 shows path loadings as arrows between constructions and indicators. Path loading T-statistics indicate association 

importance. Higher T-values indicate a more vital construct-indicator link. 

4.4. Predictive Relevance Q2 

Table 8 shows the model's predictive relevance analysis for Cognitive Computing Implementation. The table shows 

the model's predictive capability and performance. The model's total variance in Cognitive Computing Implementation 

is the dependent variable's sum of squares. Total is 4968.000. The SSO value is the dependent variable's original squares. 

It evaluates cognitive computing implementation variation without considering model predictions. SSO is 3900.123. 
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The sum of squares of errors (SSE) assesses the model's unexplained variance or prediction mistakes—the difference 

between projected and fundamental Cognitive Computing Implementation values. The model's predictive potential is 

assessed by the Q2 value, which is 1 minus SSE/SSO. It estimates how much of the Cognitive Computing 

Implementation variance the model explains. In this investigation, Q2 is 0.215, suggesting that the model explains 21.5% 

of Cognitive Computing Implementation variance [25]. The model may explain a considerable percentage of Cognitive 

Computing Implementation variance, suggesting predictive value. The model still has unexplained variations or forecast 

mistakes. The model may need further investigation to improve its forecasting power and accuracy. 

 

Figure 4. PLS SEM measurement model indicating path loadings with T-stat value 

Table 8. Predictive relevance of the study 

Total SSO SSE Q2 (=1-SSE/SSO) 

Cognitive Computing Implementation 4968.000 3900.123 0.215 

5. Discussion 

This study aimed to investigate the obstacles to cognitive computing implementation in minor construction 

initiatives. Using a mixed-methods approach, a comprehensive literature review, quantitative analysis, and structural 

equation modeling were employed to investigate the relationships between the identified barriers and cognitive 

computing implementation. Identifying facilitators for cognitive computing adoption is crucial to overcoming the noted 

barriers. Enhanced training programs can prepare the workforce to deal with complexity and customization issues. 

Partnerships with technology providers can improve data quality and integration. Government incentives and supportive 

policies can address economic barriers, while a strong emphasis on ethical practices and data protection can mitigate 

privacy concerns. Promoting these facilitators will be key to accelerating cognitive computing adoption in the 

construction industry. Simplifying the integration of cognitive computing technologies into current workflows and 

project management systems should be the top priority for small construction projects to overcome the barriers posed 

by complexity and customization. This entails minimizing complexity while tailoring solutions to meet the demands of 

projects. Effectively managing data complexity will necessitate putting plans into practice, which will include 

concentrating on creating user-friendly interfaces and streamlined integration procedures without sacrificing the 

customization requirements of specific projects. Improving data integration and quality is crucial to using cognitive 

computing in construction effectively. To guarantee consistency and dependability, this can be accomplished by 

implementing standardized data collection techniques across projects.  
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Complexity and Customization (CC) and Cognitive Computing Implementation (CCI) are positively correlated, 

according to the first hypothesis (H1). The analysis revealed a statistically significant positive correlation (β= 0.327, t = 

9.848, p 0.001), confirming the hypothesis (see Table 9). This suggests that the likelihood of effective cognitive 

computing implementation in minor construction initiatives increases as complexity and customization increase. This 

finding is consistent with previous research emphasizing the significance of addressing advanced technology 

implementation's unique complexities and customization needs [14, 17]. 

The second hypothesis (H2) postulated that Data Quality and Integration (DI) is positively related to Cognitive 

Computing Implementation (CCI). The data strongly supported this hypothesis (β= 0.389, t = 14.534, p 0.001) [21, 48, 

49]. This suggests that improved data quality and effective integration of data sources contribute to the successful 

implementation of cognitive computing. It highlights the importance of comprehensive data management practices and 

integration strategies for maximizing the potential of cognitive computing technologies [22, 24]. 

The relationship between Economic and Culture (EC) and Cognitive Computing Implementation (CCI) was 

investigated in the third hypothesis (H3). The analysis revealed a significant positive correlation (β = 0.295, t = 7.85, p 

0.001), validating hypothesis 3. This suggests favorable economic conditions and a supportive organizational culture 

are essential for implementing cognitive computing in modest construction projects. Organizations must align economic 

incentives and cultivate a culture encouraging technological innovation and adoption [29, 30]. 

