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Abstract 

The dynamic modulus (|E*|) of hot-mix asphalt (HMA) is a crucial mechanistic characteristic essential in defining the strain 

response of asphalt concrete (AC) mixtures under varying loading rates and temperatures. This paper aims to conduct a 

comprehensive investigation of classical machine learning (ML) and deep learning (DL) algorithms as applied to the 

prediction of |E*| and compare their performance with renowned |E*| regression models (Witczak NCHRP 1-37A, Witczak 

NCHRP 1-40D, and Hirsch). Eight state-of-the-art ML and DL algorithms are attempted with diverse structures, including 

multiple linear regression (MLR), decision trees (DT), support vector regression (SVR), ensemble trees (ET), Gaussian 

process regression (GPR), artificial neural networks (ANN), recurrent neural networks (RNN), and convolutional neural 

networks (CNN). A comprehensive database was assembled, incorporating 50 AC mixtures, of which 25 were from the 

Kingdom of Saudi Arabia and 25 were from the state of Idaho, USA. This database encompasses an extensive dataset of 

3,720 |E*| measurements, associated with thirteen input features representing the proposed AC mixtures’ aggregate 

gradations, binder characteristics, and volumetric properties. This pioneering study surpasses existing research by 

examining various algorithms to predict |E*| on the same dataset, applying them with different structures and individual 

optimization to achieve optimal performance. The developed models are evaluated based on multi-stage assessment criteria, 

including the accuracy and complexity performance measures and rationality based on a sensitivity analysis. The multi-

stage comparative analysis results reveal that the bagging ETs, GPR with exponential kernel, and DT record the highest 

prediction accuracy; however, only the bagging ETs yield the highest accuracy, lowest training and testing complexity, and 

rational trends throughout the sensitivity analysis. The research outcome has the potential to provide pavement engineers 

with advanced tools for predicting |E*| and, therefore, optimizing pavement designs and rehabilitations. 
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1. Introduction 

Hot-mix asphalt (HMA) forms the backbone of transportation infrastructure, providing smooth and durable surfaces 

upon which people rely for safe and efficient travel. Ensuring the longevity and performance of HMA under various 

conditions necessitates accurate prediction of its mechanical properties. Among these properties, dynamic modulus 

(|E*|) stands as a crucial parameter, representing the temperature- and frequency-dependent stiffness of HMA [1]. |E*| 

holds fundamental importance within linear viscoelastic materials, particularly in the context of HMA. This critical 

parameter is determined under continuous haversine loading conditions in the frequency domain, defined 

mathematically as the absolute value of the complex modulus (E*) [2, 3].  
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The significance of |E*| in predicting pavement performance and assessing the response of asphalt structures is 
underscored by its integration into the Mechanistic-Empirical Pavement Design Guide (MEPDG) framework and its 
associated AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software. |E*| has been integrated within 

this framework as a critical input parameter for mechanistic response estimation and empirical performance prediction. 
However, the availability of |E*| values may be limited for projects of lower functional class. To address this, the 
MEPDG offers a hierarchical structure of inputs, ranging from level 1 (direct laboratory measurement) to levels 2 and 
3 (empirical estimation based on mixture volumetrics and binder properties) [4, 5].  

Existing testing methods for |E*|, such as laboratory-based dynamic modulus tests, are well-established but are also 
known for their drawbacks, including their time-consuming nature, high costs, and labor-intensive procedures [6]. These 

challenges often restrict practitioners from obtaining reliable |E| measurements during early design stages, particularly 
when materials are unavailable or when dealing with lower-class pavement projects. To mitigate these constraints, 
researchers have sought alternative methods to estimate |E| accurately, giving rise to a range of empirical and statistical 
models [7, 8]. 

Among these, regression-based predictive models have played a pivotal role in the evolution of |E| estimation [9]. 
For example, the viscosity-based (η) Witczak model, introduced under the National Cooperative Highway Research 

Program (NCHRP) 1-37A, is a foundational predictive tool incorporating asphalt mixture properties to estimate |E|. 
Developed using a robust dataset of 2,750 |E*| measurements from 205 HMA mixtures, this model has been instrumental 
in pavement design for decades [10]. Building on this, Bari and Witczak extended the model into the NCHRP 1-40D 
framework, incorporating advanced parameters such as shear modulus (G*) and phase angle (δ) to improve its accuracy 
[11]. These models were later selected as global prediction models of |E*| for the MEPDG’s levels 2 and 3 analysis.  

In parallel, models such as Hirsch and Alkhateeb have provided additional alternatives for |E| estimation. The Hirsch 

model, which utilizes fewer input variables, demonstrated superior performance under specific conditions and became 
a popular choice for quick and practical applications [10, 12-14], while the Alkhateeb model combined parallel and 
series composite theories to describe asphalt concrete behavior, offering reduced input requirements without sacrificing 
prediction quality [15]. These empirical models remain widely adopted due to their simplicity and accessibility; 
however, their reliance on predefined relationships limits their ability to capture nonlinearities inherent in asphalt 
mixture behavior. 

Despite the deployment of these regression-based models, there has been growing recognition of the need to address 
their limitations. Traditional approaches often fail to adapt to the variability of asphalt mixtures and their response to 
diverse environmental and loading conditions. Consequently, research has increasingly turned to data-driven techniques, 
particularly machine learning (ML) and deep learning (DL), which have shown substantial promise in improving |E| 
prediction accuracy. These methods excel in uncovering complex, nonlinear patterns within datasets, allowing them to 
model intricate interactions between material properties and external factors. For instance, recent advancements in ML 

include hybrid optimization techniques such as the artificial hummingbird algorithm, which has been applied to boosted 
tree models to achieve enhanced accuracy and efficiency in |E| prediction [16]. Similarly, the application of artificial 
neural networks (ANNs) tailored for specific contexts, such as Colombian asphalt mixtures, has demonstrated the 
adaptability of DL methods to regional material characteristics and conditions [17]. 

Moreover, preprocessing and postprocessing strategies for refining input features have been introduced, offering 
significant improvements in model performance. For example, preprocessing methods that optimize feature extraction 

and noise reduction have proven particularly valuable for dynamic modulus datasets, as highlighted in recent work by 
researchers developing |E| data refinement protocols [18]. These advancements underscore the growing potential of ML 
and DL in overcoming the constraints of traditional regression models, paving the way for more accurate and scalable 
|E| prediction frameworks. Table 1 summarizes the ML- and DL-based models developed in recent studies. 

Table 1. Previous |E*| ML predictive models from the literature 

Predictive Model References 

Regression models 
Zhang et al. [9], Khattab et al. [11], Al-Tawalbeh et al. [15], 

Sakhaeifar et al. [19], Singh et al. [20], and Chen et al. [21]  

Decision trees, random forest, M5P tree models Behnood & Daneshvar [22] and Daneshvar & Behnood [23] 

Ensemble trees (ET) Barugahare et al. [10] and Awed et al. [24] 

Support vector regression (SVR) Liu et al. [25] and Hu & Solanki. [26] 

Gaussian process regression (GPR) Uwanuakwa et al. [27] 

Artificial neural networks (ANN) 
El-Badawy et al. [14], Ceylan et al. [28-30], Gong et al. [31], 

Ghasemi et al. [32], Rezazadeh Eidgahee et al. [33], Zhang et al. 

[34], Barugahareet al. [35], Mohammadi Golafshani et al. [36] 

DL: convolution neural networks (CNN) Moussa & Owais [37] 

DL: deep residual neural networks (RNN) Moussa & Owais [38] 

Comparison: SVR, kernel ridge regression (KRR), ANN, GPR, 

gradient boosting (GB), and eXtreme gradient boosting (XGBoost) 
Liu et al. [39] 
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While considerable advancements have been made in predicting the |E| of HMA using traditional regression-based 
and emerging ML models, several critical gaps remain. First, most existing studies focus on a limited range of either 
classical ML or DL models, often neglecting to compare their predictive performance across diverse climatic conditions 

systematically. Second, the trade-offs between model accuracy, computational complexity, and practical applicability 
are rarely addressed, leaving practitioners without clear guidance on the most suitable methods for different scenarios. 
Third, there is a limited exploration of integrating advanced data preprocessing techniques and hybrid optimization 
algorithms, such as ensemble-based methods, to enhance the performance of ML/DL models. 

To address these gaps, this study aims to provide a comprehensive benchmarking of classical (24 algorithms) and 
deep ML models (9 algorithms) for |E| prediction across three distinct datasets and climatic conditions. This study seeks 
to bridge the gap between theoretical advancements and practical applications in pavement engineering by evaluating a 
broader range of models and incorporating advanced data-driven techniques. These datasets were based on the 

knowledge gained from the Witczak NCHRP 1-37A η-based, Witczak NCHRP 1-40D G, δ-based, and Hirsch G*-based 
models. Unlike previous research, our study evaluates each model not only based on prediction accuracy but also 
considers the computational complexity and practical applicability of each algorithm, providing an understanding of the 
trade-offs involved. By doing so, the ultimate goal was to provide practitioners in the field of pavement engineering 
with enhanced tools for predicting |E*| with higher accuracy. To achieve this aim, the following specific objectives were 
defined: 

 To compile and aggregate three distinct datasets, comprising 3,720 |E| measurements, from diverse climatic 
conditions in Saudi Arabia (hot climate) and Idaho (cold climate). These datasets were derived from established 

predictive models, including Witczak 1-37A (η-based), Witczak 1-40D (G, δ-based), and Hirsch (G*-based). 

 To implement and benchmark a comprehensive range of predictive models, including 24 classical ML algorithms 

(e.g., linear regression, support vector regression, ensemble methods) and 9 DL architectures (e.g., convolutional 
and recurrent neural networks). 

 To fine-tune the developed models through a meticulous optimization process involving their hyperparameter 
adjustments and structural refinements to improve their prediction performance. 

 To systematically compare models based on multiple performance metrics, including prediction accuracy, 
computational complexity, and practical applicability, to provide practitioners with actionable insights into the 
trade-offs involved. 

This study stands as an exceptional comparative analysis of regressors in predicting |E∗| using the same dataset and 
optimizing the performance of each regressor individually to achieve optimal performance. 

2. Methodology Framework 

The methodology framework of this research consists of four steps, as demonstrated in Figure 1. In the first step, the 
|E*| database comprising 3,720 response features was retrieved from KSA and Idaho state Superpave AC mixtures. The 
collected datasets for 13 input features were thoroughly cleansed and pre-processed for the subsequent steps. 

 

Figure 1. Methodology Framework 
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In the second step, the |E*| database was recategorized into three distinct databases based on the predictive models: 

Witczak NCHRP 1-37A ƞ-based, Witczak NCHRP 1-40D G*, δ-based, and Hirsch G*-based. As data preprocessing 

and preparation for the modeling step, the following stages were implemented: a lognormal transformation of the 

response variable (|E*|), min-max normalization scaling of the entire datasets (input and response features), and lastly, 

dividing each dataset into ten folds, as recommended for large databases, for ML and DL models training and testing to 

eliminate bias in reporting the modeling performance. 

In the third step, various classical ML and DL regressors were developed to predict the base sections over three 

different runs. The parameters of each regressor were fine-tuned based on prediction accuracy. The developed classical 

ML regressors included multiple linear regression (MLR), decision trees (DT), SVR, ET, GPR, and ANN. Moreover, 

different CNN and RNN DL structures were developed.  

Lastly, the performance of the developed algorithms across the different databases was evaluated and compared 

using a multi-stage assessment framework encompassing accuracy, complexity, and rationality measurements of 

effectiveness. The results obtained were further compared to those of previously developed regression and ANN models. 

Accordingly, comprehensive conclusions were derived from the achieved results to address the primary research 

questions outlined in the research gap and objectives section. 

2.1. Data Description and Preprocessing 

To conduct the intended investigation and achieve the main objectives of the study, 3720 |E*| measurements were 

retrieved from 50 Superpave AC mixtures from KSA and Idaho records. These records contain a diverse range of 

aggregate gradations and binder performance grades that cover different climatic regions in both KSA and Idaho. 

