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Abstract

This study develops a displacement-based finite element approach using one-element modeling to analyze the second-order
inelastic local buckling of steel columns under axial compression. To account for local buckling, two new stress-strain
relationships are proposed for steel using an energy method and assumptions from previous studies for both compact and
slender cross-sections. Stress-strain curves of post-buckling regimes are modeled as nonlinear curves. Both geometric and
material nonlinearity are considered in the buckling analysis. The effects of geometric nonlinearity are traced through
stability functions. The tangent stiffness of steel members is continuously updated during the nonlinear analysis by updating
the fiber behavior at monitoring cross-sections using the Gauss-Lobatto integration rule. The proposed stress-strain
relationships accurately predict the ultimate strength, elastic, and inelastic local buckling behaviors of steel columns under
axial compression, compared with ABAQUS and previous studies. The model accurately predicts elastic, inelastic, and
ultimate strength behaviors, with post-buckling responses closely matching ABAQUS results (e.g. 0.881 (proposed with
residual stress), 1.008 (proposed without residual stress) vs. 0.948 (ABAQUS) load ratio for HB3 specimen). This approach
offers significant computational efficiency (~1.0 sec vs. 20-30 min for ABAQUS) and introduces adjustable constitutive
models, enhancing practical design applications for steel structures. This study proves that the effects of residual stress on
the local buckling cannot be ignored in the case of slender sections, since the differences of the ultimate load (with and
without the initial residual stress) are equal to 63.3% for the H14 specimen and 43.2% for the HS40-SH(B) specimen.
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1. Introduction

Steel is widely used in civil engineering because of its strength, ductility, and flexibility. However, buckling is
an important issue and a weak point of steel structures. There are many types of buckling: local buckling, bending
buckling, flexural torsional buckling, lateral-torsional buckling, etc. Several tests were investigated to observe the
local buckling behavior of steel structures or steel-concrete composite structures [1-3]. Xue et al. [4] tested and
simulated the local-overall buckling behavior of corroded H-section steel columns subjected to compression and
bending simultaneously. Wu et al. [5] studied nonlinear stability of prestressed stayed I-section steel columns
considering local buckling. Zhong et al. [6] studied local buckling of stainless steel stub columns with novel
octagonal hollow sections. Han et al. [7] investigated the local-global buckling behaviour of axially compressive
welded I-section steel columns including local corrosion. Some researchers investigated the local buckling effects
of steel members or steel structures by employing numerical solutions based on various finite element methods [8-
10]. Recently, Maity et al. [11] simulated the interactive buckling in steel members using a torsional fiber element
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integrated with a multiaxial local buckling constitutive model. Heredia Rosa et al. [12] developed a multiaxial
plasticity model with softening for simulating inelastic cyclic local buckling in steel beam-columns. In this study,
we try to propose a beam-column finite element method using the modeling of one element per beam-column
member for investigating steel columns under local buckling.

Local buckling may occur before structures collapse, and then the collapsed load of steel structures is reduced. The
local buckling mainly depends on slenderness, thickness, the shape of member sections, the member length, residual
stresses, and initial imperfections. Nowadays, the local buckling phenomenon can be more easily investigated by
employing finite element analysis commercial softwares (ABAQUS, ANSYS, ...) using types of plate, shell, or solid
elements. Recently, Feng et al. [13] investigated 162 nonlinear finite element models of stainless steel hybrid K-joints
with SHS-braces-to-CHS-chord using ABAQUS software, and they proposed design equations for predicting the
strength of the K-joints. Roy et al. [14] analyzed the nonlinear behavior of cold-form built-up box sections using stainless
steel material. Ananthi et al. [15] conducted experimental tests and simulated finite element analysis for cold-formed
steel zed-section and hat-section columns applied axial compression. Local and distortional buckling behavior of
aluminum alloy back-to-back channels, including web holes applied axial compression, was investigated by Fang et al.
[16]. In the four mentioned studies, the authors efforted to use commercial software ABAQUS [17] to assess, modify,
and validate the performance of the current design guidelines and also proposed new design guidelines. It is inefficient
for computer sources and analysis time employing shell or solid elements for modeling.

In 1998, Uy [18] studied the local buckling of concrete-filled steel welded-box columns using experimental tests and
a semi-analytical finite strip approach, considering the effects of concrete. Also in this study, the author developed the
local buckling approach using the effective width concept. Local buckling using beam-column elements is unclearly
evaluated through AISC-LRFD specification [19, 20] by using proposed equations from experimental tests or modifying
the constitutive model of steel [21, 22]. The methods utilized for the modified stress-strain relationship are more accurate
and rational than those based on experimental design equations, and they can easily capture nonlinear post-buckling
responses of structures. Chan et al. [21] developed the modified stress-strain model for analyzing the large-deflection
inelastic buckling behavior of square columns. The proposed method by Chan considers both residual stress and initial
geometry imperfection. Chan’s method can handle complex loading and boundary conditions, while it is difficult for
other methods (such as the finite difference or the finite integral numerical scheme). Whereas, Skallerud & Amdahl [22,
23] developed a beam finite element model for tubular members considering the local inelastic buckling phenomenon.
Beam elements are either based on integrating uniaxial stresses on the cross-section or plastic hinge approaches.

