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Abstract 

The primary objective of this research is to examine the viability of simplified regularized regression models in predicting 

the slope safety factor of road embankments. The methodology involves developing and comparing several regularized 

linear regressions against conventional methods. A total of 276 data points are collected from the literature, and 70% of 

these are utilized for model training, while 30% are employed for testing. The findings indicate that these models yield 

results better than established approaches, with Stochastic Gradient Descent and Bayesian Ridge achieving strong 

performances. This study provides an alternative technique that offers rapid and manually solvable equations, thus 

enhancing practical adaptability for routine professional tasks. The novelty lies in bridging the gap between traditional 

finite element-based investigations and emerging data-driven methods, demonstrating that regularized regression can be 

both simple and sufficiently accurate. Overall, the study outcomes emphasize the significance of these advanced yet 

computationally light models for road embankment stability assessments, presenting a valuable and time-efficient tool for 

practitioners. 
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1. Introduction 

Landslides can cause serious hazards, particularly on mountainous roads where embankments are placed and cut 

slopes are created [1]. Even small misjudgments in the design of these slopes sometimes lead to major losses [2]. A 

standard way to check the stability is by calculating the slope safety factor, which indicates if the slope is secure or 

might fail [3]. Currently, traditional calculation techniques include the limit equilibrium method, finite element 

modeling, and empirical approaches, all intended to find the minimal safety factor [4, 5]. However, there is persistent 

research on new solutions to embankment stability because engineers look for simpler, less time-demanding procedures 

[6-8]. For instance, some studies focused on stabilizing soil with special additives [9], others employed new fill materials 

[10], and several investigations analyzed embankment performance under thermal or environmental factors [11, 12]. 

Additional works investigated how machine learning might predict or classify slope reliability with data-driven methods 

[13-15].  

Some research also included real-world validations or examined the economic feasibility of alternative 

embankment solutions [16-18]. Data science approaches like artificial neural networks or ensemble learning have 

grown popular for slope stability [19-22]. Nonetheless, certain machine learning models are not suitable for routine 

professional tasks because engineers cannot solve them manually, and complicated codes or long run-times might 

result. The problem is how to balance advanced predictive accuracy and quick, practical analysis, especially for 
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large embankment projects that require multiple design iterations. Past research investigated ways to predict the 

safety factor with methods such as differential evolution neural networks, particle swarm optimization, and multi -

linear regressions [21, 23]. These are promising but sometimes yield complex equations. A major motivation for 

the present work is offering an alternative that stays close to simpler linear regression forms while incorporating 

modern "regularization" concepts. This category of regression (Ridge, Lasso, ElasticNet, etc.) controls problems 

like overfitting or highly correlated inputs while still being easy to implement. The aim of this study is to determine 

if such regularized regression models can accurately predict road embankment slope stability. The research uses a 

dataset of 276 data points from Mesa-Lavista et al. [24] to build and test these models. The training ratio is 70%, 

and the remaining 30% is for testing. In general, the coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and maximum error are taken as evaluation metrics. Then, the models are 

compared to common limit equilibrium approaches to see if they can compete in accuracy. Machine learning can 

indeed produce better results (e.g., ensemble methods), but this investigation focuses on simpler, direct formulas 

that engineers can adopt without specialized software. This is why more advanced machine learning, such as neural 

networks, is not considered herein since the guiding principle is to produce simple, rapid, and adequately precise 

solutions for slope stability in road embankment design. The study also uses a wide dataset and cross-validation to 

confirm the ability of the final regression to generalize across different embankment types. 

2. Estimation of Slope Safety Factor 

The safety factor for road embankment slopes shows whether they remain stable or might fail. It is derived from 

the ratio between the forces that resist failure and the forces that drive failure. Engineers use it as a straightforward 

measure that helps avoid unwelcome slope collapses. A value of 1 implies that the slope stands at the limit of safety, 

and higher values indicate more stability against sliding. Several approaches have been offered over the years for 

its calculation. Empirical methods were first used by experienced engineers to base judgments on basic field 

observations. Over time, more systematic strategies emerged, including the strength reduction method and the limit 

equilibrium method. Both of these rely on specific equilibrium equations to check if the slope is near failure or still 

safe. 

