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Abstract 

This study develops a displacement-based finite element approach using one-element modeling to analyze the second-order 

inelastic local buckling of steel columns under axial compression. To account for local buckling, two new stress-strain 

relationships are proposed for steel using an energy method and assumptions from previous studies for both compact and 

slender cross-sections. Stress-strain curves of post-buckling regimes are modeled as nonlinear curves. Both geometric and 

material nonlinearity are considered in the buckling analysis. The effects of geometric nonlinearity are traced through 

stability functions. The tangent stiffness of steel members is continuously updated during the nonlinear analysis by updating 

the fiber behavior at monitoring cross-sections using the Gauss-Lobatto integration rule. The proposed stress-strain 

relationships accurately predict the ultimate strength, elastic, and inelastic local buckling behaviors of steel columns under 

axial compression, compared with ABAQUS and previous studies. The model accurately predicts elastic, inelastic, and 

ultimate strength behaviors, with post-buckling responses closely matching ABAQUS results (e.g. 0.881 (proposed with 

residual stress), 1.008 (proposed without residual stress) vs. 0.948 (ABAQUS) load ratio for HB3 specimen). This approach 

offers significant computational efficiency (~1.0 sec vs. 20–30 min for ABAQUS) and introduces adjustable constitutive 

models, enhancing practical design applications for steel structures. This study proves that the effects of residual stress on 

the local buckling cannot be ignored in the case of slender sections, since the differences of the ultimate load (with and 

without the initial residual stress) are equal to 63.3% for the HI4 specimen and 43.2% for the HS40-SH(B) specimen. 
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1. Introduction 

Steel is widely used in civil engineering because of its strength, ductility, and flexibility. However, buckling is 

an important issue and a weak point of steel structures. There are many types of buckling: local buckling, bending 

buckling, flexural torsional buckling, lateral-torsional buckling, etc. Several tests were investigated to observe the 

local buckling behavior of steel structures or steel-concrete composite structures [1-3]. Xue et al. [4] tested and 

simulated the local–overall buckling behavior of corroded H-section steel columns subjected to compression and 

bending simultaneously. Wu et al. [5] studied nonlinear stability of prestressed stayed I-section steel columns 

considering local buckling. Zhong et al. [6] studied local buckling of stainless steel stub columns with novel 

octagonal hollow sections. Han et al. [7] investigated the local-global buckling behaviour of axially compressive 

welded I-section steel columns including local corrosion. Some researchers investigated the local buckling effects 

of steel members or steel structures by employing numerical solutions based on various finite element methods [8-

10]. Recently, Maity et al. [11] simulated the interactive buckling in steel members using a torsional fiber element 
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integrated with a multiaxial local buckling constitutive model. Heredia Rosa et al. [12] developed a multiaxial 

plasticity model with softening for simulating inelastic cyclic local buckling in steel beam-columns. In this study, 

we try to propose a beam-column finite element method using the modeling of one element per beam-column 

member for investigating steel columns under local buckling. 

Local buckling may occur before structures collapse, and then the collapsed load of steel structures is reduced. The 

local buckling mainly depends on slenderness, thickness, the shape of member sections, the member length, residual 

stresses, and initial imperfections. Nowadays, the local buckling phenomenon can be more easily investigated by 

employing finite element analysis commercial softwares (ABAQUS, ANSYS, …) using types of plate, shell, or solid 

elements. Recently, Feng et al. [13] investigated 162 nonlinear finite element models of stainless steel hybrid K-joints 

with SHS-braces-to-CHS-chord using ABAQUS software, and they proposed design equations for predicting the 

strength of the K-joints. Roy et al. [14] analyzed the nonlinear behavior of cold-form built-up box sections using stainless 

steel material. Ananthi et al. [15] conducted experimental tests and simulated finite element analysis for cold-formed 

steel zed-section and hat-section columns applied axial compression. Local and distortional buckling behavior of 

aluminum alloy back-to-back channels, including web holes applied axial compression, was investigated by Fang et al. 

[16]. In the four mentioned studies, the authors efforted to use commercial software ABAQUS [17] to assess, modify, 

and validate the performance of the current design guidelines and also proposed new design guidelines. It is inefficient 

for computer sources and analysis time employing shell or solid elements for modeling. 

In 1998, Uy [18] studied the local buckling of concrete-filled steel welded-box columns using experimental tests and 

a semi-analytical finite strip approach, considering the effects of concrete. Also in this study, the author developed the 

local buckling approach using the effective width concept. Local buckling using beam-column elements is unclearly 

evaluated through AISC-LRFD specification [19, 20] by using proposed equations from experimental tests or modifying 

the constitutive model of steel [21, 22]. The methods utilized for the modified stress-strain relationship are more accurate 

and rational than those based on experimental design equations, and they can easily capture nonlinear post-buckling 

responses of structures. Chan et al. [21] developed the modified stress-strain model for analyzing the large-deflection 

inelastic buckling behavior of square columns. The proposed method by Chan considers both residual stress and initial 

geometry imperfection. Chan’s method can handle complex loading and boundary conditions, while it is difficult for 

other methods (such as the finite difference or the finite integral numerical scheme). Whereas, Skallerud & Amdahl [22, 

23] developed a beam finite element model for tubular members considering the local inelastic buckling phenomenon. 

Beam elements are either based on integrating uniaxial stresses on the cross-section or plastic hinge approaches.  

Thai et al. [10] modified the constitutive model of materials using the energy method to consider the local buckling. 

In their study, they used the flexibility-based fiber beam-column method invented by Neuenhofer & Filippou [24] to 

analyze nonlinear elastic problems and developed by De Souza [25] to analyze large-displacement inelastic problems. 