Moreover, the dataset comprises a total of 13 continuous features, detailed in Table 2. These features cover different 

binder inputs’ levels (i.e., cases) based on the pavement mechanistic-empirical (ME) design as follows: level 1a of 

conventional binder data, level 1b of Superpave performance grade binder, and level 3 of default binder data. For more 

details regarding the characteristics of the AC mixtures, please refer to [11, 14]. 

Table 2. Description of Database Features 

Factor Unit NCHRP 1-37A NCHRP 1-40D Hirsch Min. Max. Avg. Std. 

Loading Frequency (f) Hz ✓ - - 0.02 3.98 1.10 1.40 

Binder Viscosity (η) cP ✓ - - 3.7E+05 2.7E+12 5.9E+11 1.1E+12 

Effective Binder Content, by volume (Vbeff) % ✓ ✓ - 8.09 15.97 10.45 1.15 

Air Voids in the Mix (Va) % ✓ ✓ - 0.98 9.61 5.49 2.37 

Cumulative Retained Weight on 1.9 cm (ρ34) % ✓ ✓ - 0.00 23.00 3.68 6.76 

Cumulative Retained Weight on 0.95 cm (ρ38) % ✓ ✓ - 10.50 58.20 24.47 12.52 

Cumulative Retained Weight on Sieve No. 4 (ρ4) % ✓ ✓ - 37.40 66.70 49.39 8.53 

Amount Passing a Sieve No. 200 (ρ200) % ✓ ✓ - 3.28 8.20 5.07 1.04 

Complex Shear Modulus (G*) psi - ✓ ✓ 0.06 18164.1 2051.63 3630.9 

Phase Angle (δ) ° - ✓ ✓ 3.44 87.23 50.77 20.91 

Voids in Mineral Aggregated (VMA) % - - ✓ 11.95 23.53 15.95 2.44 

Voids in Mineral Aggregated Filled with Asphalt 

Binder (VFA) 
% - - ✓ 49.56 92.04 66.83 11.47 

Contact Volume (Pc) % - - ✓ 0.01 0.73 0.22 0.20 

Dynamic Modulus (|E*|) 
Psi 

Response 
2.16 E+03 5.09 E+06 1.15 E+06 1.23 E+06 

MPa 1.49 E+01 3.51 E+04 7.93 E+03 8.49 E+03 

The preprocessing of the datasets included the following:  

(1) The database was categorized into three datasets based on the well-known |E*| predictive models: 

The Witczak NCHRP 1-37A ƞ-based [14]: 

𝑙𝑜𝑔10 𝐸∗ = −1.249937 + 0.02923(𝜌200) − 0.00176(𝜌200)2 − 0.002841𝜌4 − 0.058097𝑉𝑎 − 0.802208
𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
+

{
[3.871977−0.0021𝜌4+0.003958𝜌38−0.000017𝜌38

2 +0.00547𝜌34]

[1+𝑒(−0.603313−0.313351 𝑙𝑜𝑔 𝑓−0.393532𝑙𝑜𝑔𝜂) 
}  

(1) 

Witczak NCHRP 1-40D G*, δ- based [14]: 
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log10𝐸 ∗ = 0.02 + 0.758 (|𝐺𝑏
∗|−0.0009) × (6.8232 − 0.03274𝜌200 + 0.00431𝜌200

2 + 0.0104𝜌4 − 0.00012𝜌4
2 +

0.00678𝜌38 − 0.00016𝜌38
2 − 0.0796𝑉𝑎 − 1.1689 (

𝑉𝑏𝑒𝑓𝑓

𝑉𝑎+𝑉𝑏𝑒𝑓𝑓
)) +

1.437+0.03313𝑉𝑎+0.6926(
𝑉𝑏𝑒𝑓𝑓

𝑉𝑎+𝑉𝑏𝑒𝑓𝑓
)+0.00891𝜌38−0.00007𝜌38

2 −0.0081𝜌34 

1+𝑒
(−4.5868−0.8176𝑙𝑜𝑔|𝐺𝑏

∗ |+3.2738𝑙𝑜𝑔𝛿)
  

(2) 

Hirsch G*-based Model [14]: 

𝐸∗ = 𝑃𝑐 [4,2000,000 (1 −
𝑉𝑀𝐴

100
) + 3|𝐺∗| (

𝑉𝐹𝐴×𝑉𝑀𝐴

10,000
)] + (1 − 𝑃𝑐) × [

1−
𝑉𝑀𝐴

100

4,2000,000
+

𝑉𝑀𝐴

3×𝑉𝐹𝐴×|𝐺∗|
]

−1

   (3) 

(2) The lognormal transformation was applied to the response variable to deal with the dataset imbalance and 

skewness, thus mitigating the impact of data skewness on ML and DL predictions and enhancing their overall 

performance. It has been widely employed for fitting originally continuous and positively skewed data 

distributions into a normal distribution to meet the normality assumption [40-42]. Such transformation is easy to 

perform, requires minimal expertise, and is computed using the following equation [40]: 

|E*| 
t
= log

10
(|E*|)  (4) 

where |E*| 
t
 is the logarithmically transformed dynamic modulus. 

(3) Min-max normalization was used for the three proposed datasets to address data variability since features 

encompass a wide variety of ranges. This method is widely recognized for achieving superior performance 

compared to other scaling techniques [43, 44]. This technique rescales input/output features from their original 

range to a new range of values, thereby converting all features to a fixed range while maintaining the original 

interval. Usually, the new scale lies between 0 to 1. The transformation is often achieved using a linear 

interpretation formula and calculated as presented in the following equation [45]: 

min- max(xif) =
xif  - min (f)

max(f)-min(f)
  (5) 

where xif is the value of the feature that is considered for normalization at observation i, min- max(xif) is the 

normalized value of the feature at observation i, and min(f) and max(f) are the minimum and maximum values of 

the feature, respectively.  

(4)  Lastly, prior to fitting the regressors to the |E*| dataset, the whole dataset was split 70% for training and 

underwent k-folds (10-folds) cross-validation, and the remaining 30% unseen datasets were kept aside for testing. 

This was performed to mitigate biases in testing results and compare unbiased results fairly between the proposed 

algorithms. Consequently, the issue of overfitting was avoided, and the generalization capability of the proposed 

predictive models was enhanced. The dataset was partitioned into k-subsets for training purposes; each subset 

was reserved while training the model over the remaining subsets in a loop that covered all subsets. 

2.2. ML and DL Predictive Models 

Machine learning modeling has revolutionized pavement engineering, propelling it into a new era of problem-solving 

and innovation by harnessing the power of artificial intelligence [46-50]. In the third step, multiple ML regressors were 

developed, and their hyperparameters and structures were fine-tuned based on prediction accuracy and complexity. This 

study encompassed six classical ML algorithms and two DL algorithms with varying structures and hyperparameters to 

compare the previously developed regression and ANN models comprehensively. The chosen methods include MLR, 

DT, SVR, bagging and boosting ET, GPR, feed-forward multilayer perceptron ANN, CNN, as well as RNN. For model 

development, training and testing were conducted using the Scikit-learn ML library, TensorFlow, Keras, and PyTorch 

DL libraries integrated into the Python programming language within the Jupyter Notebook platform. Additionally, each 

model’s parameters were fine-tuned to select the optimal configuration for each tested algorithm. The following section 

provides the theoretical background for each regressor and details the parameters tested for each algorithm. 

2.2.1. Classical ML Models 

(1) MLR: is considered as the process of fitting models to data under the assumption that the relationship between 

the feature values and the target values is linear. MLR is the oldest and the most widely used approach among 

ML-based predictive models [51]. It assesses the strength of the relationship between the target and a series of 

changing variables [52]. In the MLR algorithm, the target is assumed to be a dependent variable, and the features 

are the variables’ dataset matrix. Different MLR structures were assessed, including the simple linear, 

interactions linear, robust linear, and stepwise linear regression [53]. 
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(2) DTs: are statistical supervised classical ML algorithms that utilize conditional probabilities to look for the 

relationship between features [54]. DTs are common due to their intelligibility and implementation ease [55]. 

DT comprises a hierarchy of nodes in a tree configuration. The most informative feature was utilized to partition 

the input data recursively, growing it into new branches. Then, the nodes in each new branch split again based 

on pre-specified criteria. The splitting proceeds till meeting stopping criteria or reaching a terminal node where 

the data is ideally pure [56]. Once the tree is constructed, it could be used for prediction by following the path 

from the root to the leaf node. To fine-tune the DT model, the commonly considered minimum leaf size 

parameter was varied to compare DT performance under different levels of regularization representing the 

minimum number of samples required in a leaf node. The minimum leaf size was set to 4, 12, and 36, 

representing fine, medium, and coarse regression trees. 

(3) SVR: is a common supervised ML algorithm that has proved its efficiency in multiple pavement performance 

and condition prediction with low generalization errors and results interpretation [57]. Through modeling SVR, 

a hyperplane was constructed in a high-dimensional feature space to seek the best approximation of the 

relationship between input and target features. The best approximation is found by minimizing the distance 

between the hyperplane and the input training datapoints [58]. To do so, a kernel was used to transform the input 

features space, which consists of a subset of the training dataset, known as support vectors. In this research, six 

kernel functions were developed and investigated, including linear (1st-degree linear polynomial), quadratic (2nd-

degree quadratic polynomial), and cubic polynomials (3rd-degree cubic polynomial), fine (Radial Basis Function 

“RBF” SVR, Kernel scale of 0.71), medium (RBF SVR, Kernel scale of 2.8), and coarse (RBF SVR, Kernel 

scale of11) Gaussian kernels. 

(4) ET: forms a combination of multiple weaker regressors in an ensemble, providing more accurate predictions 

[59]. It proved its efficiency in pavement performance prediction applications [60]. There are two main types of 

ETs, namely bagging and boosting. The main difference between them is the way the regressors are ensembled. 

In bagging, multiple models are created at the same time and then combined with replacement [25]. In boosting, 

data is partitioned into multiple subsets of the original data that was used to develop the model, then the 

performance is boosted by combining them through a specific cost function, and models are generated in a 

sequential manner [61]. In this research, bagging (random forests) and boosting ET, including gradient boosting 

(GBM), extreme (XGBoost), and light (LightGBM), were trained. The main difference is that GBM is an ET 

algorithm that builds an additive model by sequentially training a series of weak learners (typically DT) by 

utilizing gradient descent optimization to minimize the loss function. The XGBoost is a highly efficient and 

scalable algorithm that incorporates L1 and L2 regularization to control overfitting [62, 63]. 

Meanwhile, the LightGBM is another GBM algorithm that is designed for efficiency and speed. It uses leaf-

wise growth, which can be faster but may lead to overfitting if not controlled [64]. Through modeling, a grid 

search was conducted over multiple hyperparameters for the ETs, including (1) The number of estimators from 

0 to 500 with an increment of 100; a higher number of trees can enhance the model robustness but may also 

affect the training time, (2) The maximum depth (3, 5, 7, 9, 11, 15), greater the depth can capture more complex 

patterns but may also lead to overfitting, (3) The learning rate (0.01, 0.05, 0.1, 0.2), indicating the step size of 

each iteration, and (4) The number of leaves (31, 63), controlling number of leaf nodes in each decision tree, 

larger values allow more complex trees. The best parameters were found to be the number of estimators of 30, 

a learning rate of 0.1, the maximum depth of the individual trees of 3, and the maximum number of leaves per 

tree of 31. 

(5) GPR: GPR is a common supervised learning ML algorithm based on probabilistic nonparametric learning in 

which the output target is normally distributed [65]. It has proved its prediction efficiency in multiple successful 

pavement engineering applications [66]. It models the relationship between the input features and target using a 

GPR as a multivariate Gaussian distribution before the mean function parametrizes it. It is efficient for nonlinear 

data using kernel functions. Through the analysis, multiple kernels were adopted, including rational quadratic 

(with a length scale of 1), squared exponential (RBF with a length scale of 1), Matern 5/2 (with a length scale 

of 1), and exponential (with a length scale of 2). 