The relationship between Ethical and Privacy Concerns (EP) and Cognitive Computing Implementation (CCI) was 

investigated in the fourth hypothesis (H4). The results indicated a statistically significant positive correlation (β = 0.319, 

t = 8.963, p 0.001), confirming hypothesis 4. This result highlights the significance of resolving ethical and privacy 

concerns when implementing cognitive computing. Organizations should prioritize the development of comprehensive 

ethical frameworks, data protection measures, and privacy policies to mitigate potential concerns and promote trust in 

cognitive computing technologies [31, 33]. 

Limited Data Availability (LA) and Cognitive Computing Implementation (CCI) are related, according to the fifth 

hypothesis (H5). The analysis did not significantly support this hypothesis (β= 0.041, t = 0.558, p = 0.577). In the context 

of this study, this indicates that limited data availability may not be a significant barrier to the implementation of 

cognitive computing in minor construction initiatives. Future research could delve deeper into this relationship and 

investigate potential factors that influence the impact of data availability on cognitive computing implementation [18], 

[32]. 

The sixth hypothesis (H6) looked at stability and integration (SI) and cognitive computing implementation (CCI). 

Hypothesis 6 was supported by the study, which showed a significant positive correlation (β = 0.267, t = 6.519, p 0.001). 

The importance of flexible and seamless solutions for the effective implementation of cognitive computing is highlighted 

by this research. Organizations should give top priority to creating scalable architectures and effective integration 

methods in order to facilitate the seamless incorporation of artificial intelligence technologies into current systems [19], 

[21]. 

Table 9. Comparison with previous research 

Aspect Present Study Findings Previous Studies Comparison/Analysis 

Complexity and 

Customization 

Significant impact (β = 0.327, 

t = 9.848, p < 0.001) 

Identified as a major challenge 

in general construction projects 

Quantifies the impact and highlights the exacerbated challenges in 

small construction projects. 

Data Quality and 

Integration 

Positive relationship (β = 

0.389, t = 14.534, p < 0.001) 

Recognized as critical but 

focused on large projects 

Emphasizes the need for standardized data management practices, 

particularly in small projects with inconsistent data collection methods. 

Limited Data 

Availability 

Not a significant barrier (β = 

0.041, t = 0.558, p = 0.577) 

Previously identified as a 

significant barrier 

Divergence suggests that small projects prioritize managing existing 

data effectively rather than acquiring new data. 

Financial and 

Cultural Constraints 

Significant barrier (β = 0.295, 

t = 7.850, p < 0.001) 

Commonly noted in large 

projects 

Confirms financial constraints are even more pronounced in small 

projects, where ROI is harder to justify. 

Ethical and Privacy 

Concerns 

Significant concern (β = 

0.319, t = 8.963, p < 0.001) 

Consistently identified as a 

challenge 

Reinforces the need for robust data protection and ethical frameworks, 

particularly important in smaller projects with less regulatory oversight. 

Scalability and 

Integration 

Significant impact (β = 0.267, 

t = 6.519, p < 0.001) 

Acknowledged in previous 

research 

Highlights the importance of scalable solutions tailored to small 

projects, emphasizing modular and adaptable technologies. 

In general, the research's outcomes provide valuable information regarding the challenges associated with cognitive 

computing in small construction initiatives. Complexity and customization, data quality and integration, economic and 

cultural issues, moral and security concerns, scalability, and integration all have a significant impact on the successful 

adoption of cognitive computing, as shown by the results. These results highlight the significant challenges that must be 

addressed when implementing cognitive computing technologies. This has practical implications for construction 

industry businesses. The identified barriers not only hinder the adoption of cognitive computing in small construction 

projects but also directly impact project outcomes. Complexity and customization demands can lead to prolonged 

implementation times and increased costs, affecting project timelines and budgets. Poor data quality and integration 

issues can result in inaccurate analyses, leading to flawed decision-making and inefficiencies in project management. 
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Economic and cultural barriers may stifle innovation, limiting the adoption of potentially transformative technologies. 

Ethical and privacy concerns can erode stakeholder trust, while scalability and integration challenges could restrict the 

ability to leverage cognitive computing solutions fully, impacting overall project performance and success. 