We see that modifying the constitutive model of materials is one of the suitable approaches for considering local 

buckling by energy methods. The proposed stress-strain relationships in this study are combined by linear lines and 

nonlinear curves, while those proposed by Chan et al. [21] and Skallerud & Amdahl [22] are combined by linear lines 

(tri-linear model). Concurrently, numerical simulations using finite element methods (FEM) have been employed to 

analyze local buckling utilizing commercial software like ABAQUS and ANSYS. However, these FEM models often 

rely on shell or solid elements, which can be computationally intensive and impractical for routine design and analysis, 

especially for large-scale structures. 

In the literature, there is no study employing stability functions and combining the one-element modelling for 

predicting the local buckling. To address this gap, we will try to develop the research idea following this direction. In 

this study, a displacement-based finite element approach employing stability functions using one-element modeling for 

steel members is developed to include the effects of local buckling. Two new modified constitutive models for compact 

and slender steel sections are proposed in which a coefficient α is used for permitting adjustment of the inelastic post-

local buckling behavior. The generalized displacement control algorithm invented by Yang et al. [26] is implemented 

for predicting the behavior curves, including the nonlinear inelastic local buckling. The proposed procedure has 

illustrated the accuracy and efficiency of developed software through some examples. 

2. Constitutive Model of Steel Materials Considering Local Buckling 

Figure 1 illustrates the stress-strain relationships for steel elements for two types of sections (compact section and 

slender section) based on the energy method applied to plate steel. The geometry of these relationships depends on the 

sizes of steel elements, and a vital ratio is b/t, where b is the width and t is the thickness of cross-sections. It can be seen 

that compact sections obtain an ultimate strength higher than slender sections because slender sections are elastically 

buckled before steel material is yielded. The slender sections are assumed to collapse suddenly after obtaining the 

ultimate strength, while the compact sections are more stable due to the existence of the plastic strain regime before they 

collapse. The collapse of compact sections can be called to be due to inelastic buckling. 
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Figure 1. Stress-strain curves are assumed for steel elements 

2.1. Compact Sections 

In this section, the formulation, including the effects of local buckling, is established by dividing cross-sections into 

some plate sections with the width b and the thickness t. Some assumptions are based on buckling theories of plate 

members. Considering plate sections, member sections with larger thickness, t, based on the ratio of width-to-thickness 

b/t, are compact sections. It is assumed that compact sections will yield before local buckling as illustrated in Figure 2. 

Elastic buckling stress 𝜎𝑐𝑟
𝐶  (C stands for Compact sections) is higher than yield stress 𝜎𝑦 . Figure 2 presents a new 

proposed modified stress-strain relationship of steel for considering inelastic local buckling for compact sections. The 

proposed stress-strain relationship is linear elastic-plastic with nonlinear softening. The linear elastic-plastic regime is 

defined by initial elastic modulus E, yield strain 𝜀𝑦, yield stress 𝜎𝑦, and elastic buckling strain 𝜀𝑐𝑟
𝐶 . The elastic buckling 

strain 𝜀𝑐𝑟
𝐶  is estimated by the elastic buckling stress 𝜎𝑐𝑟

𝐶  from the following formulas [27]: 

σcr
C =

εcr
C

E
=

kπ2

12(1−v2)(b/t)2
  (1) 

in which 𝑘 is the buckling parameter defined from boundary conditions of partioned plate sections found in Lee & 

Mahendran [28], and 𝑣 is Poisson’s ratio. 

The elastic regime occurs when the stress-strain relationship of materials runs from point O to point A, as illustrated 

in Figure 2, corresponding to stress running from zero to the yield stress, and strain simultaneously runs from zero to 

the yield strain. The plastic regime starts from the point A and ends at the point B. It is noted that at point B, 

corresponding to the elastic buckling strain 𝜀𝑐𝑟
𝐶 , the monitoring plate will be buckled gradually. It is assumed that 

decreasing the cross-section area of a monitoring plate section due to inelastic local buckling is equivalent to decreasing 

strain energy due to inelastic local buckling. The inelastic local buckling curve can be predicted by utilizing a strain 

energy method for monitoring plates, as illustrated in Figure 2. The ratio of inelastic effective width and full width, be/b 

[18] or the ratio of current stress and yield stress 𝑏𝑒/𝑏𝑦 is equal to one minus the ratio of strain energy after inelastic 

local buckling and strain energy before inelastic local buckling 
𝑈𝐴

𝑈𝐵
, presented as follows: 

𝑏𝑒

𝑏
≈

𝜎

𝜎𝑦
=

𝑈𝐵−𝑈𝐴

𝑈𝐵
= 1 −

𝑈𝐴

𝑈𝐵
  (2) 

where 𝑈𝐵 is the total strain energy created before point B (the point starts the inelastic local buckling), 𝑈𝐴 is the total 

strain energy created after point B (the stress-strain relationship of materials will be softened nonlinearly), marked areas 

as shown in Figure 2, respectively, which are formulated as: 

𝑈𝐵
𝐶 =

1

2
𝜀𝑦𝜎𝑦 + (𝜀𝑐𝑟

𝐶 − 𝜀𝑦)𝜎𝑦 = (𝜀𝑐𝑟
𝐶 −

1

2
𝜀𝑦)𝜎𝑦  (3) 

𝑈𝐴
𝐶 ≈

1

2
(𝜀 − 𝜀𝑐𝑟

𝐶 )(𝜎𝑦 + 𝜎)  (4) 
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Figure 2. Stress-strain relationship of material and strain energy method for inelastic local buckling of compact sections 

It is noted that the proposed Equations 3 and 4 in this study are quietly different from those of Thai et al. (2015) [10]. 

Thai and his colleagues used the total strain energy of the original constitutive model, neglecting the strain energy 

generated by the inelastic buckling regimes, U1, and the strain energy generated by only the inelastic buckling regime. 

While Mursi & Uy (2004) [29] used the traditional stress-strain relationship of steel for calculating the total strain 

energies after or before inelastic local buckling, as shown in Figure 12 of their work. 

Substituting Equations 3 and 4 into Equation 2, the inelastic post-local buckling stress is calculated approximately 

by the following formulas 

𝜎

𝜎𝑦
=

1

1+𝛼(
𝜀−𝜀𝑐𝑟

𝜀−
𝜀𝑦
2

)

  
(5) 

where 𝛼 is a coefficient for adjusting the inelastic post-local buckling curve. 