(6) ANN: a multilayer perceptron (MLP), is a common supervised learning ML algorithm. ANN was sufficiently 

used in various pavement engineering applications [67]. It consists of multiple layers of neurons. Each layer is 

composed of a set of nodes that are fully connected with the previous layer. The weights of the connections 

between the layers are trained and updated using a training algorithm. The activation function is deployed in the 

neuron arrangement to vary the input features and their impact on the target using the weight inputs. In this 

research study, one input layer was used containing eight nodes for the 1-30A and 1-40D datasets and five for 

the Hirsch dataset (based on the number of input features), one and two hidden layers were attempted, and the 

number of neurons was varied from 10 to 50 with an increment of 5, the solver (optimizer) was set to Adam, 

and three activation functions were attempted including Logistic (Sigmoid), Tanh, Relu to fine-tune the MLP 

results and one output layer that produces the final target layer (the HMA |E*|). 
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2.2.2. DL Models 

(1) CNN: One of the most utilized types of distinctive DL architecture is the CNN [68]. CNNs are designed for 

processing grid-structured data, like images, videos, and sequential data. In CNN, each module contains a 

sequence of convolutional layers, pooling layers, densifying (fully connected layers), activation layers, dropout, 

and batch normalization layers. Generally, the modules (layers) are stacked one on top of the other or with a 

deep neural network on top to form a deep model [69]. CNN can be grouped into different architectures, each 

with a unique structure and variations in the number and arrangement of layers. In this research, the most widely 

used and common CNN structures were tested, and their structures were optimized, including LeNet-5, AlexNet, 

VGGNet, GoogLeNet (Inception), Residual Network (ResNet), ResNeXt, Dense networks (DenseNet), and 

EfficientNet, as listed in Table 3. 

Table 3. CNN Structures 

Structure Structure (Layers) Description 

Deep CNN 

Model Initialization, Convolutional Layer (filters=512, kernel size=3, activation= Relu), Max-Pooling Layer (pool size=2), 

Convolutional and two Max-Pooling Layers (filters =256, pool size=1), Global Average Pooling Layer, Dense Layers (neurons= 

512, 256, 125, activation= ReLU, linear), Output Layer. 

LeNet-5 

[70, 71] 

Model Initialization, Convolutional Layer (filters=512, kernel size=3, activation= ReLU), Max-Pooling Layer (pool size=2), 

Convolutional and Max-Pooling Layers (filters =256, pool size=1), Flatten Layer, Dense Layers (number of neurons= 120, 

activation= ReLU, linear), Output Layer. 

AlexNet 

[72] 

Input Layer, Convolutional Layer (filters=96, kernel size=3, strides=4, activation= ReLU), Max-Pooling Layer (pool size=2, 

strides=2), Additional Convolutional Layers (filters =256, 384), Additional Max-Pooling Layers (pool size=1, strides=2), Flatten 

Layer, Dense Layers (neurons= 120, activation function= ReLU, linear), Dropout Layers (rate=0.5), Output Layer. 

VGGNet 

[73] 

Input Layer, Convolutional Layer (filters=128, kernel size=3, activation= ReLU), Max-Pooling Layer (pool size=2, strides=2), 

Flatten Layer, Dense Layers (neurons= 256, 128, activation function= ReLU, linear), Dropout Layers (rate=0.5), Output Layer. 

GoogLeNet 

(Inception) [74] 

Input layer, convolutional layer (filters= 32, kernel size= 3, activation= Relu), Two Inception modules (filters=64), max-pooling 

and dropout layers, Two more Inception modules (filters=128), Max-pooling and dropout layers, Flatten Layer, 

Two fully connected layers (neurons=256, activation= ReLU, Dropout), Output layer. 

ResNet 

[75] 

Input layer, convolutional layer (filters=128, kernel size= 3, padding), Two residual blocks (filters=128, kernel size= 3), Flatten 

Layer, fully connected layer (neurons=128, activation= ReLU, L2 regularization), Dropout Layers (rate=0.5), Output layer. 

ResNeXt 

[76] 

Input layer, 1D convolutional layer (filters=64, a kernel size= 7, strides=2), ReLU activation, Max-pooling (pool size= 3, strides= 

2). Three residual blocks are stacked: The first block (filters=64, kernel size=3, cardinality= 8), the second block (filters=128, 

kernel size=3, cardinality= 8), and the third block (filters=256, kernel size=3, cardinality= 8), global average pooling after each 

block, fully connected layer (neurons=256, activation= ReLU), Dropout Layer (rate=0.5), Output layer. 

DenseNet 

[77] 

Input layer, convolutional layer (filters=512, kernel size= 3, activation= ReLU), Three dense blocks, and two transition blocks 

are stacked: Dense Blocks: two convolutional layers (filters=128, kernel size=3, activation= ReLU, and dropout rate=0.2), 

Transition Blocks: convolutional layer (filters=256, activation= ReLU, Max-pooling pool size= 2, dropout rate = 0.2), Flatten 

layer, fully connected layer (neurons=256, activation= ReLU), Dropout Layers (rate=0.5), Output layer. 

EfficientNet 

[78] 

Input layer, convolutional layer (filters=32, kernel size= 3, activation= ReLU), convolutional layer (filters=64, kernel size= 3, 

activation= ReLU), Max-pooling (pool size= 2), Two consecutive blocks of convolutional layers: two convolutional layers 

(filters=128, kernel size= 3, and activation= ReLU), three convolutional layers (filters=256, kernel size= 3, and activation = 

ReLU), max-pooling (pool size= 2), three convolutional layers (filters=512, a kernel size = 3, activation= ReLU), Global average 

pooling layer, fully connected layer (dense, neurons= 512, activation= ReLU ), Dropout Layers (rate=0.5), Output layer. 

(2) RNN: RNN is another class of DL designed for processing sequential data. RNNs have an internal memory that 

allows them to maintain information about past observations and use it to make predictions or decisions at each 

time step [79]. Thus, they are well-suited for tasks where the order and context of data points matter, such as 

natural language processing, time series analysis, and more. Like CNN, RNN consists of a sequence of layers 

grouped for a specific purpose. These modules (layers) are stacked one on top of the other or with a deep neural 

network on top of it to form an RNN model [69]. RNN can be grouped into different architectures, each with a 

unique structure and variations in the number and arrangement of layers. In this research, the most widely used 

and common RNN structures were tested, and their structures were optimized, including Vanilla RNN [80], 

Long Short-Term Memory (LSTM) [81], Gated Recurrent Unit (GRU) [82], and Deep RNN (Table 4). 

Table 4. RNN structures 

Structure Layers 

Vanilla RNN 
Three SimpleRNN layers are stacked (number of units =128, 64, 32), Dropout Layers (rate = 0.2), Two Dense 

layers (number of units =16,1, activation = ReLU). 

LSTM 
Three LSTM layers (number of units = 128, 64, 32), Dropout Layers (rate = 0.2), Two Dense layers (number of 

units =16,1, activation = ReLU). 

GRU 
Three GRU layers (number of units =128, 64, 32), Dropout Layers (rate = 0.2), Two Dense (number of units 
=16, 1, activation = ReLU). 

Deep RNN Four LSTM layers (number of units =128, 64, 32, 16), Dropout Layers (rate=0.2), Dense Layer (one unit). 
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2.3. Assessment Criteria 

During the fourth step of the proposed framework, the performance of the aforementioned ML and DL predictive 

models was evaluated based on multi-stage assessment criteria, which included different assessments such as models’ 

accuracy, modeling complexity, and predictions’ rationality. Prior to the assessment, a reverse lognormal transformation 

and reverse min-max normalization were implemented to make a fair parallel comparison between the actual and 

predicted observations on an arithmetic scale. Then, the initial stage of the ML models assessment focused on computing 

multiple widely used accuracy performance measurements of effectiveness (MOE), including the root mean square error 

(RMSE), mean absolute error (MAE), and coefficient of determination (R2) to judge the models’ performance as follows 

[83]: 

MSE= 
1

𝑛
∑ (�̂�𝑡 − 𝑦𝑡)2𝑛

𝑡=1   (6) 

MAE = 
1

𝑛
∑ |�̂�𝑡 − 𝑦𝑡|𝑛

𝑡=1   (7) 

𝑅2 = 1 −
The sum of Squared Residuals (SSR)

Total Sum of Squares (TSS)
= 1 −

∑ (𝑦𝑡−�̂�𝑡)2
𝑡=1

∑ (𝑦𝑡−�̄�)2
𝑡=1

  (8) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑊𝑖 × 𝑥𝑖
+  + 𝑊𝑖 × (1 − 𝑥𝑖

−) (9) 

where n is the number of records, �̂�𝑡 is the predicted response, 𝑦𝑡  is the measured response, �̄� is the average of measured 

response, 𝑊𝑖 is the importance weight assigned for each evaluation criterion, 𝑥𝑖
+ is the normalized criteria that higher 

values are preferable as the 𝑅2 and the models’ prediction’s rationality, and 𝑥𝑖
− is the normalized criteria that lower 

values are preferred as the error rates, time, and other complexity measures. RMSE represents the square root of the 

average squared differences between predicted and actual values; a lower RMSE indicates better predictive performance. 

MAE represents the average of the absolute differences between predicted and actual values; a lower MAE signifies 

better predictive accuracy. R2 represents the proportion of the variance in the dependent variable that is explained by the 

independent variables; a higher R2 value suggests a better fit of the model to the data. 

The second stage of the assessment process focused on recording the time required for training the different ML and 

DL models as an indication of the modeling complexity. The reported time is in minutes. Based on the reported 

prediction accuracy and complexity performance measures, a thorough comparison was conducted between the 

developed model and the ones reporting the best performance, as well as previously developed regression and ANN |E*| 

predictive models. 

In the third stage of the assessment of ML and DL models, after evaluating the accuracy and complexity of the 

models, a sensitivity analysis of the prediction results was performed to assess the prediction rationality, the impact of 

the considered features on |E*|, and to predict potential overfitting or memorization of regressors. It is anticipated that a 

model will demonstrate an outstanding performance in terms of modeling accuracy and outperform other modeling 

algorithms. However, the sensitivity analysis may reveal unexpected trends, indicating that model failure is attributed 

to potential overfitting during the modeling process. Thus, sensitivity analysis aids in excluding irrational models. Four 

features were assessed for each dataset. A rationality score ranging between 0 and 1 was assigned to each model based 

on its trends, where 0 demonstrated that the model could not follow the expected trend over all four features, and one 

indicated that the features could capture the accurate trend in all the investigated features.  

Lastly, a weighted average was computed for each performance measure to find its overall performance based on 

the pre-specified multi-objective criteria. An equal weight of 16.67 % was assigned for each criterion since this research 

focuses on assessing the accuracy and complexity trade-offs as well as modeling rationality. 

3. Results and Discussion 

3.1. ML Prediction Accuracy and Complexity Performance Results 

This section presents a summary and discussion of the accuracy and complexity performance results obtained for all 

regressors developed in this study for the |E*| predictions. Results were reported for the three datasets of input features 

(i.e., Witczak NCHRP 1-37A, Witczak NCHRP 1-40D, and Hirsch) for each regressor separately. Then, the regressors 

with optimized structures and hyperparameters were compared to each other. Figure 2 demonstrates the obtained results 

for the fine-tuning of the regressors hyperparameters and structures in terms of prediction accuracy (RMSE, MAE, and 

R2) and complexity (training and testing times). 

3.1.1. Classical ML Models 

(1) MLR: Four diverse structures of MLR models were attempted, namely simple linear, interactions linear, robust 

linear, and stepwise linear regression, as illustrated in Figure 2-a. Among these, the interactions linear regression model 

consistently demonstrated superior predictive accuracy, achieving the highest R² values of 0.57, 0.77, and 0.79 for the 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

84 

 

1-37A, 1-40D, and Hirsch datasets, respectively. This performance highlights the importance of incorporating 

interaction terms to capture relationships between input features, particularly in more complex datasets like 1-40D and 

Hirsch, which include binder-specific parameters such as G* and δ. 

While the robust linear regression model accounted for potential outliers in the datasets, its predictive performance 

was notably lower, with R² values ranging from 0.40 to 0.68 across the datasets. This indicates that the robust method's 

emphasis on minimizing the influence of extreme values may overly simplify dynamic modulus relationships, 

particularly in datasets with intricate feature interactions. The Hirsch dataset consistently achieved the highest R² values 

across all linear regression models, followed by the 1-40D and 1-37A datasets. This trend reflects the added predictive 

power of features like G* and δ in the Hirsch dataset, compared to the more volumetric-focused features of 1-37A. The 

consistent R² values around 0.77–0.79 for interactions linear regression on the Hirsch and 1-40D datasets demonstrate 

that linear models, even with limited complexity, can effectively predict |E*| when datasets include well-structured, 

physically meaningful features. 