Thai et al. [10] modified the constitutive model of materials using the energy method to consider the local buckling.
In their study, they used the flexibility-based fiber beam-column method invented by Neuenhofer & Filippou [24] to
analyze nonlinear elastic problems and developed by De Souza [25] to analyze large-displacement inelastic problems.
We see that modifying the constitutive model of materials is one of the suitable approaches for considering local
buckling by energy methods. The proposed stress-strain relationships in this study are combined by linear lines and
nonlinear curves, while those proposed by Chan et al. [21] and Skallerud & Amdahl [22] are combined by linear lines
(tri-linear model). Concurrently, numerical simulations using finite element methods (FEM) have been employed to
analyze local buckling utilizing commercial software like ABAQUS and ANSYS. However, these FEM models often
rely on shell or solid elements, which can be computationally intensive and impractical for routine design and analysis,
especially for large-scale structures.

In the literature, there is no study employing stability functions and combining the one-element modelling for
predicting the local buckling. To address this gap, we will try to develop the research idea following this direction. In
this study, a displacement-based finite element approach employing stability functions using one-element modeling for
steel members is developed to include the effects of local buckling. Two new modified constitutive models for compact
and slender steel sections are proposed in which a coefficient o is used for permitting adjustment of the inelastic post-
local buckling behavior. The generalized displacement control algorithm invented by Yang et al. [26] is implemented
for predicting the behavior curves, including the nonlinear inelastic local buckling. The proposed procedure has
illustrated the accuracy and efficiency of developed software through some examples.

2. Constitutive Model of Steel Materials Considering Local Buckling

Figure 1 illustrates the stress-strain relationships for steel elements for two types of sections (compact section and
slender section) based on the energy method applied to plate steel. The geometry of these relationships depends on the
sizes of steel elements, and a vital ratio is b/t, where b is the width and t is the thickness of cross-sections. It can be seen
that compact sections obtain an ultimate strength higher than slender sections because slender sections are elastically
buckled before steel material is yielded. The slender sections are assumed to collapse suddenly after obtaining the
ultimate strength, while the compact sections are more stable due to the existence of the plastic strain regime before they
collapse. The collapse of compact sections can be called to be due to inelastic buckling.
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Figure 1. Stress-strain curves are assumed for steel elements

2.1. Compact Sections

In this section, the formulation, including the effects of local buckling, is established by dividing cross-sections into
some plate sections with the width b and the thickness t. Some assumptions are based on buckling theories of plate
members. Considering plate sections, member sections with larger thickness, t, based on the ratio of width-to-thickness
b/t, are compact sections. It is assumed that compact sections will yield before local buckling as illustrated in Figure 2.
Elastic buckling stress ¢S (C stands for Compact sections) is higher than yield stress a,. Figure 2 presents a new
proposed modified stress-strain relationship of steel for considering inelastic local buckling for compact sections. The
proposed stress-strain relationship is linear elastic-plastic with nonlinear softening. The linear elastic-plastic regime is
defined by initial elastic modulus E, yield strain ¢,,, yield stress a,,, and elastic buckling strain .. The elastic buckling
strain &5, is estimated by the elastic buckling stress a$. from the following formulas [27]:

S k2
oG =g = 12(1—v2)(b/0)2 @
in which k is the buckling parameter defined from boundary conditions of partioned plate sections found in Lee &
Mahendran [28], and v is Poisson’s ratio.

The elastic regime occurs when the stress-strain relationship of materials runs from point O to point A, as illustrated
in Figure 2, corresponding to stress running from zero to the yield stress, and strain simultaneously runs from zero to
the yield strain. The plastic regime starts from the point A and ends at the point B. It is noted that at point B,
corresponding to the elastic buckling strain £, the monitoring plate will be buckled gradually. It is assumed that
decreasing the cross-section area of a monitoring plate section due to inelastic local buckling is equivalent to decreasing
strain energy due to inelastic local buckling. The inelastic local buckling curve can be predicted by utilizing a strain
energy method for monitoring plates, as illustrated in Figure 2. The ratio of inelastic effective width and full width, be/b
[18] or the ratio of current stress and yield stress b, /b,, is equal to one minus the ratio of strain energy after inelastic

local buckling and strain energy before inelastic local buckling % presented as follows:
B

be , o _Us=Ua_ 4 _Ua @

=~

b gy Up Up

where Uy is the total strain energy created before point B (the point starts the inelastic local buckling), U, is the total
strain energy created after point B (the stress-strain relationship of materials will be softened nonlinearly), marked areas
as shown in Figure 2, respectively, which are formulated as:

1 1
Us =5&y0, + (e5 — &)y, = (sfr - 583’) oy ()

U§ ~ %(s —e5)(oy +0) 4)
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Figure 2. Stress-strain relationship of material and strain energy method for inelastic local buckling of compact sections

It is noted that the proposed Equations 3 and 4 in this study are quietly different from those of Thai et al. (2015) [10].
Thai and his colleagues used the total strain energy of the original constitutive model, neglecting the strain energy
generated by the inelastic buckling regimes, Ui, and the strain energy generated by only the inelastic buckling regime.
While Mursi & Uy (2004) [29] used the traditional stress-strain relationship of steel for calculating the total strain
energies after or before inelastic local buckling, as shown in Figure 12 of their work.

Substituting Equations 3 and 4 into Equation 2, the inelastic post-local buckling stress is calculated approximately
by the following formulas

e___ 1
) (5)
Ly

where a is a coefficient for adjusting the inelastic post-local buckling curve.

From Equation 5, the tangent modulus of the material can be obtained as follows:

—(Xo'y(é‘cr—s?y)

Et B ((1+a)s—87y—ascr)2

(6)

In this study, the coefficient « is assigned equal to 1.0 since the predicted results agree well with other studies
(ABAQUS and Thai et al. [10]). So the inelastic post-local buckling stress and tangent modulus of steel are simplified
as:

g 1
o (_> ()
&3
- &
g, = —2(te=3) ®)

&y
(2e-Z-ecr)

in which E, is the negative tangent modulus on the softening buckling curve.

2.2. Slender Sections

Considering thin-plate sections, member sections with smaller thicknesses, t, based on the width-to-thickness ratio
(b/tis larger), are slender sections. Slender sections will be buckled suddenly without material yielding. Elastic buckling
stress 5. (S stands for Slender sections), calculated by Equation 1, is lower than the elastic-ultimate buckling stress o,
and more lower than yield stress a,, of cross-sections. In this study, It is assumed that if &, < ¢,,, the partioned cross-
section is the slender section so the stress-strain relationship of steel is described as Figure 3, otherwise, if ., > ¢,,, the
partioned cross-section is the compact section so the stress-strain relationship of steel is described as Figure 2. Figure 3
presents a new proposed modified stress-strain relationship of steel for considering inelastic local buckling for slender
sections. The proposed stress-strain relationship is linear elastic from point O to point A, nonlinear elastic from point A
to point B, and nonlinear softening from the point B to point D. The linear-elastic nonlinear-elastic regime OAB is
defined by initial Young’s modulus E, elastic buckling stress o3, elastic buckling strain 5., yield strain &y, and elastic-
ultimate buckling stress ;5. It is essential to assume that elastic-ultimate buckling stress ;5 will occur at point B,
corresponding to the yield strain &,, of cross-sections.
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Figure 3. Stress-strain relationship of material and strain energy method for elastic local buckling of slender sections

The elastic-ultimate buckling stress o is predicted by the effective width approach for a plate [18]. The elastic
buckling formulation in Equation 1 can be applied by replacing elastic buckling stress o, with yield stress a,,, replacing
the width b with the effective width be, and replacing the elastic buckling strain e, with the yield strain ¢,,. The yield
strain can be estimated from Equation 1 as follows:

_ U_y _ km?
& =% < 12(1-v2)(be/t)? ©
By using Equations 2 and 9, the elastic-ultimate buckling stress o is estimated as follows:
S
9u . be
gy = b (10)
S 2 S
gcr _ (be be _  |%er
ay - (b) = b gy (11)

Combining Equations 10 and 11, we obtain the ultimate elastic buckling stress o;; as follows:

oy =050, = E\¢¢, (12)

Equation 12 is applied to predict the ultimate elastic buckling stress o, assumed at the yield strain &y at point B, as
illustrated in Figure 3. The stress ¢ after elastic buckling at point A at the strain & which is larger than the elastic buckling
strain &5, and smaller the yield strain &, (curve AB in Figure 3) can be estimated from Equation 12 by replacing (aj, ey)
by (o, €). We obtain Equation 13 as follows:

o=E¢es¢ (13)
Diving both sides of Equation 13 to the yield stress ,,, we obtain the following expression:

o _ e (14)

Oy &y
Equation 14 is used to estimate the stress in the nonlinear elastic regime from point A to point B.