Experts highlighted significant ethical and privacy concerns affecting the adoption of cognitive computing in small 

construction projects. Data privacy and security were primary issues, with concerns about inadequate protections leading 

to potential breaches of sensitive project and personnel information. The lack of transparency in cognitive computing 

models also raised worries about accountability, as stakeholders might not fully understand or trust the decision-making 

processes, particularly in smaller projects with limited technical expertise. Additionally, issues surrounding consent and 

data ownership were noted, with the use of data from subcontractors, workers, or clients often occurring without explicit 

permission, leading to ethical dilemmas. These concerns contribute to resistance against adopting cognitive computing 

technologies, as fears of data breaches, mistrust in system outputs, and potential job displacement create significant 

barriers, especially in smaller projects where resources and expertise are constrained. 

5.1. Financial and Cultural Barriers 

Financial Barriers: 

Financial constraints are a significant challenge in the implementation of cognitive computing in construction 

projects, particularly in small-scale endeavors. Small construction projects often operate with limited budgets, making 

it difficult to allocate funds for the initial investment required for cognitive computing technologies. These projects 

typically prioritize essential expenditures, such as labor, materials, and basic project management tools, leaving little 

room for advanced technological implementations. The cost of acquiring, customizing, and integrating cognitive 

computing solutions can be prohibitively high, especially when these projects must also contend with short-term cash 

flow concerns. In contrast, large construction projects usually have more substantial financial resources at their disposal. 

They can justify the investment in cognitive computing by leveraging economies of scale, where the cost is distributed 

across larger budgets and longer project timelines. Additionally, large projects are more likely to secure external funding 

or partnerships that can offset the cost of technology adoption. Consequently, while financial barriers are present in both 

small and large projects, they are more acute in small projects due to tighter budgets and a limited ability to absorb 

additional costs. 

Cultural Barriers: 

Cultural barriers, including resistance to change and a risk-averse mindset, are prevalent across the construction 

industry but manifest differently in small and large projects. In small construction projects, cultural barriers are often 

rooted in a conservative approach to project management. Small firms may lack the organizational structure and 

resources to support innovation, leading to a reliance on traditional methods that are perceived as tried and tested. The 

smaller scale of these projects also means that any mistakes or failures in adopting new technologies can have a 

disproportionate impact on the project's success, reinforcing a cautious approach. Furthermore, the management and 

staff in small projects may have less exposure to technological advancements, resulting in a lack of familiarity and 

comfort with cognitive computing solutions. 

In contrast, large construction projects typically involve multiple stakeholders, including large firms with established 

research and development (R&D) departments and a history of technological adoption. These organizations may have 

a more progressive culture that is open to innovation and technological change. However, cultural barriers in large 

projects can arise from the complexity of managing change across diverse teams and departments. While there may be 

a corporate-level mandate to adopt new technologies, individual teams or departments may resist due to concerns about 

disruption to established workflows or the perceived complexity of new systems. Additionally, in large projects, the 

sheer scale and number of stakeholders can create bureaucratic inertia, where decision-making processes become slow 

and cumbersome, further complicating the adoption of cognitive computing technologies. 

Comparison of Financial and Cultural Barriers: 

The key difference between small and large projects in terms of financial and cultural barriers lies in the scale and 

resources available to manage these challenges. Small projects face more immediate financial constraints and a higher 

level of risk aversion, which makes the adoption of cognitive computing technologies particularly challenging. In 

contrast, large projects, while not immune to financial and cultural barriers, have more resources and organizational 

support structures to mitigate these challenges. However, large projects may encounter additional layers of complexity 

due to the involvement of multiple stakeholders and the need to manage change across large, diverse teams. 

5.2. Data Integrity and Integration Issues 

The study identified several critical data integrity and integration issues that pose significant challenges to the 

practical implementation of cognitive computing in small construction projects. One of the primary concerns is the 
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inconsistent quality of data collected across different phases of a project. Small projects often lack standardized data 

collection protocols, leading to fragmented and unreliable data sets. This inconsistency makes it difficult to integrate 

data from various sources, such as project management systems, sensors, and manual inputs, into a cohesive cognitive 

computing framework. Additionally, the study found that small projects frequently encounter difficulties in ensuring the 

accuracy and completeness of the data due to limited resources and time constraints. These data integrity issues 

undermine the reliability of cognitive models, resulting in flawed decision-making processes. The inability to seamlessly 

integrate diverse data sources further complicates the deployment of cognitive computing technologies, as it prevents 

the creation of comprehensive and accurate predictive models. Without addressing these challenges, small construction 

projects are likely to experience limited benefits from cognitive computing, as the effectiveness of these technologies 

heavily depends on the quality and integration of the underlying data. 