In terms of computational complexity, all linear regression models demonstrated exceptional efficiency, with 

training times between 0.01 and 0.02 minutes and testing times around 0.002 minutes across all datasets. This makes 

linear regression a viable option for large-scale or time-sensitive projects requiring rapid dynamic modulus predictions. 

(2) DT: Three distinct DT model configurations were aimed by changing the minimum leaf size parameter, 

classified explicitly as fine, medium, and coarse DT, as shown in Figure 2-b. Across all datasets, the fine DT model 

consistently demonstrated the best predictive performance, achieving the highest R² values of 0.93, 0.94, and 0.94 for 

the 1-37A, 1-40D, and Hirsch datasets, respectively. The fine DT’s superior accuracy can be attributed to its smaller 

leaf size (minimum leaf size = 4), which enabled it to capture intricate variations in the input-output relationships. This 

level of granularity was particularly effective for datasets like 1-40D and Hirsch, where complex binder parameters 

(e.g., G* and δ) require models that are sensitive to subtle feature interactions. 

In terms of computational complexity, the fine DT demonstrated remarkable efficiency, with training times ranging 

from 0.01 to 0.02 minutes and testing times of approximately 0.001 minutes across all datasets. This computational 

advantage makes fine DT models highly practical for real-world applications where rapid predictions are essential. 

While slightly less accurate with R² values ranging from 0.88 to 0.92, the medium and coarse DT configurations still 

performed competitively and maintained comparable computational efficiency, suggesting their potential suitability for 

simpler prediction tasks or scenarios with less variability in input features. The high and consistent R² values across all 

datasets indicate that DT models effectively captured key input-output relationships. However, the slightly reduced R² 

for coarse DT models suggests a loss of predictive precision due to their larger minimum leaf size, which limits the 

model’s ability to adapt to variations in the dataset. 

(3) SVR: In the investigation of the SVR models, six distinct configurations were experimented with by varying the 

kernel parameter (hyperplane), as demonstrated in Figure 2-c. These included linear polynomial, quadratic polynomial, 

cubic polynomial, fine gaussian, medium gaussian, and coarse gaussian SVR. Among these variations, the coarse 

Gaussian SVR consistently demonstrated superior performance across all datasets, achieving the highest R² values of 

0.72, 0.86, and 0.85 for the Witczak NCHRP 1-37A, 1-40D, and Hirsch datasets, respectively. Its kernel scale 

hyperparameter value of 11 allowed the model to effectively capture nonlinear relationships in the input-output mapping, 

particularly in feature-rich datasets like 1-40D and Hirsch. The medium Gaussian SVR showed competitive accuracy, 

with slightly lower R² values of 0.66 to 0.82 across the datasets, but demonstrated better generalizability than polynomial 

kernels, which consistently underperformed with R² values below 0.61. Polynomial kernels, particularly cubic, suffered 

from overfitting tendencies in datasets with high feature variability, as evidenced by their reduced accuracy and 

increased error metrics. 

In terms of computational complexity, coarse Gaussian SVR maintained a balance between performance and 

efficiency, with training times ranging from 0.23 to 0.44 minutes and testing times between 0.003 and 0.007 minutes. 

These values are notably efficient, given the nonlinear nature of the kernel function. Fine Gaussian SVR, while 

marginally faster, exhibited reduced accuracy, indicating that kernel scale optimization plays a crucial role in balancing 

prediction performance and computational cost. The consistent R² values for coarse Gaussian SVR across datasets 

highlight its adaptability to diverse input features, making it an ideal choice for predicting dynamic modulus in both 

binder- and volumetric-focused datasets. However, the slightly higher training times compared to linear models suggests 

its application might be better suited for scenarios where accuracy is prioritized over computational simplicity. 

(4) ET: Four ET structures were evaluated, each differentiated by data training and assembly approach variations. 

These encompassed bagging (random forest), GBM, XGBoost, and LightGBM, as represented in Figure 2-d. Among 

these, the bagging trees model emerged as the top performer across all datasets, achieving the highest R² values of 0.94, 

0.95, and 0.94 for the Witczak NCHRP 1-37A, 1-40D, and Hirsch datasets, respectively. The model’s optimal 

configuration, with a minimum leaf size of 8 and a learner count of 30 decision trees, allowed it to balance predictive 

accuracy and computational efficiency effectively. 
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The boosted tree models, including GBM, XGBoost, and LightGBM, demonstrated slightly lower R² values, ranging 

between 0.87 and 0.90 across the datasets. This marginal drop in accuracy highlights the additional complexity 

introduced by boosting techniques, which may not have been necessary for datasets where bagging could effectively 

capture the underlying data relationships. However, these models maintained high performance and demonstrated 

robustness, particularly in the Hirsch dataset, where ensemble methods had better model intricate binder and aggregate 

interactions. 

In terms of computational complexity, the bagging trees were notably efficient, with training times between 0.33 

and 0.44 minutes and a minimal testing duration of 0.01 minutes. While boosted models such as XGBoost and 

LightGBM required marginally longer training times, their rapid testing times (~0.01 minutes) and scalability make 

them attractive for real-time prediction scenarios. These models excel in scenarios with large-scale datasets due to their 

parallelized training capabilities, even though bagging maintained a slight edge in simplicity and interpretability. The 

consistent performance of bagging trees across datasets and their computational efficiency reinforces their practicality 

for practitioners seeking robust |E*| predictions with minimal resource requirements 

(5) GPR: Four distinguished GPR models were evaluated, each tailored by modifying the kernel parameter. These 

variants included Exponential, Squared Exponential, Matern 5/2, and Rational Quadratic GPR. Among these, the 

Exponential GPR model demonstrated the most consistent and superior performance across all datasets, achieving an 

impressive R² score of 0.95 across the Witczak NCHRP 1-37A, 1-40D, and Hirsch datasets, as shown in Figure 2-e. 

This high accuracy underscores the ability of the Exponential kernel to effectively capture the nonlinear relationships 

present in the |E*| datasets, particularly when dealing with the intricate binder and aggregate interactions emphasized in 

the 1-40D and Hirsch datasets. 

The other kernel configurations, including Squared Exponential, Matern 5/2, and Rational Quadratic, also achieved 

competitive R² values, consistently ranging between 0.94 and 0.95. However, the slightly better performance of the 

Exponential kernel can be attributed to its flexibility in handling variations in feature distributions and its capacity to 

generalize well across diverse datasets. 

In terms of computational complexity, the Exponential GPR model proved to be the most efficient within the GPR 

framework. Training times ranged from 138 to 227 minutes, and testing times varied between 0.14 and 0.25 minutes. 

While these durations are significantly higher than those of other models (e.g., DTs or SVR), they are justified by the 

high predictive accuracy achieved. This trade-off highlights GPR’s suitability for applications where precision is 

prioritized over computational simplicity. The consistency in R² values across all GPR kernels and datasets emphasizes 

the robustness of this modeling approach. However, the relatively long training times observed for all GPR 

configurations suggest that the practical deployment of these models may require optimization strategies, such as 

reducing dataset dimensionality or employing parallelized computing techniques. Overall, the Exponential GPR model 

emerged as the optimal choice for |E*| predictions when accuracy is critical, particularly for datasets that exhibit 

nonlinear behaviors. 

(6) ANN: A total of 54 Artificial Neural Network (ANN) configurations were evaluated by varying the number of 

hidden layers, neurons per layer, and activation functions (Sigmoid, Tanh, and Relu), as depicted in Figure 2(f). Among 

these configurations, the ANN with two hidden layers (45 neurons per layer) and a Relu activation function consistently 

emerged as the most effective across all three datasets. This configuration achieved R² values of 0.76, 0.87, and 0.86 for 

the Witczak NCHRP 1-37A, 1-40D, and Hirsch datasets, respectively. These results highlight the significance of 

selecting an optimal network depth and activation function for achieving robust predictions of |E*|. 

The superior performance of the Relu activation function can be attributed to its ability to mitigate the vanishing 

gradient problem, particularly in deeper networks. This advantage was further complemented by the use of two hidden 

layers, which balanced model complexity with the capacity to capture nonlinear relationships in the data. In contrast, 

models using Sigmoid or Tanh activations demonstrated relatively lower R² values, particularly for datasets with high 

variability (e.g., Hirsch), indicating that these activation functions struggled to capture the intricate feature interactions 

present in such datasets. While this optimal ANN configuration demonstrated strong predictive accuracy, it required 

longer computational times compared to classical ML models. Training times for the best ANN configuration ranged 

from 0.5 to 1.5 minutes, with testing durations consistently around 0.001 minutes across all datasets.  

The performance trends across different configurations emphasize the critical role of model architecture tuning in 

ANN development. While one-layer configurations exhibited faster training times, their reduced R² values suggest a 

lack of capacity to model the nonlinear dynamics of |E*|. Conversely, models with more than 50 neurons per layer 

showed diminishing returns in predictive accuracy, likely due to overfitting, as evidenced by slightly increased RMSE 

and MAE values. These findings underscore the importance of balancing network complexity with generalization 

performance. Overall, the ANN configuration with two hidden layers and Relu activation served as an optimal choice 

for |E*| prediction, particularly for datasets that require capturing complex binder and aggregate interactions. 
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3.1.2. DL Models 

(1) CNN: Nine distinct CNN architectures were evaluated to predict |E*| values, with structural variations explored 

across Deep CNN, LeNet-5, AlexNet, VGGNet, GoogLeNet (Inception), ResNet, ResNeXt, DenseNet, and 

EfficientNet, as showcased in Figure 2-g. The Deep CNN architecture consistently demonstrated superior performance 

across all three datasets. It achieved robust R² values of 0.84, 0.90, and 0.90 for the Witczak NCHRP 1-37A, 1-40D, 

and Hirsch datasets, respectively, highlighting its capacity to model complex nonlinear relationships inherent in |E*| 

prediction tasks. 

The high R² values of the Deep CNN reflect its ability to extract detailed feature representations through deeper layer 

hierarchies, which are particularly advantageous for datasets like 1-40D and Hirsch that incorporate intricate binder and 

aggregate properties. In comparison, LeNet-5 and AlexNet exhibited lower R² values (0.73 to 0.80), indicating their 

relatively shallow architectures are less effective for modeling the complexity of |E*| datasets. 

Training times for the Deep CNN ranged from 28 to 75 minutes, with testing durations spanning 0.03 to 0.35 minutes. 

While these training times are significantly longer compared to classical ML models, the superior accuracy achieved 

underscores the suitability of CNN architectures for high-stakes predictive modeling where precision is critical. 

EfficientNet, although achieving R² values comparable to DenseNet (0.86 to 0.88), exhibited marginally higher training 

times, suggesting that deeper and more complex CNN configurations may not always yield substantial accuracy 

improvements. 

Performance trends also highlight that lightweight architectures such as GoogLeNet and ResNet can achieve 

competitive results (R² ≈ 0.85 to 0.88) with reduced computational overhead, making them viable alternatives for 

practitioners seeking a balance between accuracy and efficiency. However, the consistent top performance of the Deep 

CNN across all datasets demonstrates its adaptability and effectiveness, particularly for scenarios involving detailed 

feature interactions like those present in the Hirsch dataset. These findings emphasize that while simpler architectures 

(e.g., AlexNet) may suffice for preliminary |E*| estimations, deeper architectures like Deep CNN are necessary for 

capturing intricate data patterns, especially in feature-rich datasets. Furthermore, the results indicate that advanced 

optimization strategies, such as reducing layer redundancy or exploring hybrid CNN frameworks, could further enhance 

computational efficiency without sacrificing accuracy. 

(2) RNN: Four Recurrent Neural Network (RNN) architectures, Vanilla RNN, Long Short-Term Memory (LSTM), 

Gated Recurrent Unit (GRU), and Deep RNN, were evaluated to predict |E*| values, with variations in their layer 

structures and configurations, as shown in Figure 2-h. Among these, the GRU RNN consistently emerged as the most 

effective model across all datasets, achieving R² values of 0.78, 0.88, and 0.88 for the Witczak NCHRP 1-37A, 1-40D, 

and Hirsch datasets, respectively. The high accuracy of GRU RNN highlights its ability to capture temporal and 

sequential relationships in the data, particularly in feature-rich datasets like 1-40D and Hirsch. 