From Equation 13, the tangent modulus of material in the nonlinear elastic regime AB can be obtained as follows:

£ [
E =~ [ (15)

The stress-strain relationship after the ultimate elastic local buckling for slender sections is formulated by the above
strain energy approach defined as follows:

Egr
] (16)

ay 1+a(1—%’)

where «a is a coefficient for adjusting the elastic-ultimate post-local buckling curve.
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The tangent modulus of the material is predicted by Equation 17 as follows:

E*gray
—oy| @

&2

(1+a(1—%’))2

In this study, the coefficient « is assigned equal to 1.0 since the obtained calculation agrees well with another study
in the literature. So that the elastic-ultimate post-local buckling stress and tangent modulus of material are simplified as:

E = 17

o _ ey (18)
oy 2-2
_ oy edrey (19)
t— T \Z
(2e-2y)

It can be noted that Equation 18 developed in this study is simpler than Equation 23 proposed in the work of Thai et
al. [10].

3. Nonlinear Fiber Beam-Column Element
3.1. Considerations of P-8 and Shear Deformation

P-o phenomenon is a phenomenon that the axial force acts on bending moments within members, and under an
ultimate axial force, a structural member can be buckled suddenly. The P-5 phenomenon is usually considered by
dividing beam-column members into several small elements. A number of sub-elements should be larger than ten
elements (depending on the specify problems) for obtaining accurate predictions. For saving computational time and
computer sources, stability functions [30] can be applied to develop a practical finite element analysis aiming to solve
this local buckling problem because by using stability functions, the one-element model is utilized for predicting the P-
o effects accurately. Stability functions are successfully used through the works of Nguyen & Kim [31-36] for analyzing
the nonlinear inelastic responses of space steel-framed structures with and without flexible beam-to-column joints under
various actions. Stability functions are written by the Equations 25 and 26. Equation 20 represents the combination
impacts of both the P-¢ effect and shear deformation acting on a beam-column member

E(A

AP = 0 0 0 0 0] a8
AMy 0 Cay Coy O 0 0|26,
AM, ([0 0 0 Cu Ca 0|28, 20)
AM, 5 0 Coy Cay O 0 0])A8y
AM, 5 0 0 0 Cg Cu 0|l26g]
AT 0O 0 0 0 0 % Ad

where considering a beam-column member has two ends, A and B, as shown in Figure 4; the increment of axial force
AP; the increment of bending moments AM,, 4, AM 4, AM,5, and AM,; and the increment of torsional moment AT the
axial displacgment A ; the joint rotations 46,4, 46,,, 40,5, and 46,5; and the twist angle A¢; the tangent modulus
of materials ~t; the shear modulus G ; the torsional constant J. The bending stiffness factors (Cy,, C4z, Cpy, and Cg,)
considering shear deformation can be calculated as:

2 2
_ Uy-1By+layAssGL

Cay = 2lgy+2lpy+AszGL (1)
12,—1%,+147A5yGL

CAZ — Az~ 'BzT Az sy (22)
204z +21p;+AsyGL

CBy _ —ziy+l§y+lByAszaL 23)
2lpy+2lpy+AszGL
—14,+1B,+1ByAsyGL

Cp, =——————— (24)

204z +21ps+AsyGL

where l,,, = F4n(El,/L) and lg,, = Fg,(E:L,/L); the axes y and z are signed by n; F,,, and Fg,, are stability functions
formulated as:

knL sin(kyL)—(kpL)? cos(kyL)
F _ 2-2 cos(kpL)—kpLsin(kyL)
AN 7)) (k. 1)2 cosh(kpL) —ky L sinh (ky L)
2-2 cosh(kpL)+kpLsinh(kyL)

ifP<0

(25)

ifP>0
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(knL)2—kpLsin(kyL) .
2-2 cos(kpL)—kpLsin(kyL) ifP <0 (26)
knL sin(kyL)—(kyL)? ifP>0
2-2 cosh(kyL)+kpLsinh(kyL) !

FBn =

in which k2 = %. The axial E.A and bending stiffnesses E,I,, of the beam-column element are calculated as Nguyen

tin

and Kim [33, 34]:
EA = st=1 Wj iy EtiAi)j (27)
Eely = X5=y Wi [ 224 Ea(Ainf + )] (28)

where i is the order number of fibers; the fiber number of a cross-section m; the control sections s; the weight of Lobatto
technique wj; at the cross-section j [37]; the tangent modulus E; of a fiber i; the area of a fiber A;; and the moments of
inertia around y- and z-axis I,;; n; stands for coordinates of the fiber following y- and z-axes as shown in Figure 4.

For nonlinear analysis, the tangent stiffness matrix of members is continuously updated and memoried step by step
during the analysis processing. The Gauss-Lobatto integration rule [37] is employed for estimating the axial and bending
stiffness of the member because this scheme permits monitoring accurately the ends of the member where the behavior
and mechanical properties of materials are changed.