The example in Figure 1 (Fellenius approach) shows one of the limit equilibrium procedures, where the slope can 

be split into slices, and each slice is examined under equilibrium assumptions. The idea here is to find the smallest 

possible factor of safety that satisfies equilibrium. This approach sometimes requires some iterative calculations, but 

engineers still prefer it for its transparency. Figure 2 demonstrates how modern computer-based analysis, such as finite 

element programs, has brought more detailed checks. These methods can represent various soil layers, boundary 

conditions, and loading aspects to better estimate deformation and stability margins. 

 

Figure 1. An example of the limit equilibrium method using the Fellenius approach 

 

Figure 2. An example of finite element simulation of road embankments from Morman-Wątor & Pilecka [25] 

Table 1 lists different ways to estimate the slope safety factor. Many engineering projects rely on finite element 

methods because they can represent complicated terrain shapes and soil properties in more realistic detail. However, 

the high computational requirements of such methods might be impractical in some day-to-day projects. Traditional 

limit equilibrium approaches often demand fewer inputs. Field methods, on the other hand, allow direct 
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measurements and can capture actual ground conditions. For simpler tasks, empirical approaches might be good 

enough. That is why the final selection of the best approach may depend on schedule, budget, and available 

equipment. 

Table 1. A brief discussion of various approaches to calculate the safety factor of road embankment 

Estimation Approach Description 

Limit Equilibrium Method 

This method assumes that the slope is in a state of equilibrium and that the forces acting on the slope are in balance. The 

method involves calculating the minimum safety factor by determining the forces acting on the slope and comparing them to 

the resisting forces. Additionally, they are widely used for the stability analysis of slopes with non-circular slip surfaces and 

are regarded as being more accurate than simpler methods. 

Finite Element Method This method involves using computer software to simulate the slope behavior under different loads and conditions. 

Slope Mass Rating Method 
This method involves determining the available factor of safety of a slope by assessing the quality and quantity of the mater ials 

making up the slope. 

Empirical Method This method uses data and information from past slope failures to estimate a slope's minimum safety factor. 

Field Investigation Method 
This method includes conducting a field investigation of the slope, such as a visual inspection, soil testing, and other 

measurements to determine the slope's safety conditions. 

Another emerging trend is machine learning, which forecasts slope safety factors based on prior data. This can cut 

calculation times if a dataset is available. Recent studies reported that neural networks or other learning algorithms can 

reach excellent levels of accuracy with less modeling work. Still, many professional engineers want straightforward 

solutions that can be performed with fewer computational resources or that can be quickly checked by hand. In every 

case, the slope safety factor remains an important design requirement, as unstable embankments risk major harm to 

vehicles and people. That underlines why engineers pay strong attention to stable slope design. 

3. Materials and Methods 

The evaluation of slope safety factors is crucial in building highway embankments. Various approaches, such as 

finite element modeling and neural networks, were previously employed [26, 27]. However, the current analysis aims 

to generate simpler mathematical forms that permit prompt slope stability estimates under diverse conditions. Figure 3 

presents a newly updated flowchart reflecting the revised research methodology. It begins with data acquisition for 

embankments and then moves to perform model validation and performance assessment. 

 

Figure 3. Research methodology used in this study 

3.1. Utilized Database 

For this research, a dataset with 276 points representing a wide range of cases from an open-source repository has 

been sourced [24]. It will serve as the foundation for both training and evaluating the regularized regression models. 

This dataset encompasses a wide range of parametric studies focusing on different embankment safety factors calculated 

using the finite element method. Details of the dataset and its ranges are given in Table 2. 
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Table 2. Descriptive statistics of the adopted database 