The GRU architecture’s superior performance can be attributed to its efficient gating mechanism, which reduces 

computational complexity compared to LSTM while maintaining the capacity to model long-term dependencies. In 

contrast, the Vanilla RNN achieved lower R² values (0.73–0.85), likely due to its inability to manage gradient vanishing 

issues, which are critical in modeling complex |E*| relationships. Similarly, while the Deep RNN achieved comparable 

R² values (up to 0.88), its increased complexity resulted in longer training times without significant performance gains 

over GRU. 

In terms of computational efficiency, GRU demonstrated a balance between accuracy and training/testing times. 

Training times for GRU ranged from 170 to 370 minutes, while testing durations were between 0.2 and 1.2 minutes. 

Although these times are longer than those for CNNs and classical ML models, the GRU’s consistently high accuracy 

across all datasets justifies its application in scenarios where precision is paramount. LSTM, while slightly more 

complex than GRU, achieved similar R² values (0.75–0.88) but required marginally longer training times, indicating 

that GRU may be the more practical choice for |E*| predictions in most use cases. Overall, the GRU RNN stands out as 

the optimal RNN configuration for |E*| prediction, combining high accuracy with manageable computational 

requirements 

3.2. Actual Measurements versus Best-Performing Models’ Predictions 

Based on the prediction results visualized in Figure 2, a conclusion was reached regarding the optimal parameters 

used with each classical ML and DL algorithm and a ranking of all the ML techniques for the suitability of |E*| 

prediction. An additional investigation was conducted by plotting the actual |E*| measurements versus the predicted 

values generated by the proposed ML models. The comparisons of predicted results to the measured values (targets) of 

these finely tuned best-performing models are presented in Figure 3. The illustrated results demonstrate alignment with 

the conclusions reached in the preceding sections. 
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1-37A 1-40D Hirsch 

(e) Gaussian Process Regression  

 

1-37A 
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1-40D 

 

Hirsch 

(f) Feedforward MLPANN  
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1-37A 1-40D Hirsch 

(g) Convolutional Neural Networks
  

    
1-37A 1-40D Hirsch 

(h) Recurrent Neural Networks  

Figure 2. Performance Results of the Proposed Multiple-structured ML and DL Models 
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(a) Interactions Linear Regression (MPa)  

   

(b) Fine Regression Trees (MPa)  

   

(c) Coarse Gaussian Support Vector Regression (MPa)  
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(d) Bagged ETs (MPa)  

   

(e) Exponential GPR (MPa)  

   

(f) Feed-forward MLP ANN (MPa)  
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(g) Deep CNN (MPa)  

   

(h) GRU RNN (MPa)  

Figure 3. Predicted versus Actual |E*| Values for Best-Performing Models  

3.3. Sensitivity Analysis 

This section discusses the findings obtained throughout the sensitivity analysis. The idea behind sensitivity analysis is to examine and assess the influence of varying individual features 

on the trend of |E*|. This is carried out to check if the trends obtained from the ML models align well with the anticipated trends based on expert experience and well-established |E*| regression 

models such as the one considered in this study. This, in turn, ensures that no overfitting occurs, thereby confirming the rationality of the developed ML models, allowing them to be applied 

to any other sets of |E*| data. In the sensitivity analysis, four features from each dataset were randomly selected, and to assess the rationality of |E*| prediction, the value of one of these features 

was varied while reserving the values of the other features constant (i.e., conducting a controlled experiment). This test aids in detecting overfitting, even if a high accuracy performance was 

achieved, as there is still a risk of overfitting.
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3.3.1. Witczak NCHRP 1-37A Model 

For the initial dataset derived from Witczak NCHRP 1-37A parameters, the frequency, η, Vbeff, and Va percentage 

features were investigated. Figure 4 depicts the sensitivity outcomes for the 1-37A dataset. The analysis of the top-

performing models reveals intricate relationships between the dynamic modulus |E*| and the assessed features. 

Nevertheless, the outcomes affirm the hypothesized trends for all attributes. These trends denote that |E*| escalates with 

an increase in loading frequency (the rate at which loads are applied), as exhibited in Figure 4-a, which indicates a stiffer 

asphalt mixture under more rapid loading conditions. Regarding the η feature (the resistance to flow of the asphalt binder 

used in the HMA mixture), depicted in Figure 4-b, a rise in viscosity, which hinders the flow of the asphalt binder, leads 

to an enhanced |E*|, mirroring the expectation that a higher viscosity equates to greater mixture stiffness. Additionally, 

as illustrated in Figure 4-c, an augmentation in Vbeff (the amount of asphalt binder present in the mixture) correlates with 

diminished |E*| values across all models, barring some discrepancies noted for the GRU RNN model, suggesting a 

potential overfitting issue. Lastly, the Va feature (the spaces within the AC mixture that are filled with air), shown Figure 

4-d, demonstrates that an increased air void content weakens the predicted |E*| values for the majority of models, 

aligning with the premise that more air voids result in a less dense and thus less rigid AC mixture. 

  

(a) Loading Frequency (f) (b) Viscosity (η) 

  

(c) Effective Binder Content (Vbeff) (d) Air Voids (Va) 

 Figure 4. 1-37A dataset sensitivity analysis 
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In terms of rationality, the ET and DT models consistently reflected high rationality across all four tested features. 
Their outputs corresponded well with the expected physical trends, such as the increase in |E*| with loading frequency 
and viscosity and the decrease with more effective binder content and air voids. The MLP and Coarse Gaussian SVR 

models also displayed a strong alignment with the expected trends, although with slightly less consistency than the ET 
and DT models. On the other hand, the GRU RNN model exhibited less rational behavior, as indicated by the unexpected 
variations in its sensitivity to the Vbeff and Va features. This inconsistency hints at the model’s overfitting to the training 
data, causing it to learn noise and anomalies rather than the underlying physical relationships. The Deep CNN, while 
not as erratic as the GRU RNN, showed occasional deviations from expected trends, which may indicate a need for 
further calibration of the model to improve its interpretability and alignment with physical principles. 

3.3.2. Witczak NCHRP 1-40D Model 

For the second dataset, derived from Witczak NCHRP 1-40D, the sensitivity of model predictions to variations in 
Vbeff, AV percentage, δ, and G* features were explored. The corresponding sensitivity analysis is encapsulated in 
Figure 5. The analysis revealed that the |E*| decreases as the Vbeff increases, as depicted in Figure 5-a. This trend, evident 
across most models, suggests that a higher binder content typically leads to a softer asphalt mixture. Similarly, the results 
for the Va feature, presented in Figure 5-b, reinforced the expected inverse relationship between air voids and |E*|, 
whereby an increase in air voids leads to a reduction in mixture stiffness. In examining the phase angle (a measure of 

the viscoelastic behavior of asphalt binder), δ, the models generally indicated a decrease in |E*| with an increase in δ, as 
illustrated in Figure 5-c. This outcome is consistent with the understanding that a higher phase angle reflects a more 
viscous and less stiff asphalt binder, translating to a softer mixture. Finally, when evaluating the G* feature (which is a 
measure of the asphalt binder resistance to deformation under shear stress), the models, for the most part, correctly 
predicted an increase in |E*| with higher G* values, as shown in Figure 5-d. This finding aligns with the notion that a 
stiffer binder, indicated by a higher G*, contributes to a stiffer asphalt concrete mixture. 

  
(a) Effective Binder Content (Vbeff) (b) Air Voids (Va) 

  
(c) Phase Angle (δ) (d) Complex Shear Modulus (G*) 

Figure 5. 1-40D dataset sensitivity analysis 
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In terms of model rationality, the ET and DT consistently demonstrated a high degree of rationality, with model 

outputs aligning well with expected physical behaviors across all four factors. Also, The Interactions between MLR and 

the exponential GPR model showcased a consistent and expected response in the sensitivity analysis, adhering to the 

anticipated physical relationships across all tested features of the 1-40D dataset. The MLP and Coarse Gaussian SVR 

models, while showing strong alignment for the most part, had occasional minor discrepancies. In contrast, the GRU 

RNN and Deep CNN models exhibited patterns that suggest a divergence from the expected physical relationships, 

which was particularly noticeable in their responses to Vbeff and Va. 

3.3.3. Hirsch Model 

In the Hirsch dataset analysis, the sensitivity of the models to changes in the δ, G*, VMA, and Pc was evaluated. 

Figure 6 details these relationships and indicates that an increase in δ generally leads to softer asphalt mixtures with 

lower |E*| values, a finding consistent with the viscoelastic properties of asphalt binders (Figure 6-a). However, the 

Deep CNN, GRU RNN, and Exponential GPR models showed atypical responses to δ changes, suggesting potential 

overfitting. The trend for G* was as anticipated, with higher values correlating with increased |E*|, indicating stiffer 

asphalt mixtures (Figure 6-b). The VMA analysis, shown in Figure 6-c, confirmed that a higher VMA tends to weaken 

the mixture’s cohesion, causes compromised interlocking, reduced cohesion, and increased susceptibility to 

deformation, leading to lower |E*| values. Conversely, a rise in Pc (which is the amount of surface area within the asphalt 

mixture where the aggregates come into contact with each other) results in a greater amount of interlocking and 

interaction between the individual aggregate particles, enhancing the mix’s structural capacity, as shown in Figure 6-d, 

which was uniformly captured across the models. 

  

(a) Phase Angle (δ) (b) Complex Shear Modulus (G*) 

  

(c) Voids in Mineral Aggregates Filled with Aggregate (VMA) (d) Contact Volume (Pc) 

Figure 6. Hirsch dataset sensitivity analysis 

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1.1E+07

0 20 40 60 80 100

|E
*

| 
(M

P
a

)

Phase Angle (°) 

Interactions Linear

Regression

Fine DTs

Coarse Gaussian

SVR

Bagged ETs

 Exponential GPR MLP, 2HL, 45N

Deep CNN Deep RNN

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

7.5E+06

8.0E+06

8.5E+06

9.0E+06

0 5000 10000 15000 20000

|E
*

| 
(M

P
a

)

Complex Shear Modulus (Psi) 

Interactions Linear

Regression

Fine DTs

Coarse Gaussian

SVR

Bagged ETs

 Exponential GPR MLP, 2HL, 45N

Deep CNN Deep RNN

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

10 15 20 25

|E
*

| 
(M

P
a

)

VMA (%)

Interactions Linear

Regression

Fine DTs

Coarse Gaussian

SVR

Bagged ETs

 Exponential GPR MLP, 2HL, 45N

Deep CNN Deep RNN

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1.1E+07

0 0.2 0.4 0.6 0.8

|E
*

| 
(M

P
a

)

Contact Volume (%)

Interactions Linear

Regression

Fine DTs

Coarse Gaussian

SVR

Bagged ETs

 Exponential GPR MLP, 2HL, 45N

Deep CNN Deep RNN



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

98 

 

Comparing models’ predictions’ rationality, the ET and Fine DT models again exhibited strong rationality, 

consistently reflecting the physical expectations for all factors. The MLP and Coarse Gaussian SVR models largely 

followed the expected trends, displaying a high degree of understanding of the underlying physical phenomena. In 

contrast, the Deep CNN, GRU RNN, and Exponential GPR models occasionally diverged from these trends, particularly 

in their response to δ and G*, indicating that these models might be sensitive to the training data’s precision or prone to 

overfitting. This divergence highlights the need for caution when interpreting their outputs, as it may affect the models’ 

applicability to real-world scenarios without additional refinement. 

3.4. Comparison of the Best-Performing Models for Each Regressor Type 

This section evaluates and compares the performance of best-performing models for each regressor type using 

various model performance measures. A total of eight different classical and DL regressors were optimized and 

evaluated: interactions MLR, fine DT with a minimum leaf size of 4, SVR with a coarse gaussian kernel and a kernel 

scale of 11, bagged ET (random forests) with a minimum leaf size of 8 and number of DT learners of 30, GPR with 

exponential kernel, feed-forward ANN with two hidden layers (45 neurons each and Relu activation function), as well 

as deep CNN structure, and gated RNN structure. Figure 7 summarizes the results obtained for comparing the fine-tuned 

models at the three datasets (i.e., Witczak NCHRP 1-37A, Witczak NCHRP 1-40D, and Hirsch-based datasets). Table 

5 also summarizes the comparative results obtained and the final assessment scores computed for the fine-tuned 

regressors using the multi-criteria weighted average assessment. 