N
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Figure 4. Modeling of a nonlinear beam-column element considering local buckling

3.2. Updating the Elemental Stiffness Considering Local Buckling

In order to consider the effects of proposed steel constitutive models under axial force action, as illustrated in Figures
2 and 3, this research employs a beam-column finite element method based on dividing several fibers on the monitoring
cross-sections that this method will be summarized here. The considered beam-column elements are monitored its
behavior through integration points along the element length by applying Gauss-Lobatto integration rules [37]. At
integration points, as shown in Figure 4, cross-sections are discretized into several fibers m with likely areas. These
fibers have geometric characteristics, area A4;, and coordinate (y;, z;), and they are saved and updated the behavior
history of fibers, including stress, strain, and elastic modulus, during the analysis procedure. Initial residual stress is
directly calculated by assigning initial stress for fibers at the first step of the analysis procedure, assuming that residual
stresses distribute ideally as reference of Uy [18] for hollow-box sections and as Kitipornchai & Wong-Chung [38] for
I-shape sections as presented in Figure 5.

The fiber-based approach inherently supports variations in residual stress distribution across different cross-section
shapes. By discretizing the cross-section into fibers, the model allows for the assignment of distinct residual stress
patterns tailored to specific geometries, such as box sections (Sections 4.1 and 4.3) and I-sections (Section 4.2). This
flexibility enables the framework to accommodate arbitrary cross-section shapes by defining appropriate fiber layouts
and corresponding residual stress distributions, ensuring applicability to a wide range of structural members in practical
engineering design. Based on the fiber behavior, characteristics of monitoring sections (sectional stiffness matrix,
sectional deformation, sectional force) are updated and evaluated, and then the member characteristics, including tangent
stiffness matrix, member forces, etc., are also updated and evaluated for the next analysis step. The elemental tangent
stiffness matrix is estimated and updated based on the fiber behavior through the tangent modulus of each fiber
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depending on the proposed stress-strain relationship as presented in Figure 2, Equation 8 and Figure 3., Equation 15,
Equation 19. For compact sections as illustrated in Figure 2, the tangent modulus of fiber is equal to Young’s modulus
(elastic regime, OA) if the fiber strain ranges from 0 to ¢,,, the tangent modulus of fiber is equal to zero due to the fiber
is yielding (plastic regime, AB) if the fiber strain ranges from ¢,, to €5, the tangent modulus of fiber will be estimated
by the Equation 8 (softening regime, BD, post inelastic local buckling) if the fiber strain ranges from &¢. to defined
value. For slender sections, as shown in Figure 3, the tangent modulus of fiber is equal to Young’s modulus (elastic
regime, OA) if the fiber strain ranges from 0 to 2., the tangent modulus of fiber will be estimated by the Equation 15
(elastic local buckling regime, AB) if the fiber strain ranges from &2, to &, the tangent modulus of fiber will be estimated
by the Equation 19 (softening regime, BD, post ultimate-elastic local buckling) if the fiber strain ranges from ¢, to
defined value. The detailed nonlinear fiber beam-column finite element formulations developed by Nguyen & Kim [33,
34] are applied for proposing the nonlinear inelastic local buckling responses of steel columns in this study. When the
tangent modulus of fibers is updated, axial and bending stiffness of member is also updated by the Equation 27 to 28,

and the j-section stiffness matrix [k!ec] is calculated as follows:

_ iz EgA; iz ExiAiz; — it EdAgy;
[Kiee] = | T2 EuAizi M Eq(AizZ +1;) — IR EqAizy; (29)
—2i21EqAiyyi — X1 EdAizy; 2, Eu(Ayf + 1)
- - e
| L Il ]
G Cre
I —
| | ou=/y || || |on=fy
(a) Box sections (b) Hot-rolled I-sections

Figure 5. lIdealized residual stress patterns

. . : T
The incremental j-section force vectors {AQ} = {ANJ AMi, AM’Z} at monitoring sections, are predicted by
Nguyen and Kim [33, 34].

{4Q’} = [B(X){4F} (30)
1 0 0 0 0 0

Bel=" t-1 0 ¢ 00 (31)
0 o0 f—1 0 E 0

where {4F} is the incremental element force vector, [B(x)] is the interpolation matrix, and x is the coordinate of the j-
section along the member length.

The incremental j-section deformation vectors {4q’} = {Aef A)(}’; AX;}T are calculated as
{497} = [kl H4Q'} (32)

where Ae’ is the normal strain at the j-section, section stiffness A)(; is the y-axis curvature strain at the j-section, A)(j is
the z-axis curvature strain at the j-section.