Variable 
Sample 

Size 
Mean 

Standard 

Deviation 
Variance 

Coefficient 

of Variation 
Minimum Q1 Median Q3 Maximum 

Height of Slope Embankments 276 12.26 6.01 36.1 49 6 6 12 18 24 

Slope Angle 276 58.2 6.1 37.4 10.5 45 56.3 56.3 63.4 63.4 

CBR 276 7.87 5.28 27.9 67.1 3.00 3.00 5.00 15 15 

Specific Weight 276 21 1.489 2.216 7.09 18 20 20.75 22.75 23 

Moisture Content 276 13.3 4.0 15.7 29.9 7 9.25 13.5 17.25 20 

Deformation Modulus 276 30 11.9 142.2 39.8 10 20 30 40 50 

Cohesion 276 10 10.8 116.3 107.8 2 4 6 9.5 40 

Friction Angle 276 33.75 4.63 21.432 13.72 25 30 35 38.75 40 

Poisson's Ratio 276 0.28 0.03 6.30E-04 9.11 0.25 0.25 0.28 0.3 0.30 

Dilatancy Angle 276 5.06 0.69 0.4822 13.72 3.75 4.5 5.25 5.81 6 

Factor of Safety 276 2.19 0.52 0.2653 23.51 0.92 1.81 2.22 2.54 3.67 

3.2. Regression Techniques 

Previous research has proposed various regularized regression models over the years. Extensive studies have been 

conducted to evaluate these models' efficiency. However, there is a notable scarcity of information comparing the 

performance of these models in the specific context of slope safety factor estimation. This study, therefore, aims to 

compare the performance of different regularized regression techniques in accurately predicting slope safety factors. 

Multiple Linear Regression (MLR) is a statistical technique that creates a linear relationship between a single 

dependent variable and multiple independent variables. The mathematical formula of MLR is given in Equation 1. 

𝑌 = 𝛽𝑋 + 𝜀 (1) 

where 𝑌 = [𝑦1 , … , 𝑦𝑛]𝑇 indicate the vector of the dependent variable;  𝑋 = [

𝑥1,1 … 𝑥1,𝑘

⋮ ⋱ ⋮
𝑥𝑛,𝑘 … 𝑥𝑛,𝑘

] represents the matrix of the 

independent variables; 𝛽 = [𝛽1 , … , 𝛽𝑘]𝑇 represents the coefficients of the model; 𝜀 = [𝜀1 , … , 𝜀𝑘]𝑇 represents the residuals. 

Ridge Regression, on the other hand, calculates coefficients in multi-variable regression models, particularly useful 

when the input variables are highly correlated. This method is anticipated to yield more precise safety factor predictions 

than MLR models. For example, in a regression model with a single dependent variable Y, as shown in Equation 1, the 

β coefficients are typically calculated using the ordinary least squares approach, as depicted in Equation 2. 

 𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (2) 

where 𝛽̂ represents the best unbiased linear estimate of 𝛽. 

Alternatively, Hoerl & Kennard (1980) [28] introduced Ridge Regression to tackle multicollinearity issues in 

scenarios where independent variables are closely interrelated. This technique employs Equation 3 for β computation. 

𝛽̂∗ = (𝑋𝑇𝑋 + 𝛼𝐼𝑝)
−1

𝑋𝑇𝑌    (3) 

where 𝛽̂∗ is the ridge estimator, 𝛼 > 0 is the complexity parameter that controls the amount of shrinkage and ensures 

that 𝐸[(𝛽̂∗ − 𝛽)𝑇(𝛽̂∗ − 𝛽)] < 𝐸[(𝛽̂ − 𝛽)𝑇(𝛽̂ − 𝛽)], and 𝐼𝑝 is the identity matrix.  

Moreover, Ridge Regression enhances the ordinary least squares method by incorporating a penalty on coefficient 

magnitudes. This method determines ridge coefficients by minimizing a residual sum of squares, including the penalty 

component. 

min
𝛽

= ‖𝛽𝑋 − 𝑦‖2
2 + 𝛼‖𝛽‖2

2   (4) 

As a result, Ridge Regression employs the ℓ2 regularization technique, which is based on the squared Euclidean 

norm, to impose a penalty on the coefficient vector.  

The Lasso is a linear model that predicts coefficients approximating zero, which is advantageous in scenarios 

necessitating solutions with fewer non-zero coefficients, thus simplifying the feature set. It incorporates a regularization 

term and aims to minimize the following function: 

min
𝛽

=
1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝛽𝑋 − 𝑦‖2
2 + 𝛼‖𝛽‖1   (5) 
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The Lasso estimate is obtained by solving the minimization problem of the least-squares penalty with the addition 

of 𝛼‖𝛽‖1, where 𝛼 is a constant and ‖𝛽‖1 is the ℓ1 norm of the coefficient vector. 

ElasticNet is a hybrid linear regression model that employs both ℓ1 and ℓ2 norm regularizations for its coefficients. 