 

(a) Based on Witczak NCHRP 1-37A input features 

 

(b) Based on Witczak NCHRP 1-40D input features 
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(c) Based on Hirsch’s input features 

Figure 7. Comparative analysis of ML and DL models 

Table 5. Comparative Results Summary Table 
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RMSE 0.17 0.07 0.14 0.06 0.06 0.14 0.09 0.12 

MAE 0.13 0.04 0.11 0.03 0.02 0.11 0.07 0.08 

R2 0.57 0.93 0.72 0.94 0.95 0.76 0.84 0.78 

Training Time (Min) 0.01 0.01 0.44 0.43 145.11 1.57 28.59 370.90 

Testing Time (Min) 0.001 0.001 0.07 0.01 0.17 0.00 0.04 1.74 

Rationality 1.00 1.00 0.75 1.00 0.50 0.75 0.50 0.50 

Weighted Average 0.878 0.97 0.863 0.974 0.814 0.876 0.847 0.513 
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RMSE 0.13 0.07 0.10 0.06 0.06 0.10 0.08 0.09 

MAE 0.09 0.04 0.07 0.03 0.02 0.08 0.05 0.05 

R2 0.77 0.94 0.86 0.95 0.95 0.87 0.90 0.89 

Training Time (Min) 0.02 0.02 0.23 0.33 138.06 0.55 60.00 375.57 

Testing Time (Min) 0.001 0.001 0.03 0.01 0.25 0.00 0.09 1.20 

Rationality 1.00 1.00 0.75 1.00 0.75 0.75 0.50 0.50 

Weighted Average 0.925 0.972 0.902 0.975 0.841 0.906 0.839 0.541 
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RMSE 0.12 0.07 0.10 0.06 0.06 0.10 0.08 0.09 

MAE 0.08 0.04 0.08 0.03 0.03 0.06 0.06 0.06 

R2 0.79 0.93 0.85 0.94 0.95 0.86 0.89 0.88 

Training Time (Min) 0.001 0.02 0.41 0.44 226.87 0.48 74.09 176.19 

Testing Time (Min) 0.001 0.001 0.05 0.01 0.14 0.00 0.34 0.22 

Rationality 1.00 1.00 0.75 1.00 0.50 0.75 0.50 0.50 

Weighted Average 0.931 0.969 0.879 0.97 0.658 0.908 0.654 0.634 

It was observed that the predicted performance results were consistent over the three datasets. Starting with the 

1-37A dataset, the bagged ET (random forests) and DT demonstrated exceptional predictive accuracy with R2 values 

of 0.94 and 0.93, respectively. The exponential GPR also performed notably with an R2 of 0.95, albeit at the cost of 

a significantly higher testing time, which ranged from 138 to 226 minutes. The ET model was not only accurate but 

also efficient, with minimal training and testing times of 0.43 minutes and 0.01 minutes, respectively, along with 

the full weight of the rationality score, yielding a weighted average score of 0.974. In contrast, the GRU RNN 

lagged in performance with a weighted average of 0.513, indicating a suboptimal balance of accuracy and 

complexity for this dataset.  
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Moving to the 1-40D dataset, results revealed a continuation of the high performance from ET and DT, with R2 

values at 0.95 and 0.94, respectively. The GPR maintained its accuracy with an R2 of 0.95. However, the computational 

demand for GPR remained high, with a prolonged testing time of 0.25 minutes. The ET, once again, emerged as a model 

of high accuracy, low complexity, and superior rationality, reflected by its top tier weighted average score of 0.975. 

Meanwhile, the GRU RNN’s efficiency slightly improved compared to the 1-37A dataset, but it still held the lowest 

weighted average score at 0.542. 

Similarly, in the Hirsch dataset, ET and GPR continued to excel in accuracy with R2 values of 0.94 and 0.95, 

respectively. The ET confirmed its dominance in efficiency, with training and testing times well below the benchmark 

and the strongest rationality performance, contributing to a high weighted average score of 0.97. Despite its accuracy, 

the GPR was markedly less efficient, with the highest training time among all models, culminating in a lower weighted 

average score of 0.659. The GRU RNN’s performance saw an uptick, yet it remained the least efficient model with a 

weighted average score of 0.634. 

 When we synthesize the findings across all datasets, the ET consistently ranks as the top performer, showcasing an 

unparalleled blend of high accuracy, operational efficiency, and prediction rationality. The Fine DT also stands out as a 

robust model with impressive accuracy and a good complexity profile. The MLP and Deep CNN are recognized for their 

robustness across datasets, indicating their suitability for complex problems where their architectural depth can be 

leveraged. On the other hand, while the Exponential GPR scores highly in accuracy, its computational demand detracts 

from its appeal, particularly in time-sensitive environments. Despite its potential for capturing complex patterns in data, 

the GRU RNN has not shown the same level of efficiency or accuracy as its counterparts. 

3.5. Comparison with Previous Developed Models from Literature 

In prior research by El-Badawy et al. [14], the best-performing model was identified as an artificial neural network 

(ANN) with two hidden layers, each consisting of 36 neurons, using a sigmoid activation function. This model achieved 

an accuracy of 91% for the Witczak NCHRP 1-37A and 1-40D datasets, and 90% for the Hirsch dataset. In comparison, 

the models developed in this study, particularly the GPR, ETs, and DT, demonstrated superior predictive capabilities, 

achieving R² values approximately 4% higher than those reported in the earlier study. This improvement can be 

attributed to the integration of advanced optimization techniques and a systematic evaluation of hyperparameters, which 

significantly enhanced the accuracy and robustness of the predictions. Furthermore, including a broader dataset 

encompassing diverse climatic conditions and material properties in this study provided a more comprehensive 

evaluation of model performance, ensuring greater generalizability of the predictive models. Unlike the earlier work, 

which relied solely on ANN architectures, this study explored a wider spectrum of machine learning and deep learning 

models, highlighting the trade-offs between computational complexity and accuracy to offer tailored solutions for 

practical applications in pavement design. 

3.6. Threats to Validity 

The threats to internal and external validities are dependent upon the study design. This section delves into the 

validities of the approach employed in this research, shedding light on the potential benefits and constraints associated 

with the |E*| prediction framework. 

3.6.1. Internal Threats 

 The inclusion of a diverse dataset comprising over 3720 |E*| records from AC mixtures collected across different 

climatic regions (Idaho state and KSA) and featuring various aggregate gradations and binder performance grades 

enhances the robustness and representativeness of the study. 

 The careful selection of features aligns with the most widely used NCHRP and Hirsch regression models, ensuring 

a comprehensive and fair investigation. This approach enhances the study’s relevance using features that resonate 

with established industry standards. 

 The study employs the k-fold cross-validation technique for training and testing to address potential biases in dataset 

separation. This robust approach contributes to internal validity by ensuring that the model’s performance is 

evaluated across multiple subsets of the dataset, reducing the risk of overfitting. 

 Despite using widely accepted performance metrics, the choice of MAE, RMSE, R2, and training time may not 

capture all aspects of model performance. 

3.6.2. External Threats 

 The study’s external validity is fortified by the potential applicability of the developed |E*| prediction framework. 

Different departments of transportation and highway agencies can adopt this framework, offering a practical and 

generalizable solution for |E*| prediction. 
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 The generalizability of the framework assumes that different transportation and highway agencies will adopt and 

implement it. However, practical challenges, institutional differences, or resistance to change may hinder 

widespread adoption. 

 While the dataset is diverse and captures varying climatic conditions (hot and cold climates) and material properties, 

it is limited to Superpave mixes from specific geographical locations (Idaho state and KSA). This geographic 

restriction might impact the model’s universality, particularly in regions with distinct asphalt binder properties or 

construction practices. However, including datasets from significantly different climatic regions enhances the 

framework’s representativeness and potential applicability to other locations with similar climates. 

 The study acknowledges the external threat of generalizability. While the framework may apply to different 

departments, each region’s specific conditions and characteristics might not be fully captured, limiting the external 

validity of the results. 

4. Summary and Conclusions 

This research study utilized |E*| database collected from Idaho State and the Kingdom of Saudi Arabia related to AC 

mixtures and asphalt binders to investigate the performance of state-of-the-art classic ML and DL algorithms (including 

MLR, DT, SVM, ET, GPR, and ANN, as well as CNN and RNN) for the development of more accurate and rational 

predictive |E*| models. A total of 13 features affecting the |E*| were aggregated, considered as the independent features, 

and regrouped for the |E*| prediction based on three renewed regression models, including Witczak NCHRP 1-37A ƞ-

based, Witczak NCHRP 1-40D G*, δ- based, and Hirsch G*-based predictive models. These features include f, η, Vbeff, 

Va, ρ34, ρ38, ρ4, ρ200, G*, δ, VMA, VFA, and Pc. 

The developed and fine-tuned models were evaluated based on multi-stage assessment criteria. Firstly, the developed 

ML and DL regressors were compared in terms of various modeling accuracy and complexity performance measures of 

effectiveness. Secondly, a sensitivity analysis of the predicted results was conducted to test the rationality of the 

prediction, hence testing the impact of the considered features on |E*| prediction, and to predict possible regressors 

overfitting or memorization. In this stage, the developed best-performing models with the highest accuracy, lowest 

complexity, and results rationality were identified based on a weighted average score representing the overall multi-

criteria rank. The main findings of this study can be summarized as follows: 

 The fine-tuned ML and DL models’ structures included the interactions linear regression, fine DT with a minimum 

leaf size of 4, SVR with a coarse Gaussian kernel and scale value of 11, the bagged ET, the GPR with exponential 

kernel, the ANN with two hidden layers, 45 neurons each, and ReLU activation function, deep CNN and GRU 

RNN. 

 The best-performing models over the fine-tuned hyperparameters in terms of modeling accuracy were the GPR 

with exponential kernel followed by the bagged ET, fine DT with a minimum leaf size of 4, which reported 

statistical measures of R2 of 0.95, 0.94, 0.94, and 0.91, respectively. 

 The best-performing model in terms of modeling complexity was the bagged ET, with a training time ranging 

between 0.33 and 0.44 minutes and a testing time of 0.01 minutes. 

 The predicted versus actual |E*| plots aligned with the preceding results and illustrated that the GPR and Bagged 

ET were the best outperforming models. 

 Comparing the developed regressors in this study with the regression and ANN modeling from previous literature 

studies showed that the developed models outperformed previous ones in terms of prediction performance with 

4% higher R2. 

 The sensitivity analysis of the |E*| prediction across the three datasets showed that the deep CNN, GRU RNN, and 

the GPR had some variations from typical |E*| trends, indicating a possibility of overfitting occurrence.  

 The sensitivity analysis also showed that the ET and DT consistently demonstrated a high degree of rationality 

over all the tested datasets. 

The results presented demonstrate that the classic ML and DL algorithms developed in this study produce predictions 

with higher accuracy, lower complexity, and greater rationality compared to existing models in the literature. This 

demonstrates the applicability of the proposed best-performing models for improved |E*| prediction. Pavement designers 

and practitioners can adopt the developed feature engineering-ML and DL-based approach to estimate more accurate 

and rational |E*| predictions. 

Future studies should integrate datasets encompassing a broader range of AC mixtures, asphalt binders, and 

aggregates to enhance the generalization capability of ML and DL models. This will improve the accuracy of |E*| 

predictions and enhance their application in modern pavement analysis. Including data from different design 

methodologies (e.g., Marshall or Hveem), non-Superpave mixtures, and innovative materials such as RAP, WMA, and 

polymer-modified binders will address the study's current limitations and extend the framework’s applicability to diverse 

materials and practices. 
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To improve model robustness, advanced feature selection techniques, such as recursive feature elimination (RFE), 

principal component analysis (PCA), or mutual information, should be explored to identify the most significant 

predictors. This would enhance both accuracy and computational efficiency. Additionally, mitigating overfitting in deep 

learning models is critical. Regularization techniques like dropout, weight decay, early stopping, and simplifying model 

architectures could improve generalization. Incorporating hybrid approaches that combine mechanistic models with 

data-driven methods could further align model outputs with physical principles, reducing sensitivity to noise and 

anomalies. 