The incremental longitudinal j-section fiber strain vectors are estimated as:

{4e’} = [gl{4q’} (33)
in which [g] is the fiber coordinate matrix present as:
1z —»n
=" = (34)

1 Zm  ~Ym

As The incremental longitudinal j-section fiber strain vectors are calculated, the current fiber stresses are predicted
using the proposed stress-strain relationships.
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The resisting forces of the j-section are estimated as:

, N Lit1 0i A;
{0} = {My} =1 Xiti0;4z (35)
M, =it 0 Ay

where g; is the normal stress at the i-fiber.

The tangent modulus of each fiber E; is estimated based on the stress-strain constitutive laws of material as
Equations 8, 15 and 9. At each loop procedure, the elemental tangent stiffness matrix is estimated through updating the
tangent elastic modulus of each fiber to take into accounting the effects of local buckling from two proposed stress-
strain relationships (Figures 2 and 3). Figure 6 presents the flowchart for predicting the local buckling behavior through
monitoring the behavior of steel fibers using the proposed stress-strain relationships.

Input: E, v, oy, b/t, k, a
v
Compute &cr using Eq. (1)

True False
A
e<egy. c=Eeg e<ea o=FEe
gy<e<eul G=o0y e < € <¢gy: o = Eq.(14), Et = Eq.(15)
eor < ¢ o =Eq. (5), Et=Eq. (6) ey <e: o= Eq. (16), Et = Eq. (17)

\ 4

Estimate: o, E;

Figure 6. . Flowchart predicts the local buckling behavior through monitoring the behavior of steel fibers using the
proposed stress-strain relationships

4. Numerical Examples

A FORTRAN program is coded using the proposed beam-column finite element procedure to trace the nonlinear
inelastic local buckling response of steel members under axial compressive loadings. All numerical examples use
modeling of one element for steel members, including five control points along the length of the member. Cross-sections
of steel columns are meshed into 92 small fibers. The generalized displacement control algorithm invented by Yang et
al. [26] is employed to develop the proposed program for capturing the local buckling behavior of structures.

4.1. Compression of Steel Box Stub Columns With Normal Strength

This example verifies the capacity of compression resistance of normal-strength-steel welded box-section stub
columns. Uy [39] carried out four experimental tests for box sections with strengthening stiffeners. Mechanical
characteristics of steel are E = 200000 MPa and a,, = 265 MPa. Initial compressive residual stresses measured by Uy
[39] are 15% to 17% of the yield stress, as shown in Table 1. The geometry dimensions of steel columns are presented
in Table 1.

Table 1. Geometry dimensions of steel box columns are studied

Specimens b (cm) t(cm) b/t A (cm?) L (cm) ooy
HB1 36 0.3 120 42.84 90 0.16
HB2 42 0.3 140 50.04 90 0.17
HB3 48 0.3 160 57.24 90 0.15
HB4 54 0.3 180 64.44 90 0.15
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The load ratio-axial shortening responses captured by the proposed program, ABAQUS [17] from Thai et al.’s work
[10], and Thai et al. [10] are drawn respectively in Figure 7 for comparing the accuracy and reliability of this work. It is
noted that the results of ABAQUS [17] presented in this study were summarized from Thai et al.’s work [10]. It is
observed that the post-buckling behavior of the proposed method is closer to ABAQUS’s one than Thai et al.’s result.
As shown in Figure 7, all four specimens behave as slender sections, steel columns are buckled before steel fibers are
yielded. The post-buckling path generated by the proposed method considering initial residual stresses is not as smooth
as one without residual stresses due to the chances of tangent elastic modulus of each fiber with different stress-strain
relationships. Because the tangent elastic modulus of all fibers is the same of value in the case without considering initial
residual stresses, while the tangent elastic modulus of fibers is different depending on initial residual stresses in the
remain case (Present with RS). In the case of the HB3 specimen, the peak compression load calculated by the presented
method with effects of residual stress (Present with RS) is lower, about 14.42%, than the peak compression load
calculated by the presented method without effects of residual stress (Present without RS). The range of difference
between considering and no considering the residual stress obtained for four specimens is from 13.72% to 14.42%.
Figure 7 illustrates that residual stresses are significant on the compressive behavior of box steel columns. Based on the
proposed coefficient a, the proposed method can easily adjust the post-buckling path with the obtained results of
commercial FEA software packages. In this example, the proposed coefficient a is equal to 1.0 used for analyzing. Table
2 shows the comparison of ultimate analytical and experimental compression load ratios of the proposed method,
ABAQUS [17] from Thai et al.’s work [10], and Thai et al. [10]. The proposed method’s ultimate load ratios for slender
sections (HB1-HB4) range from 0.881 to 1.144, compared to ABAQUS’s 0.948-1.149. The proposed method’s
predictions are within 2-7% of ABAQUS for HB1, HB2, and HB4, but deviate by ~7% for HB3 (0.881 vs. 0.948).
Figure 7 shows that the proposed method’s post-buckling curves closely align with ABAQUS for HB1 and HB2,
indicating the reliable prediction of post-buckling strength. The proposed method’s post-buckling curves are better than
those of Thai et al. [10]. It is noted that ABAQUS from Thai et al.’s work [10] used 1200 shell elements for the
calculation considering initial geometry imperfections and residual stress, while Thai et al. [10] applied the flexibility-
based fiber finite element method invented by Neuenhofer & Filippou [24] and improved by De Souza [25] for their
analyses. The present method does not consider initial geometry imperfections.
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Figure 7. Load ratio-axial shortening curves of steel box stub columns with normal strength