From Equation 5, the tangent modulus of the material can be obtained as follows: 

𝐸𝑡 =
−𝛼𝜎𝑦(𝜀𝑐𝑟−

𝜀𝑦

2
)

((1+𝛼)𝜀−
𝜀𝑦

2
−𝛼𝜀𝑐𝑟)

2  (6) 

In this study, the coefficient 𝛼 is assigned equal to 1.0 since the predicted results agree well with other studies 

(ABAQUS and Thai et al. [10]). So the inelastic post-local buckling stress and tangent modulus of steel are simplified 

as: 

𝜎

𝜎𝑦
=

1

1+(
𝜀−𝜀𝑐𝑟

𝜀−
𝜀𝑦
2

)

  
(7) 

𝐸𝑡 =
−𝜎𝑦(𝜀𝑐𝑟−

𝜀𝑦

2
)

(2𝜀−
𝜀𝑦

2
−𝜀𝑐𝑟)

2  (8) 

in which 𝐸𝑡 is the negative tangent modulus on the softening buckling curve. 

2.2. Slender Sections 

Considering thin-plate sections, member sections with smaller thicknesses, t, based on the width-to-thickness ratio 

(b/t is larger), are slender sections. Slender sections will be buckled suddenly without material yielding. Elastic buckling 

stress 𝜎𝑐𝑟
𝑆  (S stands for Slender sections), calculated by Equation 1, is lower than the elastic-ultimate buckling stress 𝜎𝑢

𝑆 

and more lower than yield stress 𝜎𝑦 of cross-sections. In this study, It is assumed that if 𝜀𝑐𝑟 ≤ 𝜀𝑦, the partioned cross-

section is the slender section so the stress-strain relationship of steel is described as Figure 3, otherwise, if 𝜀𝑐𝑟 > 𝜀𝑦, the 

partioned cross-section is the compact section so the stress-strain relationship of steel is described as Figure 2. Figure 3 

presents a new proposed modified stress-strain relationship of steel for considering inelastic local buckling for slender 

sections. The proposed stress-strain relationship is linear elastic from point O to point A, nonlinear elastic from point A 

to point B, and nonlinear softening from the point B to point D. The linear-elastic nonlinear-elastic regime OAB is 

defined by initial Young’s modulus E, elastic buckling stress 𝜎𝑐𝑟
𝑆 , elastic buckling strain 𝜀𝑐𝑟

𝑆 , yield strain 𝜀𝑦, and elastic-

ultimate buckling stress 𝜎𝑢
𝑆 . It is essential to assume that elastic-ultimate buckling stress 𝜎𝑢

𝑆  will occur at point B, 

corresponding to the yield strain 𝜀𝑦 of cross-sections. 
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Figure 3. Stress-strain relationship of material and strain energy method for elastic local buckling of slender sections 

The elastic-ultimate buckling stress 𝜎𝑢
𝑆 is predicted by the effective width approach for a plate [18]. The elastic 

buckling formulation in Equation 1 can be applied by replacing elastic buckling stress 𝜎𝑐𝑟  with yield stress 𝜎𝑦, replacing 

the width b with the effective width be, and replacing the elastic buckling strain 𝜀𝑐𝑟 with the yield strain 𝜀𝑦. The yield 

strain can be estimated from Equation 1 as follows: 

𝜀𝑦 =
𝜎𝑦

𝐸
=

𝑘𝜋2

12(1−𝑣2)(𝑏𝑒/𝑡)
2  (9) 

By using Equations 2 and 9, the elastic-ultimate buckling stress 𝜎𝑢
𝑆 is estimated as follows: 

𝜎𝑢
𝑆

𝜎𝑦
≈

𝑏𝑒

𝑏
  (10) 

𝜎𝑐𝑟
𝑆

𝜎𝑦
= (

𝑏𝑒

𝑏
)
2

⇒
𝑏𝑒

𝑏
= √

𝜎𝑐𝑟
𝑆

𝜎𝑦
  (11) 

Combining Equations 10 and 11, we obtain the ultimate elastic buckling stress 𝜎𝑢
𝑆 as follows: 

𝜎𝑢
𝑆 = √𝜎𝑐𝑟

𝑆 𝜎𝑦 = 𝐸√𝜀𝑐𝑟
𝑆 𝜀𝑦  (12) 

Equation 12 is applied to predict the ultimate elastic buckling stress 𝜎𝑢
𝑆 assumed at the yield strain 𝜀𝑦 at point B, as 

illustrated in Figure 3. The stress 𝜎 after elastic buckling at point A at the strain 𝜀 which is larger than the elastic buckling 

strain 𝜀𝑐𝑟
𝑆 , and smaller the yield strain 𝜀𝑦 (curve AB in Figure 3) can be estimated from Equation 12 by replacing (𝜎𝑢

𝑆, 𝜀𝑦) 

by (𝜎, 𝜀). We obtain Equation 13 as follows: 

𝜎 = 𝐸√𝜀𝑐𝑟
𝑆 𝜀  (13) 

Diving both sides of Equation 13 to the yield stress 𝜎𝑦, we obtain the following expression: 

𝜎

𝜎𝑦
=

√𝜀𝑐𝑟
𝑆 𝜀

𝜀𝑦
  (14) 

Equation 14 is used to estimate the stress in the nonlinear elastic regime from point A to point B. 