Furthermore, while bagging methods demonstrated an effective balance of accuracy and efficiency, scenarios 

involving high variability or complex, non-linear relationships may justify more advanced models like boosting 

techniques or hybrid ensembles. Exploring such models alongside scalable architectures will ensure adaptability to 

larger and more complex datasets. 

Lastly, collaboration with transportation agencies and industry practitioners is essential to gather region-specific data 

and address external threats to validity. This will enhance the framework's acceptance and usability across diverse 

regional and institutional contexts. 

5. Declarations  

5.1. Author Contributions 

Conceptualization, W.Z. and S.E.; methodology, L.O.; software, L.O.; validation, S.E., R.A.E., and A.A.; formal 

analysis, L.O.; investigation, W.Z.; resources, S.E.; writing—original draft preparation, L.O.; writing—review and 

editing, W.Z., S.E., R.A.E., and A.A.; visualization, L.O. and W.Z.; supervision, W.Z. All authors have read and agreed 

to the published version of the manuscript. 

5.2. Data Availability Statement 

The data presented in this study are available in the article. 

5.3. Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

5.4. Conflicts of Interest 

The authors declare no conflict of interest.  

6. References  

[1] Bi, Y., Guo, F., Zhang, J., Pei, J., & Li, R. (2021). Correlation analysis between asphalt binder/asphalt mastic properties and 

dynamic modulus of asphalt mixture. Construction and Building Materials, 276, 122256. doi:10.1016/j.conbuildmat.2021.122256. 

[2] Bhattacharjee, S., & Mallick, R. (2012). Determining damage development in hot-mix asphalt with use of continuum damage 

mechanics and small-scale accelerated pavement test. Transportation Research Record, 2296, 125–134. doi:10.3141/2296-13. 

[3] Jamshidi, A., White, G., & Hosseinpour, M. (2021). Revisiting the correlation between the dynamic modulus and the flexural 

modulus of hot mixture asphalt. Construction and Building Materials, 296, 123697. doi:10.1016/j.conbuildmat.2021.123697. 

[4] Rodezno, M. C., & Kaloush, K. E. (2009). Comparison of asphalt rubber and conventional mixture properties: Considerations for 

mechanistic-empirical pavement design guide implementation. Transportation Research Record, 2126, 132–141. 

doi:10.3141/2126-16. 

[5] El-Hakim, R. A., El-Badawy, S. M., Gabr, A. R., & Azam, A. M. (2016). Influence of Unbound Material Type and Input Level 

on Pavement Performance Using Mechanistic–Empirical Pavement Design Guide. Transportation Research Record, 2578(1), 21–

28. doi:10.3141/2578-03. 

[6] ARMAĞAN, K., SALTAN, M., TERZİ, S., & KIRAÇ, N. (2021). Comparison of dynamic elastisty modulus with different 

prediction approaches for Karaman – Konya highway pavement. Journal of Innovative Transportation, 2(1), 2102. 

doi:10.53635/jit.849544. 

[7] Singh, D., Zaman, M., & Commuri, S. (2013). Artificial Neural Network Modeling for Dynamic Modulus of Hot Mix Asphalt 

Using Aggregate Shape Properties. Journal of Materials in Civil Engineering, 25(1), 54–62. doi:10.1061/(asce)mt.1943-

5533.0000548. 

[8] Rahman, A. S. M. A., & Tarefder, R. A. (2016). Dynamic modulus and phase angle of warm-mix versus hot-mix asphalt concrete. 

Construction and Building Materials, 126, 434–441. doi:10.1016/j.conbuildmat.2016.09.068. 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

103 

 

[9] Zhang, M., Zhao, H., Fan, L., & Yi, J. (2022). Dynamic modulus prediction model and analysis of factors influencing asphalt 

mixtures using gray relational analysis methods. Journal of Materials Research and Technology, 19, 1312–1321. 

doi:10.1016/j.jmrt.2022.05.120. 

[10] Barugahare, J., Amirkhanian, A. N., Xiao, F., & Amirkhanian, S. N. (2020). Predicting the dynamic modulus of hot mix asphalt 

mixtures using bagged trees ensemble. Construction and Building Materials, 260, 120468. 

doi:10.1016/j.conbuildmat.2020.120468. 

[11] Khattab, A. M., El-Badawy, S. M., Al Hazmi, A. A., & Elmwafi, M. (2014). Evaluation of Witczak E* predictive models for 

the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Construction and Building 

Materials, 64, 360–369. doi:10.1016/j.conbuildmat.2014.04.066. 

[12] Yu, H., & Shen, S. (2012). An investigation of dynamic modulus and flow number properties of asphalt mixtures in Washington 

State. Report No. TNW, 709867. 

[13] Khattab, A. M., El-Badawy, S. M., Al Hazmi, A. A., & Elmwafi, M. (2015, April). Comparing Witczak NCHRP 1-40D with 

Hirsh E* predictive models for Kingdom of Saudi Arabia asphalt mixtures. The 3rd Middle East Society of Asphalt Technologists 

(MESAT) Conference, 6-8 April, 2015, Dubai, United Arab Emirates. 

[14] El-Badawy, S., Abd El-Hakim, R., & Awed, A. (2018). Comparing Artificial Neural Networks with Regression Models for Hot-

Mix Asphalt Dynamic Modulus Prediction. Journal of Materials in Civil Engineering, 30(7), 1–11. doi:10.1061/(asce)mt.1943-

5533.0002282. 

[15] Al-Tawalbeh, A., Sirin, O., Sadeq, M., Sebaaly, H., & Masad, E. (2022). Evaluation and calibration of dynamic modulus 

prediction models of asphalt mixtures for hot climates: Qatar as a case study. Case Studies in Construction Materials, 17, 1580. 

doi:10.1016/j.cscm.2022.e01580. 

[16] Uwanuakwa, I. D., Amir, I. Y., & Umba, L. N. (2024). Enhanced asphalt dynamic modulus prediction: A detailed analysis of 

artificial hummingbird algorithm-optimised boosted trees. Journal of Road Engineering, 4(2), 224–233. 

doi:10.1016/j.jreng.2024.05.001. 

[17] Acharjee, P. K., Souliman, M. I., Freyle, F., & Fuentes, L. (2024). Development of Dynamic Modulus Prediction Model Using 

Artificial Neural Networks for Colombian Mixtures. Journal of Transportation Engineering, Part B: Pavements, 150(1), 1402. 

doi:10.1061/jpeodx.pveng-1402. 

[18] Owais, M. (2024). Preprocessing and postprocessing analysis for hot-mix asphalt dynamic modulus experimental data. 

Construction and Building Materials, 450, 138693. doi:10.1016/j.conbuildmat.2024.138693. 

[19] Sakhaeifar, M. S., Richard Kim, Y., & Kabir, P. (2015). New predictive models for the dynamic modulus of hot mix asphalt. 

Construction and Building Materials, 76, 221–231. doi:10.1016/j.conbuildmat.2014.11.011. 

[20] Singh, D., Zaman, M., & Commuri, S. (2011). Evaluation of predictive models for estimating dynamic modulus of hot-mix 

asphalt in Oklahoma. Transportation Research Record, 2210(2210), 57–72. doi:10.3141/2210-07. 

[21] Chen, H., Saba, R. G., Liu, G., Barbieri, D. M., Zhang, X., & Hoff, I. (2023). Influence of material factors on the determination 

of dynamic moduli and associated prediction models for different types of asphalt mixtures. Construction and Building Materials, 

365, 130134. doi:10.1016/j.conbuildmat.2022.130134. 

[22] Behnood, A., & Daneshvar, D. (2020). A machine learning study of the dynamic modulus of asphalt concretes: An application 

of M5P model tree algorithm. Construction and Building Materials, 262, 120544. doi:10.1016/j.conbuildmat.2020.120544. 

[23] Daneshvar, D., & Behnood, A. (2022). Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. 

International Journal of Pavement Engineering, 23(2), 250–260. doi:10.1080/10298436.2020.1741587. 

[24] Awed, A. M., Awaad, A. N., Kaloop, M. R., Hu, J. W., El-Badawy, S. M., & Abd El-Hakim, R. T. (2023). Boosting Hot Mix 

Asphalt Dynamic Modulus Prediction Using Statistical and Machine Learning Regression Modeling Techniques. Sustainability 

(Switzerland), 15(19). doi:10.3390/su151914464. 

[25] Liu, J., Liu, F., Zheng, C., Zhou, D., & Wang, L. (2022). Optimizing asphalt mix design through predicting effective asphalt 

content and absorbed asphalt content using machine learning. Construction and Building Materials, 325(December), 126607. 

doi:10.1016/j.conbuildmat.2022.126607. 

[26] Hu, X., & Solanki, P. (2021). Predicting Resilient Modulus of Cementitiously Stabilized Subgrade Soils Using Neural Network, 

Support Vector Machine, and Gaussian Process Regression. International Journal of Geomechanics, 21(6), 04021073. 

doi:10.1061/(asce)gm.1943-5622.0002029. 

[27] Uwanuakwa, I. D., Busari, A., Ali, S. I. A., Mohd Hasan, M. R., Sani, A., & Abba, S. I. (2022). Comparing Machine Learning 

Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction. Arabian Journal for Science 

and Engineering, 47(10), 13579–13591. doi:10.1007/s13369-022-06935-x. 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

104 

 

[28] Ceylan, H., Gopalakrishnan, K., & Kim, S. (2008). Advanced approaches to hot-mix asphalt dynamic modulus prediction. 

Canadian Journal of Civil Engineering, 35(7), 699–707. doi:10.1139/L08-016. 

[29] Ceylan, H., Gopalakrishnan, K., & Kim, S. (2009). Looking to the future: The next-generation hot mix asphalt dynamic modulus 

prediction models. International Journal of Pavement Engineering, 10(5), 341–352. doi:10.1080/10298430802342690. 

[30] Ceylan, H., Schwartz, C. W., Kim, S., & Gopalakrishnan, K. (2009). Accuracy of Predictive Models for Dynamic Modulus of 

Hot-Mix Asphalt. Journal of Materials in Civil Engineering, 21(6), 286–293. doi:10.1061/(asce)0899-1561(2009)21:6(286). 

[31] Gong, H., Sun, Y., Dong, Y., Han, B., Polaczyk, P., Hu, W., & Huang, B. (2020). Improved estimation of dynamic modulus for 

hot mix asphalt using deep learning. Construction and Building Materials, 263, 119912. 

doi:10.1016/j.conbuildmat.2020.119912. 

[32] Ghasemi, P., Aslani, M., Rollins, D. K., & Williams, R. C. (2019). Principal component neural networks for modeling, 

prediction, and optimization of hot mix asphalt dynamics modulus. Infrastructures, 4(3), 2019. 

doi:10.3390/infrastructures4030053. 

[33] Rezazadeh Eidgahee, D., Jahangir, H., Solatifar, N., Fakharian, P., & Rezaeemanesh, M. (2022). Data-driven estimation models 

of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Computing and 

Applications, 34(20), 17289–17314. doi:10.1007/s00521-022-07382-3. 

[34] Zhang, C., Ildefonzo, D. G., Shen, S., Wang, L., & Huang, H. (2023). Implementation of ensemble Artificial Neural Network 

and MEMS wireless sensors for In-Situ asphalt mixture dynamic modulus prediction. Construction and Building Materials, 377, 

131118. doi:10.1016/j.conbuildmat.2023.131118. 

[35] Barugahare, J., Amirkhanian, A. N., Xiao, F., & Amirkhanian, S. N. (2022). ANN-based dynamic modulus models of asphalt 

mixtures with similar input variables as Hirsch and Witczak models. International Journal of Pavement Engineering, 23(5), 

1328–1338. doi:10.1080/10298436.2020.1799209. 

[36] Mohammadi Golafshani, E., Behnood, A., & Karimi, M. M. (2021). Predicting the dynamic modulus of asphalt mixture using 

hybridized artificial neural network and grey wolf optimizer. International Journal of Pavement Engineering, 1–11. 

doi:10.1080/10298436.2021.2005056. 