5.3. Scalability and Connectivity Issues in Small Construction Projects 

In small construction projects, scalability and connectivity challenges often arise due to limited resources and 

infrastructure. Scalability issues manifest when projects struggle to expand or customize cognitive computing solutions 

within their constrained budgets and timelines, unlike larger projects that can justify the cost of more flexible, scalable 

systems. Connectivity problems are also common, particularly in sites with inadequate technological infrastructure, such 

as unreliable internet access, which hampers real-time data sharing and integration of cognitive computing tools, leading 

to inefficiencies and delays. 

Recommended Strategies to Address These Challenges: 

To overcome these challenges, small projects can adopt modular cognitive computing solutions, starting with 

essential functionalities and adding more as needed, which reduces upfront costs and allows for scalability. Leveraging 

cloud-based services can also mitigate connectivity issues by providing flexible, powerful computing resources without 

the need for extensive on-site infrastructure. Additionally, investing in reliable mobile connectivity solutions and 

partnering with technology providers for tailored support can further enhance scalability and connectivity, ensuring that 

small projects can effectively implement cognitive computing technologies. 

5.4. Strategies for Overcoming Identified Barriers 

Given the challenges noted, it is critical to provide feasible suggestions that can help industry participants get beyond 

these obstacles to effectively implement cognitive computing in modest construction projects [50, 51]. First, developing 

adaptable cognitive computing solutions that can be customised to the unique requirements of minor construction 

projects is necessary to manage the complexity and customization challenges [52]. Industry experts and technology 

suppliers should work together to create flexible platforms that can satisfy the requirements of these initiatives. Building 

companies need to invest in robust data management systems that assure the integrity and accessibility of project data 

to surmount data quality and integration issues. The efficient operation of cognitive computing applications can be 

enhanced by implementing standardised data formats and protocols, which can help to facilitate the seamless integration 

of various data sources [26]. 

Fostering an organisational culture that encourages innovation and technology advancement might help to mitigate 

constraints related to culture and economy. To increase the viability of their cognitive computing investments, 

construction companies should investigate finance options like government incentives for technical innovation or joint 

ventures with tech companies. Clear rules and laws governing the use of cognitive computing technologies are important 

due to ethical and privacy concerns [39]. Building confidence among all parties engaged in building initiatives can be 

facilitated by assuring transparency in the accumulation, utilisation, and preservation of data. Construction companies 

must clearly demonstrate the return on investment (ROI) of integrating cognitive computing into small construction 

projects to overcome economic barriers [42]. Addressing cultural barriers involves cultivating an innovative and 

technology-receptive organizational culture. This can be facilitated through targeted training programs, workshops, and 

the promotion of success stories demonstrating the tangible benefits of cognitive computing adoption. 

Although this study did not find that a lack of data availability was a significant obstacle, it is nonetheless imperative 

that businesses routinely evaluate the ways in which they acquire and store data. Ensuring the availability of enough and 

pertinent data will facilitate the future successful application of cognitive computing technologies. Construction 

companies should give top priority to developing scalable cognitive computing solutions and efficient integration 

methodologies to handle scaling and integration difficulties. This entails implementing scalable and flexible cloud-based 

solutions and making sure cognitive computing systems can be readily integrated with the current IT infrastructure.  