From Equation 13, the tangent modulus of material in the nonlinear elastic regime AB can be obtained as follows: 

𝐸𝑡 =
𝐸

2
√𝜀𝑐𝑟

𝑆

𝜀
  (15) 

The stress-strain relationship after the ultimate elastic local buckling for slender sections is formulated by the above 

strain energy approach defined as follows: 

𝜎

𝜎𝑦
=

√
𝜀𝑐𝑟
𝑆

𝜀𝑦

1+𝛼(1−
𝜀𝑦

𝜀
)
  

(16) 

where 𝛼 is a coefficient for adjusting the elastic-ultimate post-local buckling curve. 
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The tangent modulus of the material is predicted by Equation 17 as follows: 

𝐸𝑡 =

−𝜎𝑦(𝛼
√𝜀𝑐𝑟
𝑆 𝜀𝑦

𝜀2
)

(1+𝛼(1−
𝜀𝑦

𝜀
))
2   

(17) 

In this study, the coefficient 𝛼 is assigned equal to 1.0 since the obtained calculation agrees well with another study 

in the literature. So that the elastic-ultimate post-local buckling stress and tangent modulus of material are simplified as: 

𝜎

𝜎𝑦
=

√
𝜀𝑐𝑟
𝑆

𝜀𝑦

2−
𝜀𝑦

𝜀

  
(18) 

𝐸𝑡 =
−𝜎𝑦√𝜀𝑐𝑟

𝑆 𝜀𝑦

(2𝜀−𝜀𝑦)
2   (19) 

It can be noted that Equation 18 developed in this study is simpler than Equation 23 proposed in the work of Thai et 

al. [10]. 

3. Nonlinear Fiber Beam-Column Element 

3.1. Considerations of P-δ and Shear Deformation 

P-δ phenomenon is a phenomenon that the axial force acts on bending moments within members, and under an 

ultimate axial force, a structural member can be buckled suddenly. The P-δ phenomenon is usually considered by 

dividing beam-column members into several small elements. A number of sub-elements should be larger than ten 

elements (depending on the specify problems) for obtaining accurate predictions. For saving computational time and 

computer sources, stability functions [30] can be applied to develop a practical finite element analysis aiming to solve 

this local buckling problem because by using stability functions, the one-element model is utilized for predicting the P-

δ effects accurately. Stability functions are successfully used through the works of Nguyen & Kim [31-36] for analyzing 

the nonlinear inelastic responses of space steel-framed structures with and without flexible beam-to-column joints under 

various actions. Stability functions are written by the Equations 25 and 26. Equation 20 represents the combination 

impacts of both the P-δ effect and shear deformation acting on a beam-column member 

{
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∆θzB
∆ϕ }

 
 

 
 

  (20) 

where considering a beam-column member has two ends, A and B, as shown in Figure 4; the increment of axial force 

𝛥𝑃; the increment of bending moments 𝛥𝑀𝑦𝐴, 𝛥𝑀𝑧𝐴, 𝛥𝑀𝑦𝐵, and 𝛥𝑀𝑧𝐵; and the increment of torsional moment 𝛥𝑇; the 

axial displacement  ; the joint rotations 𝛥𝜃𝑦𝐴, 𝛥𝜃𝑧𝐴, 𝛥𝜃𝑦𝐵, and 𝛥𝜃𝑧𝐵; and the twist angle 𝛥𝜑; the tangent modulus 

of materials tE
; the shear modulus G ; the torsional constant 𝐽. The bending stiffness factors (𝐶𝐴𝑦, 𝐶𝐴𝑧, 𝐶𝐵𝑦, and 𝐶𝐵𝑧) 

considering shear deformation can be calculated as: 

𝐶𝐴𝑦 =
𝑙𝐴𝑦
2 −𝑙𝐵𝑦

2 +𝑙𝐴𝑦𝐴𝑠𝑧𝐺𝐿

2𝑙𝐴𝑦+2𝑙𝐵𝑦+𝐴𝑠𝑧𝐺𝐿
  (21) 

𝐶𝐴𝑧 =
𝑙𝐴𝑧
2 −𝑙𝐵𝑧

2 +𝑙𝐴𝑧𝐴𝑠𝑦𝐺𝐿

2𝑙𝐴𝑧+2𝑙𝐵𝑧+𝐴𝑠𝑦𝐺𝐿
  (22) 

𝐶𝐵𝑦 =
−𝑙𝐴𝑦
2 +𝑙𝐵𝑦

2 +𝑙𝐵𝑦𝐴𝑠𝑧𝐺𝐿

2𝑙𝐴𝑦+2𝑙𝐵𝑦+𝐴𝑠𝑧𝐺𝐿
  (23) 

𝐶𝐵𝑧 =
−𝑙𝐴𝑧
2 +𝑙𝐵𝑧

2 +𝑙𝐵𝑦𝐴𝑠𝑦𝐺𝐿

2𝑙𝐴𝑧+2𝑙𝐵𝑧+𝐴𝑠𝑦𝐺𝐿
  (24) 

where 𝑙𝐴𝑛 = 𝐹𝐴𝑛(𝐸𝑡𝐼𝑛/𝐿) and 𝑙𝐵𝑛 = 𝐹𝐵𝑛(𝐸𝑡𝐼𝑛/𝐿); the axes y and z are signed by n; 𝐹𝐴𝑛 and 𝐹𝐵𝑛 are stability functions 

formulated as: 

FAn = {

knL sin(knL)−(knL)
2 cos(knL)

2−2cos(knL)−knL sin(knL)
       if P < 0

(knL)
2 cosh(knL)−knL sinh(knL)

2−2cosh(knL)+knL sinh(knL)
    if P > 0

  (25) 
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FBn = {

(knL)
2−knL sin(knL)

2−2cos(knL)−knL sin(knL)
       if P < 0

knL sin(knL)−(knL)
2

2−2 cosh(knL)+knL sinh(knL)
   if P > 0

  (26) 

in which 𝑘𝑛
2 =

|𝑃|

𝐸𝑡𝐼𝑛
. The axial 𝐸𝑡𝐴 and bending stiffnesses 𝐸𝑡𝐼𝑛 of the beam-column element are calculated as Nguyen 

and Kim [33, 34]: 

EtA = ∑ wj(∑ EtiAi
m
i=1 )j

s
j=1   (27) 

EtIn = ∑ wj[∑ Eti(Aini
2 + Ini)

m
i=1 ]j

s
j=1   (28) 

where i is the order number of fibers; the fiber number of a cross-section m; the control sections s; the weight of Lobatto 

technique 𝑤𝑗  at the cross-section j [37]; the tangent modulus 𝐸𝑡𝑖 of a fiber i; the area of a fiber 𝐴𝑖; and the moments of 

inertia around y- and z-axis 𝐼𝑛𝑖; 𝑛𝑖 stands for coordinates of the fiber following y- and z-axes as shown in Figure 4. 