Table 2. Comparison of ultimate compression load ratios for steel box specimens

Specimens PTE[%E(;](N) : — Present Present
ABAQUS[10]  Thai[10]  (ihRs)  (without RS)
HB1 425 1.149 1.149 1.144 1.301
HB2 450 1123 1.094 1.080 1.230
HB3 550 0.948 0.895 0.881 1.008
HB4 525 0.996 0.937 0.924 1.056

The solution time for the problem using the proposed program is about 1.0 sec using the suggested beam-column
element running on a HP laptop computer configuration of Intel Core i7-7500U, 16 GB RAM, and Windows 10 Home
64-bit. In contrast, ABAQUS simulations with 1200-2000 shell elements, as used in Thai et al. [10], are estimated to
take approximately 20-30 minutes on comparable hardware, highlighting the significant computational efficiency of the
proposed method.

4.2. Compression of Steel I-Section Stub Columns with Normal Strength

This example verifies the compressive resistance capacity of normal-strength steel welded I-section stub columns.
Uy [39] carried out four experimental tests of I-sections with stiffeners. Mechanical properties of steel are E = 200000
MPa and g,, = 265 MPa. The width-to-thickness ratio (b/t) of columns was varied from 20 to 35. Initial compressive
residual stresses studied by Uy [39] are equal to 17% to 19% of the yield stress, as shown in Table 3. Geometry
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dimensions and initial compressive residual stresses of all columns are illustrated in Table 3. Thai et al. [10] analyzed
the behavior of these specimens using initial compressive residual stresses of 18%, while we assigned initial residual
stresses for 92 fibers as presented in Figure 5-b and Table 3.

Table 3. Geometry dimensions of steel I-section specimens are studied

Specimens b (cm) t (cm) b/t A(cm?) L (cm) orloy
HI1 6.0 0.3 20 10.62 90 0.18
HI2 7.5 0.3 25 13.32 90 0.19
HI3 9.0 0.3 30 16.02 90 0.18
Hl4 10.5 0.3 35 18.72 90 0.17

Figure 8 illustrated the load-axial displacement behavior considering local buckling solved by the presented program,
ABAQUS [10], and Thai et al. [10]. It is seen that the curves obtained by the presented method match well with those
of Thai et al. [10]. The limit load calculated by the presented program is higher slightly than the result estimated by Thai
et al.’s program. As shown in Figure 8, HI1 and HI2 specimens behave as compact sections, while HI3 and HI4
specimens behave as slender sections. Table 4 presented a list of ultimate compression load ratios calculated from the
proposed method, ABAQUS [10], and Thai et al. [10]. The proposed method yields load ratios of 1.011-1.205 for HI1-
HI4, compared to ABAQUS’s 0.949-1.082. The model accurately predicts post-buckling behavior for compact sections
(HI1-HI2), with load ratios within 6% of ABAQUS, but over predicts by 6-12% for slender sections (HI3—HI4). Figure
8 confirms good agreement in post-buckling paths for HI1-HI2, with slight deviations for HI3-HI4. For the HI4
specimen, the ultimate load differs significantly when considering the effects of local buckling and not considering.
Local buckling is an important issue that needs to be evaluated carefully in the analysis procedure.
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Figure 8. Load ratio-axial shortening curves of steel I-section stub columns with normal strength

Table 4. Comparison of ultimate compression load ratios for steel I-section specimens

PAna./PTest
Specimens Prest (KN)
[39] ABAQUS Thai [10] Thai [10] Present Present
[10] (with LB) (without LB) (with LB) (without LB)
HI1 260 0.949 0.999 1.082 1.011 1.090
HI2 250 1.075 1.168 1.412 1.205 1.427
HI3 290 1.033 1.000 1.464 1.053 1.471
Hl4 300 1.082 0.997 1.654 1.017 1.661