This dual approach yields a model that possesses the sparsity of Lasso and the regularization strength of Ridge. 

ElasticNet is particularly effective in scenarios with correlated predictors. Unlike Lasso, which tends to select one feature 

from a group of correlated ones, ElasticNet tends to include multiple correlated features. Moreover, ElasticNet benefits 

from Ridge's stability under feature rotation. The goal is to minimize a specific equation, as outlined in the model. 

min
𝛽

=
1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝛽𝑋 − 𝑦‖2
2 + 𝛼𝜌‖𝛽‖1 +

𝛼(1 − 𝜌)

2
‖𝛽‖2

2   (6) 

where 𝜌 represents a parameter that controls the convex combination of ℓ1 and ℓ2. 

Bayesian regression, a variant of linear regression (referenced as Equation 1), applies Bayesian inference for 

statistical analysis. This method presumes that errors are independent, identically distributed normal variables, with each 

error term 𝜀𝑖~𝑁(0, Σ𝜀) distribution for every observation i. Fundamentally, Bayesian Regression combines a prior 

probability distribution of parameters with a likelihood function to derive the posterior probability distribution, depicted 

in Equation 7 [29]. 

𝑃(𝛽, Σ𝜀|𝑌, 𝑋) ∝  𝑃(𝑌|𝑋, 𝛽, Σ𝜀)𝑃(𝛽, Σ𝜀) (8) 

where 𝛼 is the priors over the parameter and 𝜆 is the precision selected to be gamma distributions and is estimated jointly 

with 𝛽 during model fitting. 

Stochastic Gradient Descent (SGD) is a simple yet effective technique for fitting linear models and machine learning 

algorithms. Essentially an optimization method, SGD is not tied to a specific model but is invaluable when dealing with 
numerous features. SGD has been a staple in machine learning for a long time but has recently garnered more attention 

for its use in large-scale learning. SGD calculates the gradient of the loss for each sample individually and updates the 

model progressively with a diminishing learning rate. The loss function includes a regularizer that penalizes the model 

parameters towards zero, using the squared Euclidean norm (ℓ2), the absolute norm (ℓ1), or a blend of both, as in 

ElasticNet. This study applies ElasticNet for estimation purposes.  

Huber regression is a type of linear regression model designed to be less sensitive to outliers. It combines squared 

loss and absolute loss in its optimization process, depending on each sample's deviation from predicted values. For errors 

within a predefined threshold, squared loss is used; for larger errors, absolute loss is applied. This method reduces the 

influence of outliers on the loss function while considering their presence. Unlike Ridge regression, Huber regression 

employs a linear loss function for outlier data points. 

The objective function that this method tries to minimize is as follows: 

min
𝛽,𝜎

= ∑ (𝜎 + 𝐻𝜖 (
|𝛽𝑋𝑖 − 𝑦𝑖|

𝜎
) 𝜎)

𝑛

𝑖=1

+ 𝛼‖𝛽‖2
2   (9) 

where 𝐻𝜖  is defined as: 

𝐻𝜖(𝑧) = {
𝑧2,                                      if |𝑧| < 𝜖,

2𝜖|𝑧| − 𝜖2,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

Quantile regression focuses on estimating the median or other quantiles of the dependent variable (y) in relation to 

the independent variable (X), in contrast to the traditional least squares approach that predicts the expected value of y 

based on X. This model offers linear predictions for different quantiles (q ranging from 0 to 1) of the dependent variable. 

The coefficients or weights are determined by minimizing a specific problem. 

min
𝛽

=
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ 𝑃𝐵𝑞(𝛽𝑋𝑖 − 𝑦𝑖)

𝑖

+ 𝛼‖𝛽‖1   (11) 

where 𝑃𝐵𝑞 is the pinball loss (also known as linear loss) given in the following equation: 

𝑃𝐵𝑞(𝑡) = 𝑞𝑚𝑎𝑥(𝑡, 0) + (1 − 𝑞) max(−𝑡, 0) = {

𝑞𝑡,                 𝑡 > 0,
0,                  𝑡 = 0,
(1 − 𝑞)𝑡,    𝑡 < 0

 (12) 