For nonlinear analysis, the tangent stiffness matrix of members is continuously updated and memoried step by step 

during the analysis processing. The Gauss-Lobatto integration rule [37] is employed for estimating the axial and bending 

stiffness of the member because this scheme permits monitoring accurately the ends of the member where the behavior 

and mechanical properties of materials are changed. 

 

Figure 4. Modeling of a nonlinear beam-column element considering local buckling 

3.2. Updating the Elemental Stiffness Considering Local Buckling 

In order to consider the effects of proposed steel constitutive models under axial force action, as illustrated in Figures 
2 and 3, this research employs a beam-column finite element method based on dividing several fibers on the monitoring 
cross-sections that this method will be summarized here. The considered beam-column elements are monitored its 
behavior through integration points along the element length by applying Gauss-Lobatto integration rules [37]. At 
integration points, as shown in Figure 4, cross-sections are discretized into several fibers m with likely areas. These 
fibers have geometric characteristics, area 𝐴𝑖 , and coordinate (𝑦𝑖 , 𝑧𝑖), and they are saved and updated the behavior 
history of fibers, including stress, strain, and elastic modulus, during the analysis procedure. Initial residual stress is 
directly calculated by assigning initial stress for fibers at the first step of the analysis procedure, assuming that residual 
stresses distribute ideally as reference of Uy [18] for hollow-box sections and as Kitipornchai & Wong-Chung [38] for 
I-shape sections as presented in Figure 5.  

The fiber-based approach inherently supports variations in residual stress distribution across different cross-section 

shapes. By discretizing the cross-section into fibers, the model allows for the assignment of distinct residual stress 

patterns tailored to specific geometries, such as box sections (Sections 4.1 and 4.3) and I-sections (Section 4.2). This 

flexibility enables the framework to accommodate arbitrary cross-section shapes by defining appropriate fiber layouts 

and corresponding residual stress distributions, ensuring applicability to a wide range of structural members in practical 

engineering design. Based on the fiber behavior, characteristics of monitoring sections (sectional stiffness matrix, 

sectional deformation, sectional force) are updated and evaluated, and then the member characteristics, including tangent 

stiffness matrix, member forces, etc., are also updated and evaluated for the next analysis step. The elemental tangent 

stiffness matrix is estimated and updated based on the fiber behavior through the tangent modulus of each fiber 
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depending on the proposed stress-strain relationship as presented in Figure 2, Equation 8 and Figure 3., Equation 15, 

Equation 19. For compact sections as illustrated in Figure 2, the tangent modulus of fiber is equal to Young’s modulus 

(elastic regime, OA) if the fiber strain ranges from 0 to 𝜀𝑦, the tangent modulus of fiber is equal to zero due to the fiber 

is yielding (plastic regime, AB) if the fiber strain ranges from 𝜀𝑦 to 𝜀𝑐𝑟
𝐶 , the tangent modulus of fiber will be estimated 

by the Equation 8 (softening regime, BD, post inelastic local buckling) if the fiber strain ranges from 𝜀𝑐𝑟
𝐶  to defined 

value. For slender sections, as shown in Figure 3, the tangent modulus of fiber is equal to Young’s modulus (elastic 

regime, OA) if the fiber strain ranges from 0 to 𝜀𝑐𝑟
𝑆 , the tangent modulus of fiber will be estimated by the Equation 15 

(elastic local buckling regime, AB) if the fiber strain ranges from 𝜀𝑐𝑟
𝑆  to 𝜀𝑦, the tangent modulus of fiber will be estimated 

by the Equation 19 (softening regime, BD, post ultimate-elastic local buckling) if the fiber strain ranges from 𝜀𝑦 to 

defined value. The detailed nonlinear fiber beam-column finite element formulations developed by Nguyen & Kim [33, 

34] are applied for proposing the nonlinear inelastic local buckling responses of steel columns in this study. When the 

tangent modulus of fibers is updated, axial and bending stiffness of member is also updated by the Equation 27 to 28, 

and the j-section stiffness matrix [𝑘𝑠𝑒𝑐
𝑗
] is calculated as follows: 

[ksec
j
] = [

∑ EtiAi
m
i=1 ∑ EtiAizi

m
i=1 −∑ EtiAiyi

m
i=1

∑ EtiAizi
m
i=1 ∑ Eti(Aizi

2 + Iyi)
m
i=1 −∑ EtiAiziyi

m
i=1

−∑ EtiAiyi
m
i=1 −∑ EtiAiziyi

m
i=1 ∑ Eti(Aiyi

2 + Izi)
m
i=1

]  (29) 

 

Figure 5. Idealized residual stress patterns 

The incremental j-section force vectors {∆Qj} = {∆Nj ∆My
j

∆Mz
j
}
T

 at monitoring sections, are predicted by 

Nguyen and Kim [33, 34]. 

{𝛥𝑄𝑗} = [𝐵(𝑥)]{𝛥𝐹}  (30) 

[B(x)] = [

1 0 0 0 0 0

0
x

L
− 1 0

x

L
0 0

0 0
x

L
− 1 0

x

L
0

]  (31) 

where {𝛥𝐹} is the incremental element force vector, [𝐵(𝑥)] is the interpolation matrix, and x is the coordinate of the j-

section along the member length. 