[37] Moussa, G. S., & Owais, M. (2020). Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory 

effort reduction. Construction and Building Materials, 265, 120239. doi:10.1016/j.conbuildmat.2020.120239. 

[38] Moussa, G. S., & Owais, M. (2021). Modeling Hot-Mix asphalt dynamic modulus using deep residual neural Networks: 

Parametric and sensitivity analysis study. Construction and Building Materials, 294, 123589. 

doi:10.1016/j.conbuildmat.2021.123589. 

[39] Liu, J., Liu, F., Wang, Z., Fanijo, E. O., & Wang, L. (2023). Involving prediction of dynamic modulus in asphalt mix design 

with machine learning and mechanical-empirical analysis. Construction and Building Materials, 407, 133610. 

doi:10.1016/j.conbuildmat.2023.133610. 

[40] Broothaerts, W., Cordeiro, F., Corbisier, P., Robouch, P., & Emons, H. (2020). Log transformation of proficiency testing data 

on the content of genetically modified organisms in food and feed samples: is it justified? Analytical and Bioanalytical 

Chemistry, 412(5), 1129–1136. doi:10.1007/s00216-019-02338-4. 

[41] Bridges, W. C., Calkin, N. J., Kenyon, C. M., & Saltzman, M. J. (2022). Log transformations: What not to expect when you’re 

expecting. Communications in Statistics - Theory and Methods, 51(5), 1514–1521. doi:10.1080/03610926.2020.1771368. 

[42] Manandhar, B., & Nandram, B. (2021). Hierarchical Bayesian models for continuous and positively skewed data from small 

areas. Communications in Statistics - Theory and Methods, 50(4), 944–962. doi:10.1080/03610926.2019.1645853. 

[43] Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical Normalization and Back Propagationfor Classification. International 

Journal of Computer Theory and Engineering, 3(1), 89–93. doi:10.7763/ijcte.2011.v3.288. 

[44] Shalabi, L. Al, Shaaban, Z., & Kasasbeh, B. (2006). Data Mining: A Preprocessing Engine. Journal of Computer Science, 2(9), 

735–739. doi:10.3844/jcssp.2006.735.739. 

[45] Yi, B. J., Lee, D. G., & Rim, H. C. (2015). The Effects of Feature Optimization on High-Dimensional Essay Data. Mathematical 

Problems in Engineering, 421642. doi:10.1155/2015/421642. 

[46] Alnaqbi, A. J., Zeiada, W., Al-Khateeb, G. G., Hamad, K., & Barakat, S. (2023). Creating Rutting Prediction Models through 

Machine Learning Techniques Utilizing the Long-Term Pavement Performance Database. Sustainability (Switzerland), 15(18), 

13653. doi:10.3390/su151813653. 

[47] Zeiada, W., Hamad, K., Omar, M., Underwood, B. S., Khalil, M. A., & Karzad, A. S. (2019). Investigation and modelling of 

asphalt pavement performance in cold regions. International Journal of Pavement Engineering, 20(8), 986–997. 

doi:10.1080/10298436.2017.1373391. 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

105 

 

[48] Zeiada, W., Dabous, S. A., Hamad, K., Al-Ruzouq, R., & Khalil, M. A. (2020). Machine Learning for Pavement Performance 

Modelling in Warm Climate Regions. Arabian Journal for Science and Engineering, 45(5), 4091–4109. doi:10.1007/s13369-

020-04398-6. 

[49] Mirou, S. M., Elawady, A. T., Ashour, A. G., Zeiada, W., & Abuzwidah, M. (2023). Visibility Prediction through Machine 

Learning: Exploring the Role of Meteorological Factors. 2023 Advances in Science and Engineering Technology International 

Conferences, ASET 2023, 1–6. doi:10.1109/ASET56582.2023.10180539. 

[50] Dabous, S. A., Hamad, K., Al-Ruzouq, R., Zeiada, W., Omar, M., & Obaid, L. (2022). a Case-Based Reasoning and Random 

Forest Framework for Selecting Preventive Maintenance of Flexible Pavement Sections. Baltic Journal of Road and Bridge 

Engineering, 17(2), 107–134. doi:10.7250/bjrbe.2022-17.562. 

[51] Hamad, K., Obaid, L., Haridy, S., Zeiada, W., & Al-Khateeb, G. (2023). Factorial design–machine learning approach for 

predicting incident durations. Computer-Aided Civil and Infrastructure Engineering, 38(5), 660–680. doi:10.1111/mice.12883. 

[52] Navid, M. (2018). Multiple Linear Regressions for Predicting Rainfall for Bangladesh. Communications, 6(1), 11. 

doi:10.11648/j.com.20180601.11. 

[53] Alsheyab, M. A., & Khasawneh, M. A. (2024). Statistical Modeling of Asphalt Pavement Surface Friction Based on Aggregate 

Fineness Modulus and Asphalt Mix Volumetrics. International Journal of Pavement Research and Technology, 17(5), 1093–

1111. doi:10.1007/s42947-023-00289-9. 

[54] Kang, M., Kim, M., & Lee, J. H. (2010). Analysis of rigid pavement distresses on interstate highway using decision tree 

algorithms. KSCE Journal of Civil Engineering, 14(2), 123–130. doi:10.1007/s12205-010-0123-7. 

[55] Madeh Piryonesi, S., & El-Diraby, T. E. (2021). Using Machine Learning to Examine Impact of Type of Performance Indicator 

on Flexible Pavement Deterioration Modeling. Journal of Infrastructure Systems, 27(2), 62. doi:10.1061/(asce)is.1943-

555x.0000602. 

[56] Hamad, K., Obaid, L., Nassif, A. B., Abu Dabous, S., Al-Ruzouq, R., & Zeiada, W. (2023). Comprehensive evaluation of 

multiple machine learning classifiers for predicting freeway incident duration. Innovative Infrastructure Solutions, 8(6), 177. 

doi:10.1007/s41062-023-01138-1. 

[57] Babagoli, R., & Rezaei, M. (2022). Development of prediction models for moisture susceptibility of asphalt mixture containing 

combined SBR, waste CR and ASA using support vector regression and artificial neural network methods. Construction and 

Building Materials, 322, 126430. doi:10.1016/j.conbuildmat.2022.126430. 

[58] Obaid, L., Hamad, K., Khalil, M. A., & Nassif, A. B. (2024). Effect of feature optimization on performance of machine learning 

models for predicting traffic incident duration. Engineering Applications of Artificial Intelligence, 131, 107845. 

doi:10.1016/j.engappai.2024.107845. 

[59] Molavi Nojumi, M., Huang, Y., Hashemian, L., & Bayat, A. (2022). Application of Machine Learning for Temperature 

Prediction in a Test Road in Alberta. International Journal of Pavement Research and Technology, 15(2), 303–319. 

doi:10.1007/s42947-021-00023-3. 

[60] Justo-Silva, R., Ferreira, A., & Flintsch, G. (2021). Review on machine learning techniques for developing pavement 

performance prediction models. Sustainability (Switzerland), 13(9), 5248. doi:10.3390/su13095248. 

[61] Sadat Hosseini, A., Hajikarimi, P., Gandomi, M., Moghadas Nejad, F., & Gandomi, A. H. (2021). Optimized machine learning 

approaches for the prediction of viscoelastic behavior of modified asphalt binders. Construction and Building Materials, 

299(January), 124264. doi:10.1016/j.conbuildmat.2021.124264. 

[62] Luo, Z., & Li, S. (2023). An interpretable prediction model for pavement performance prediction based on XGBoost and SHAP. 

Proc. SPIE, March 2023, 55. doi:10.1117/12.2671361. 

[63] Nhat-Duc, H., & Van-Duc, T. (2023). Computer Vision-Based Severity Classification of Asphalt Pavement Raveling Using 

Advanced Gradient Boosting Machines and Lightweight Texture Descriptors. Iranian Journal of Science and Technology - 

Transactions of Civil Engineering, 47(6), 4059–4073. doi:10.1007/s40996-023-01138-2. 

[64] Pei, L., Yu, T., Xu, L., Li, W., & Han, Y. (2022). Prediction of Decay of Pavement Quality or Performance Index Based on 

Light Gradient Boost Machine. Advances in Intelligent Automation and Soft Computing. IASC 2021, Lecture Notes on Data 

Engineering and Communications Technologies, 80, Springer, Cham, Switzerland. doi:10.1007/978-3-030-81007-8_135. 

[65] Heidarabadizadeh, N., Ghanizadeh, A. R., & Behnood, A. (2021). Prediction of the resilient modulus of non-cohesive subgrade 

soils and unbound subbase materials using a hybrid support vector machine method and colliding bodies optimization algorithm. 

Construction and Building Materials, 275, 122140. doi:10.1016/j.conbuildmat.2020.122140. 

[66] Huang, Y., Molavi Nojumi, M., Hashemian, L., & Bayat, A. (2023). Evaluation of a Machine Learning Approach for 

Temperature Prediction in Pavement Base and Subgrade Layers in Alberta, Canada. Journal of Transportation Engineering, Part 

B: Pavements, 149(1), 1–12. doi:10.1061/jpeodx.pveng-1010. 



Civil Engineering Journal         Vol. 11, No. 01, January, 2025 

106 

 

[67] Deng, Y., & Shi, X. (2022). An Accurate, Reproducible and Robust Model to Predict the Rutting of Asphalt Pavement: Neural 

Networks Coupled with Particle Swarm Optimization. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22063–

22072. doi:10.1109/TITS.2022.3149268. 

[68] Nassif, A. B., Elnagar, A., Shahin, I., & Henno, S. (2021). Deep learning for Arabic subjective sentiment analysis: Challenges 

and research opportunities. Applied Soft Computing, 98, 106836. doi:10.1016/j.asoc.2020.106836. 

[69] Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech Recognition Using Deep Neural Networks: A 

Systematic Review. IEEE Access, 7(February), 19143–19165. doi:10.1109/ACCESS.2019.2896880. 

[70] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings 

of the IEEE, 86(11), 2278–2323. doi:10.1109/5.726791. 

[71] Li, H., Peng, W., Adumene, S., & Yazdi, M. (2023). An Improved LeNet-5 Convolutional Neural Network Supporting 

Condition-Based Maintenance and Fault Diagnosis of Bearings. Intelligent Reliability and Maintainability of Energy 

Infrastructure Assets. Studies in Systems, Decision and Control, 473, Springer, Cham, Switzerland. doi:10.1007/978-3-031-

29962-9_4. 

[72] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. 

Communications of the ACM, 60(6), 84–90. doi:10.1145/3065386. 

[73] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International 

Conference on Learning Representations (ICLR 2015), 7-9 May, 2015, San Diego, United States.  

[74] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). 

Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. 

doi:10.1109/cvpr.2015.7298594. 

[75] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 90. doi:10.1109/cvpr.2016.90. 

[76] Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2017). Aggregated Residual Transformations for Deep Neural Networks. 2017 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 634. doi:10.1109/cvpr.2017.634. 

[77] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 243. doi:10.1109/cvpr.2017.243. 

[78] Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International conference 

on machine learning, 9-15 June, 2019, California, United States. 

[79] Denny Prabowo, Y., Warnars, H. L. H. S., Budiharto, W., Kistijantoro, A. I., Heryadi, Y., & Lukas. (2018). LSTM and Simple 

Rnn Comparison In The Problem Of Sequence To Sequence On Conversation Data Using Bahasa Indonesia. 2018 Indonesian 

Association for Pattern Recognition International Conference (INAPR), 51–56. doi:10.1109/inapr.2018.8627029. 

[80] Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 

1(4), 339–356. doi:10.1016/0893-6080(88)90007-X. 

[81] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. 

doi:10.1162/neco.1997.9.8.1735. 

[82] Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–

decoder approaches. Proceedings of SSST 2014 - 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, 

1409(1), 103–111. doi:10.3115/v1/w14-4012. 

[83] Ali, A., & Milad, A. (2023). Application of Machine Learning Techniques for Asphalt Pavement Performance Prediction. 

Journal of Pure & Applied Sciences, 22(3), 35–40. doi:10.51984/jopas.v22i3.2733. 