5.5. Practical Implications 

The practical implications of this study are significant for stakeholders in the construction industry. By understanding 

the specific barriers to cognitive computing implementation and their direct impacts on project outcomes, industry 

practitioners can develop targeted strategies to mitigate these challenges. For instance, enhancing data management 
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practices, fostering a culture of innovation, and establishing clear ethical guidelines can pave the way for the successful 

adoption of cognitive computing. These strategies not only address the immediate challenges but also contribute to 

building a resilient and technologically advanced construction sector. Construction companies must clearly demonstrate 

the return on investment (ROI) of integrating cognitive computing into small construction projects to overcome 

economic barriers. Addressing cultural barriers involves cultivating an innovative and technology-receptive 

organizational culture. This can be facilitated through targeted training programs, workshops, and the promotion of 

success stories demonstrating the tangible benefits of cognitive computing adoption. To mitigate ethical and privacy 

concerns, establishing robust data privacy practices is paramount. This includes setting clear data ownership and consent 

mechanisms, alongside prioritizing the transparency and explainability of cognitive computing models. Such measures 

will not only address privacy concerns but also build trust among stakeholders regarding the ethical use of cognitive 

computing technologies. 

The challenge of limited data availability in small construction projects requires innovative solutions for data 

collection and accessibility improvement. Exploring new data collection methods, such as IoT devices and mobile 

applications, can enhance the volume and variety of data available for analysis. Improving data accessibility through 

centralized databases and cloud storage solutions will further enable the effective use of cognitive computing 

technologies. To ensure scalability and seamless integration of cognitive computing technologies, construction 

companies should develop strategies to overcome resource constraints and technical challenges. This includes allocating 

resources for training personnel in AI and machine learning skills and providing technical support to facilitate the 

integration of cognitive computing solutions. Such measures will enable companies to leverage these technologies 

effectively, despite the challenges posed by limited resources and technical complexities. 

6. Conclusion 

This research examined the challenges of using cognitive computing in small construction projects. An extensive 

literature study, quantitative evaluation, and structural equation modelling were used to examine the connections 

between different obstacles and the adoption of cognitive computing. The findings provide insight on the elements that 

influence cognitive computing's successful uptake in the building industry. These observations clarified the subtle 

contextual underpinnings of the adoption hurdles of cognitive computing and offered practical illustrations of the 

benefits and problems encountered construction sector. A more comprehensive picture of the future for cognitive 

computing in construction is provided by the integration of these qualitative findings, which deepens our grasp of the 

intricate interactions between industry practices and technical progress. 

It has been shown that the usage of cognitive computing is positively and significantly related to challenges with data 

integration and quality, economic and cultural concerns, privacy and ethical issues, and scalability. However, the 

research could not find a statistically significant link between the implementation of cognitive computing in the study 

environment and the lack of readily available data. This suggests that other aspects of adopting cognitive computing in 

smaller building endeavors may be more important. The results of this research help us understand the challenges that 

cognitive computing deployment in the construction sector faces better. When implementing cognitive computing 

technologies, the importance of complexity, data quality, economic and cultural aspects, ethical and privacy concerns, 

scalability, and integration challenges is highlighted. For organizations in the construction business, the findings have 

application. Organizations may effectively expand their ability to deploy cognitive computing technologies by 

overcoming these barriers. This in turn may improve operational effectiveness, decision-making procedures, and project 

results in general. It is important to recognize the limitations of this research. Future research could expand upon these 

findings by examining the long-term effects of cognitive computing implementation in the construction industry through 

longitudinal studies. Furthering our comprehension of cognitive computing implementation in minor construction 

projects could be facilitated by investigating regional barriers and considering additional factors. In conclusion, this 

research contributes to the existing literature by shedding light on the obstacles preventing the implementation of 

cognitive computing in minor construction projects. The findings provide valuable direction for organizations seeking 

to implement cognitive computing technologies in the construction industry, enabling them to surmount obstacles and 

maximize the potential benefits of these innovative solutions. 

6.1. Limitations and Future Research 

Subsequent investigations must aspire for a more extensive geographical scope and maybe utilize longitudinal 

research methods to document the progressive integration of cognitive computing in the construction sector throughout 
time. Furthermore, investigating how geographical variations influence the adoption hurdles for cognitive computing 
may provide further understanding of how these difficulties fluctuate in various scenarios. Through the integration of 
these useful suggestions and the recognition of the constraints concerning the generalizability and extent of the present 
investigation, this study not only adds to the body of knowledge regarding cognitive computing in the construction 
sector but also provides practitioners with important takeaways. As indicated, future research directions will deepen our 

knowledge of how cognitive computing technologies may be applied successfully in various construction project 
scenarios, which will eventually impel the sector towards increased operational effectiveness and technical innovation. 
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