The incremental j-section deformation vectors {𝛥𝑞𝑗} = {𝛥𝜀𝑗 𝛥𝜒𝑦
𝑗

𝛥𝜒𝑦
𝑗}
𝑇
 are calculated as 

{𝛥𝑞 
𝑗} = [𝑘𝑠𝑒𝑐

𝑗
]−1{𝛥𝑄 

𝑗} (32) 

where 𝛥𝜀𝑗 is the normal strain at the j-section, section stiffness 𝛥𝜒𝑦
𝑗
 is the y-axis curvature strain at the j-section, 𝛥𝜒𝑧

𝑗
 is 

the z-axis curvature strain at the j-section. 

The incremental longitudinal j-section fiber strain vectors are estimated as: 

{𝛥𝑒𝑗} = [𝑔]{𝛥𝑞𝑗}  (33) 

in which [𝑔] is the fiber coordinate matrix present as: 

[𝑔] = [

1 𝑧1 −𝑦1
1 𝑧2 −𝑦2
. . . . . . . . .
1 𝑧𝑚 −𝑦𝑚

]  (34) 

As The incremental longitudinal j-section fiber strain vectors are calculated, the current fiber stresses are predicted 

using the proposed stress-strain relationships.  
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The resisting forces of the j-section are estimated as: 

{𝑄𝑅
𝑗
} = {

𝑁
𝑀𝑦

𝑀𝑧

} = {

∑ 𝜎𝑖
𝑚
𝑖=1 𝐴𝑖

∑ 𝜎𝑖
𝑚
𝑖=1 𝐴𝑖𝑧𝑖

−∑ 𝜎𝑖
𝑚
𝑖=1 𝐴𝑖𝑦𝑖

}  (35) 

where 𝜎𝑖 is the normal stress at the i-fiber. 

The tangent modulus of each fiber 𝐸𝑡𝑖  is estimated based on the stress-strain constitutive laws of material as 

Equations 8, 15 and 9. At each loop procedure, the elemental tangent stiffness matrix is estimated through updating the 

tangent elastic modulus of each fiber to take into accounting the effects of local buckling from two proposed stress-

strain relationships (Figures 2 and 3). Figure 6 presents the flowchart for predicting the local buckling behavior through 

monitoring the behavior of steel fibers using the proposed stress-strain relationships. 

 

 

 

Figure 6. . Flowchart predicts the local buckling behavior through monitoring the behavior of steel fibers using the 

proposed stress-strain relationships 

4. Numerical Examples 

A FORTRAN program is coded using the proposed beam-column finite element procedure to trace the nonlinear 

inelastic local buckling response of steel members under axial compressive loadings. All numerical examples use 

modeling of one element for steel members, including five control points along the length of the member. Cross-sections 

of steel columns are meshed into 92 small fibers. The generalized displacement control algorithm invented by Yang et 

al. [26] is employed to develop the proposed program for capturing the local buckling behavior of structures.  

4.1. Compression of Steel Box Stub Columns With Normal Strength 

This example verifies the capacity of compression resistance of normal-strength-steel welded box-section stub 

columns. Uy [39] carried out four experimental tests for box sections with strengthening stiffeners. Mechanical 

characteristics of steel are E = 200000 MPa and 𝜎𝑦 = 265 MPa. Initial compressive residual stresses measured by Uy 

[39] are 15% to 17% of the yield stress, as shown in Table 1. The geometry dimensions of steel columns are presented 

in Table 1. 

Table 1. Geometry dimensions of steel box columns are studied 

Specimens b (cm) t (cm) b/t A (cm2) L (cm) rc/y 

HB1 36 0.3 120 42.84 90 0.16 

HB2 42 0.3 140 50.04 90 0.17 

HB3 48 0.3 160 57.24 90 0.15 

HB4 54 0.3 180 64.44 90 0.15 

cr ≥ y 
True False 

 ≤ y:  = E  

y <  ≤ cr:  = y 

cr < : = Eq. (5), Et = Eq. (6) 

 ≤ cr:  = E  

cr <  ≤ y:  = Eq.(14), Et = Eq.(15) 

y < :  = Eq. (16), Et = Eq. (17) 

Estimate:, Et 

 

 

 

 

 

 

 

 

 
Input: E, , σy, b/t, k, α 

 
Compute cr using Eq. (1) 
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The load ratio-axial shortening responses captured by the proposed program, ABAQUS [17] from Thai et al.’s work 
[10], and Thai et al. [10] are drawn respectively in Figure 7 for comparing the accuracy and reliability of this work. It is 
noted that the results of ABAQUS [17] presented in this study were summarized from Thai et al.’s work [10]. It is 
observed that the post-buckling behavior of the proposed method is closer to ABAQUS’s one than Thai et al.’s result. 
As shown in Figure 7, all four specimens behave as slender sections, steel columns are buckled before steel fibers are 
yielded. The post-buckling path generated by the proposed method considering initial residual stresses is not as smooth 
as one without residual stresses due to the chances of tangent elastic modulus of each fiber with different stress-strain 
relationships. Because the tangent elastic modulus of all fibers is the same of value in the case without considering initial 
residual stresses, while the tangent elastic modulus of fibers is different depending on initial residual stresses in the 
remain case (Present with RS). In the case of the HB3 specimen, the peak compression load calculated by the presented 
method with effects of residual stress (Present with RS) is lower, about 14.42%, than the peak compression load 
calculated by the presented method without effects of residual stress (Present without RS). The range of difference 
between considering and no considering the residual stress obtained for four specimens is from 13.72% to 14.42%. 
Figure 7 illustrates that residual stresses are significant on the compressive behavior of box steel columns. Based on the 
proposed coefficient α, the proposed method can easily adjust the post-buckling path with the obtained results of 
commercial FEA software packages. In this example, the proposed coefficient α is equal to 1.0 used for analyzing. Table 
2 shows the comparison of ultimate analytical and experimental compression load ratios of the proposed method, 
ABAQUS [17] from Thai et al.’s work [10], and Thai et al. [10]. The proposed method’s ultimate load ratios for slender 
sections (HB1–HB4) range from 0.881 to 1.144, compared to ABAQUS’s 0.948–1.149. The proposed method’s 
predictions are within 2–7% of ABAQUS for HB1, HB2, and HB4, but deviate by ~7% for HB3 (0.881 vs. 0.948). 
Figure 7 shows that the proposed method’s post-buckling curves closely align with ABAQUS for HB1 and HB2, 
indicating the reliable prediction of post-buckling strength. The proposed method’s post-buckling curves are better than 
those of Thai et al. [10]. It is noted that ABAQUS from Thai et al.’s work [10] used 1200 shell elements for the 
calculation considering initial geometry imperfections and residual stress, while Thai et al. [10] applied the flexibility-
based fiber finite element method invented by Neuenhofer & Filippou [24] and improved by De Souza [25] for their 
analyses. The present method does not consider initial geometry imperfections. 