4.3. Compression of Steel Box Stub Columns with High Strength

This example performs the compressive behavior of high-strength steel welded box-section stub columns. Uy et al.
[40] experimentally tested forty specimens of steel hollow-box sections with strengthening stiffeners under monotonic
compressive loading for capturing local buckling responses of columns. The stub specimens have a width-to-thickness
ratio (b/t) of 15 to 40. Steel plates’s thickness of square-box sections are 5 mm. The yield strength of 760 MPa provided
by tensile coupon tests is used in this analysis. Young’s modulus is 220000 MPa. For verification, the dimensions and
input data of all specimens analyzed by Thai et al. [10], as listed in Table 5, are also investigated in this study. It is
important to note that Thai et al. [10] used four columns with a length-to-width ratio of 3.1, approximately, while the

real experimental tests of Uy et al. [40] are 3.5.
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Table 5. Geometry dimensions of high-strength steel box specimens are studied

Specimens bm) t(cm) b/t L(cm)  orloy orloy
HS20-SH(B) 10.0 0.5 20 32.0 0.10 1.0
HS25-SH(B) 125 0.5 25 39.5 0.10 1.0
HS30-SH(B) 15.0 0.5 30 47.0 0.15 1.0
HS40-SH(B) 20.0 0.5 40 62.0 0.15 1.0

The results obtained by the presented program, ABAQUS [10], and Thai et al. [10] are illustrated and summarized
in Figure 9 and Table 6, respectively. It is observed that the load-axial displacement curves obtained from the presented
method are close to curves estimated by ABAQUS and Thai et al. HS20, HS25, and HS30 specimens are compact
sections, while the HS40 specimen is a slender section, as shown in Figure 9. Only the HS40 specimen is buckled in the
elastic regime due to a slender section with b/t = 40. Table 6 shows the comparison of ultimate analytical and
experimental compression load ratios of the proposed method, ABAQUS [10], and Thai et al. [10]. The proposed
method’s load ratios range from 0.935 to 1.204 for HS20—-HS40, compared to ABAQUS’s 0.980-1.150. The proposed
model performs well for compact sections (HS20-HS30), with differences of 4-5%, but over predicts by ~5% for the
slender HS40 (1.204 vs. 1.150). Figure 9 shows close alignment of post-buckling curves for HS20-HS30, with minor
deviations for HS40. Local buckling behaviors in the case of high-strength steel box stub columns (Figure 9) calculated
by the presented method competed to results calculated from ABAQUS are more identical than the case of normal-
strength steel I-section stub columns (Figure 8). The presented program can predict the nonlinear inelastic locally post-
buckling and pre-buckling behavior of steel members with arbitrary sections and strength.
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Figure 9. Load ratio-axial shortening curves of steel box stub columns with high strength

Table 6. Comparison of ultimate compression load ratios for high-strength steel box specimens

PAna_/PTest
Specimens Prest (KN)
P [40] ABAQUS  Thai[l0] Thai [10] Present Present
[10] WithLB)  (without LB) (with LB) (without LB)

HS20-SH(B) 1544 0.980 1.034 1.034 0.935 0.940
HS25-SH(B) 1740 0.984 0.996 1.042 1.032 1.054
HS30-SH(B) 1820 1.030 1.021 1.211 1.066 1.217
HS40-SH(B) 1728 1.150 1.125 1.715 1.204 1.724

5. Conclusion

This study successfully developed a displacement-based fiber beam-column finite element model for analyzing
the nonlinear local buckling of steel stub columns under axial compression. The model incorporates two novel
stress-strain relationships for compact and slender sections, utilizing a strain energy method to capture inelastic and
elastic post-buckling behaviors. By integrating stability functions, the model accurately accounts for geometric
nonlinearity (P—6 effects) using one-element modeling per member, as validated through numerical examples.
Comparisons with experimental data and finite element analyses demonstrate the reliability of the proposed stress—
strain relationships, with ultimate load ratios within 2—-7% for compact sections (e.g., HI1-HI2, HS20-HS30) and
5-7% for slender sections (e.g., HB3, HS40). The model’s ability to tune post-buckling behavior via the coefficient
a enhances its accuracy, particularly for compact sections, offering a robust alternative to traditional multi-element
approaches.
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The proposed model achieves significant computational efficiency, requiring approximately 1.0 second per analysis
compared to an estimated 20—-30 minutes for ABAQUS shell element models (Section 4.1), making it highly suitable
for practical engineering design. Numerical examples highlight the critical role of local buckling, which can lead to
sudden structural collapse, and the influence of residual stresses, reducing compressive strength by up to 14.4% for
HB3, 63.3% for HI4, 43.2% for HS40-SH(B). It can be seen that we cannot ignore the effects of residual stress on the
local buckling in the case of slender sections. The model’s flexibility supports extensions to nonlinear inelastic analysis
of steel frames and concrete-filled steel tube frames, incorporating local buckling effects for real-world applications.
Future work could enhance accuracy for slender sections by including initial geometric imperfections, further
broadening the model’s applicability in structural engineering practice.
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