 
(a) HB1 specimen  

 
(b) HB2 specimen  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-5.0-4.0-3.0-2.0-1.00.0

A
x

ia
l 
lo

a
d

 r
a

ti
o

 (
P

A
n

a
./
P

T
e

s
t)

Axial shortening (mm)

Compression of Column

ABAQUS

Thai et al.

Proposed - RS

Proposed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-5.0-4.0-3.0-2.0-1.00.0

A
x

ia
l 
lo

a
d

 r
a

ti
o

(P
A

n
a

./
P

T
e

s
t)

Axial shortening (mm)

Compression of Column

ABAQUS

Thai et al.

Proposed - RS

Proposed



Civil Engineering Journal         Vol. 11, No. 09, September, 2025 

3926 

 

 
(c) HB3 specimen  

 

(d) HB4 specimen 

Figure 7. Load ratio-axial shortening curves of steel box stub columns with normal strength 

Table 2. Comparison of ultimate compression load ratios for steel box specimens 

Specimens 
PTest (kN) 

[39] 

PAna./PTest 

ABAQUS [10] Thai [10] 
Present 

(with RS) 

Present 

(without RS) 

HB1 425 1.149 1.149 1.144 1.301 

HB2 450 1.123 1.094 1.080 1.230 

HB3 550 0.948 0.895 0.881 1.008 

HB4 525 0.996 0.937 0.924 1.056 

The solution time for the problem using the proposed program is about 1.0 sec using the suggested beam-column 

element running on a HP laptop computer configuration of Intel Core i7-7500U, 16 GB RAM, and Windows 10 Home 

64-bit. In contrast, ABAQUS simulations with 1200–2000 shell elements, as used in Thai et al. [10], are estimated to 

take approximately 20–30 minutes on comparable hardware, highlighting the significant computational efficiency of the 

proposed method. 

4.2. Compression of Steel I-Section Stub Columns with Normal Strength 

This example verifies the compressive resistance capacity of normal-strength steel welded I-section stub columns. 

Uy [39] carried out four experimental tests of I-sections with stiffeners. Mechanical properties of steel are E = 200000 

MPa and 𝜎𝑦 = 265 MPa. The width-to-thickness ratio (b/t) of columns was varied from 20 to 35. Initial compressive 

residual stresses studied by Uy [39] are equal to 17% to 19% of the yield stress, as shown in Table 3. Geometry 
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dimensions and initial compressive residual stresses of all columns are illustrated in Table 3. Thai et al. [10] analyzed 

the behavior of these specimens using initial compressive residual stresses of 18%, while we assigned initial residual 

stresses for 92 fibers as presented in Figure 5-b and Table 3. 

Table 3. Geometry dimensions of steel I-section specimens are studied 

Specimens b (cm) t (cm) b/t A (cm2) L (cm) rc/y 

HI1 6.0 0.3 20 10.62 90 0.18 

HI2 7.5 0.3 25 13.32 90 0.19 

HI3 9.0 0.3 30 16.02 90 0.18 

HI4 10.5 0.3 35 18.72 90 0.17 

Figure 8 illustrated the load-axial displacement behavior considering local buckling solved by the presented program, 

ABAQUS [10], and Thai et al. [10]. It is seen that the curves obtained by the presented method match well with those 

of Thai et al. [10]. The limit load calculated by the presented program is higher slightly than the result estimated by Thai 

et al.’s program. As shown in Figure 8, HI1 and HI2 specimens behave as compact sections, while HI3 and HI4 

specimens behave as slender sections. Table 4 presented a list of ultimate compression load ratios calculated from the 

proposed method, ABAQUS [10], and Thai et al. [10]. The proposed method yields load ratios of 1.011–1.205 for HI1–

HI4, compared to ABAQUS’s 0.949–1.082. The model accurately predicts post-buckling behavior for compact sections 

(HI1–HI2), with load ratios within 6% of ABAQUS, but over predicts by 6–12% for slender sections (HI3–HI4). Figure 

8 confirms good agreement in post-buckling paths for HI1–HI2, with slight deviations for HI3–HI4. For the HI4 

specimen, the ultimate load differs significantly when considering the effects of local buckling and not considering. 

Local buckling is an important issue that needs to be evaluated carefully in the analysis procedure. 
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(c) HI3 specimen  

 

(d) HI4 specimen  

Figure 8. Load ratio-axial shortening curves of steel I-section stub columns with normal strength 

Table 4. Comparison of ultimate compression load ratios for steel I-section specimens 

Specimens 
PTest (kN) 

[39] 

PAna./PTest 

ABAQUS 

[10] 

Thai [10] 

(with LB) 

Thai [10] 

(without LB) 

Present 

(with LB) 

Present 

(without LB) 

HI1 260 0.949 0.999 1.082 1.011 1.090 

HI2 250 1.075 1.168 1.412 1.205 1.427 

HI3 290 1.033 1.000 1.464 1.053 1.471 

HI4 300 1.082 0.997 1.654 1.017 1.661 

4.3. Compression of Steel Box Stub Columns with High Strength 

This example performs the compressive behavior of high-strength steel welded box-section stub columns. Uy et al. 

[40] experimentally tested forty specimens of steel hollow-box sections with strengthening stiffeners under monotonic 

compressive loading for capturing local buckling responses of columns. The stub specimens have a width-to-thickness 

ratio (b/t) of 15 to 40. Steel plates’s thickness of square-box sections are 5 mm. The yield strength of 760 MPa provided 

by tensile coupon tests is used in this analysis. Young’s modulus is 220000 MPa. For verification, the dimensions and 

input data of all specimens analyzed by Thai et al. [10], as listed in Table 5, are also investigated in this study. It is 

important to note that Thai et al. [10] used four columns with a length-to-width ratio of 3.1, approximately, while the 

real experimental tests of Uy et al. [40] are 3.5. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-5.0-4.0-3.0-2.0-1.00.0

A
x

ia
l 
lo

a
d

 r
a

ti
o

(P
A
n

a
./
P

T
e
s
t)

Axial shortening (mm)

Compression of Column

ABAQUS

Thai et al. - Included LB

Proposed - Included LB

Thai et al. - Ignored LB

Proposed - Ignored LB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-5.0-4.0-3.0-2.0-1.00.0

A
x

ia
l 
lo

a
d

 r
a

ti
o

(P
A
n

a
./
P

T
e

s
t)

Axial shortening (mm)

Compression of Column

ABAQUS

Thai et al. - Included LB

Proposed - Included LB

Thai et al. - Ignored LB

Proposed - Ignored LB



Civil Engineering Journal         Vol. 11, No. 09, September, 2025 

3929 

 

Table 5. Geometry dimensions of high-strength steel box specimens are studied 

Specimens b (cm) t (cm) b/t L (cm) rc/y rt/y 

HS20-SH(B) 10.0 0.5 20 32.0 0.10 1.0 

HS25-SH(B) 12.5 0.5 25 39.5 0.10 1.0 

HS30-SH(B) 15.0 0.5 30 47.0 0.15 1.0 

HS40-SH(B) 20.0 0.5 40 62.0 0.15 1.0 

The results obtained by the presented program, ABAQUS [10], and Thai et al. [10] are illustrated and summarized 

in Figure 9 and Table 6, respectively. It is observed that the load-axial displacement curves obtained from the presented 

method are close to curves estimated by ABAQUS and Thai et al. HS20, HS25, and HS30 specimens are compact 

sections, while the HS40 specimen is a slender section, as shown in Figure 9. Only the HS40 specimen is buckled in the 

elastic regime due to a slender section with b/t = 40. Table 6 shows the comparison of ultimate analytical and 

experimental compression load ratios of the proposed method, ABAQUS [10], and Thai et al. [10]. The proposed 

method’s load ratios range from 0.935 to 1.204 for HS20–HS40, compared to ABAQUS’s 0.980–1.150. The proposed 

model performs well for compact sections (HS20–HS30), with differences of 4–5%, but over predicts by ~5% for the 

slender HS40 (1.204 vs. 1.150). Figure 9 shows close alignment of post-buckling curves for HS20–HS30, with minor 

deviations for HS40. Local buckling behaviors in the case of high-strength steel box stub columns (Figure 9) calculated 

by the presented method competed to results calculated from ABAQUS are more identical than the case of normal-

strength steel I-section stub columns (Figure 8). The presented program can predict the nonlinear inelastic locally post-

buckling and pre-buckling behavior of steel members with arbitrary sections and strength. 

 

(a) HS20-SH(B) specimen  

 

(b) HS25-SH(B) specimen  
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(c) HS30-SH(B) specimen  

 

(d) HS40-SH(B) specimen  

Figure 9. Load ratio-axial shortening curves of steel box stub columns with high strength 

Table 6. Comparison of ultimate compression load ratios for high-strength steel box specimens 

Specimens 
PTest (kN) 

[40] 

PAna./PTest 

ABAQUS 

[10] 

Thai [10] 

(with LB) 

Thai [10] 

(without LB) 

Present 

(with LB) 

Present 

(without LB) 

HS20-SH(B) 1544 0.980 1.034 1.034 0.935 0.940 

HS25-SH(B) 1740 0.984 0.996 1.042 1.032 1.054 

HS30-SH(B) 1820 1.030 1.021 1.211 1.066 1.217 

HS40-SH(B) 1728 1.150 1.125 1.715 1.204 1.724 

5. Conclusion 

This study successfully developed a displacement-based fiber beam-column finite element model for analyzing 

the nonlinear local buckling of steel stub columns under axial compression. The model incorporates two novel 

stress-strain relationships for compact and slender sections, utilizing a strain energy method to capture inelastic and 

elastic post-buckling behaviors. By integrating stability functions, the model accurately accounts for geometric 

nonlinearity (P–δ effects) using one-element modeling per member, as validated through numerical examples. 

Comparisons with experimental data and finite element analyses demonstrate the reliability of the proposed stress–

strain relationships, with ultimate load ratios within 2–7% for compact sections (e.g., HI1–HI2, HS20–HS30) and 

5–7% for slender sections (e.g., HB3, HS40). The model’s ability to tune post-buckling behavior via the coefficient 

α enhances its accuracy, particularly for compact sections, offering a robust alternative to traditional multi-element 

approaches. 
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The proposed model achieves significant computational efficiency, requiring approximately 1.0 second per analysis 

compared to an estimated 20–30 minutes for ABAQUS shell element models (Section 4.1), making it highly suitable 

for practical engineering design. Numerical examples highlight the critical role of local buckling, which can lead to 

sudden structural collapse, and the influence of residual stresses, reducing compressive strength by up to 14.4% for 

HB3, 63.3% for HI4, 43.2% for HS40-SH(B). It can be seen that we cannot ignore the effects of residual stress on the 

local buckling in the case of slender sections. The model’s flexibility supports extensions to nonlinear inelastic analysis 

of steel frames and concrete-filled steel tube frames, incorporating local buckling effects for real-world applications. 

Future work could enhance accuracy for slender sections by including initial geometric imperfections, further 

broadening the model’s applicability in structural engineering practice. 
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