The linear nature of the pinball loss, evident only in residuals, renders quantile regression substantially more robust 

against outliers than mean estimation using squared error. This approach proves particularly advantageous when the 

goal is to predict a range rather than a single point. Commonly, prediction intervals are derived assuming the prediction 

error adheres to a normal distribution with a zero mean and constant variance. Nonetheless, quantile regression remains 

effective in generating meaningful prediction intervals even when errors exhibit variable (yet predictable) variance or 

deviate from a normal distribution. 
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3.3. Model Development and Hyperparameters Tunning 

The performance of regression models is critical impacted by the selection of hyperparameters, which 

necessitates careful tuning [30-35]. This research employed the grid search technique combined with k-fold cross-

validation during the training phase to fine-tune the hyperparameters of these methods [36-40]. In similar to existing 

literature, the proposed framework for developing the regression algorithms, as depicted in Figure 4, involves 

splitting the dataset into two segments: 70% for training and 30% for testing. It conducted a 10-fold repeated cross-

validation process to identify the most suitable hyperparameters. After finalizing the hyperparameters for each 

method, it evaluated the ultimate, optimized model performance by comparing outcomes from various scoring 

criteria on the test dataset. 

 

Figure 4. Methodology utilized in developing the regularized regression models 

3.4. Models Performance Evaluation 

This study analyzed the performance of the formulated models using statistical metrics and graphical representations. 

The models' fit was assessed using the coefficient of determination, as illustrated in Equation 13. Error analysis involved 

the application of the root mean square error (RMSE), as shown in Equation 14, and the mean absolute error (MAE), 

outlined in Equation 15. 

 𝑅2 = 1 −
∑(𝑥𝑖−𝑦𝑖)2

∑(𝑥𝑖−𝑥𝑖̅)2 (13) 

 RMSE = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 (14) 

 MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̅𝑖|𝑛

𝑖=1  (15) 

where 𝑥𝑖 is the measured value, 𝑥̅𝑖 is the mean of the measured values, 𝑦𝑖 is the predicted value,  𝑦̅𝑖 is the mean of the 

predicted values, and 𝑛 is the number of observations. 

4. Results Analysis 

As highlighted earlier, the factor of safety is a pivotal metric in assessing the stability and reliability of road 

embankments, necessitating precise predictions. This analysis explored various models for this prediction, including 

MLR, SGD, and Lasso. Indeed, selecting a good model relies on the accuracy of the predicted outcomes. Figure 5 

displays the performance of the investigated models in estimating the factor of safety within the training dataset. 

Generally, it appears that the SGD and Bayesian Ridge models emerge as superior, offering reliable predictions of the 

factor of safety in comparison to finite element results. Additionally, Figure 6 shows the outcomes of the testing dataset, 

indicating a consistent pattern and a robust correlation between the measured and predicted data across most models. 

The SGD and Bayesian Ridge models maintained their effectiveness in predicting the factor of safety on the testing 

dataset, reinforcing their appropriateness for this purpose.  
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Figure 5. Results of the regression models for the training dataset 
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Figure 6. Results of the regression models for the testing dataset 

Table 3 provides the coefficients and intercepts of nine distinct regularized regression models, each designed to 

predict the safety factors of road embankments. An aspect highlighted in the table is the variance in the weights assigned 

by each model. These weights represent the significance of each input variable in predicting the safety factor of road 

embankments. A consistent observation across most models is their varied weighting of input factors, yet a unanimous 

agreement on the importance of slope height underscoring its uniform impact on the outcome. Contrarily, the Quantile 

regression model, with numerous input factors assigned a zero weight, suggests a potential reason for its lower predictive 

accuracy, as it implies these factors' negligible effect on the predicted safety factor. 

Table 3. Coefficients of the proposed regularized regression models 

 MLR Ridge Lasso ElasticNet Bayesian Ridge SGD Quantile Huber 

Height -0.06266 -0.06237 -0.06266 -0.06266 -0.06032 -0.05927 0.02038 -0.06547 

Slope 0.03306 0.03305 0.03306 0.03306 0.03273 0.02595 0.00000 0.03179 

CBR 0.02157 0.02128 0.02157 0.02157 0.02135 0.02118 0.00000 0.01670 

Specific weight -0.31644 -0.08995 -0.31642 -0.31642 -0.03446 0.00238 0.00000 -0.03750 

Moisture -0.03245 0.00290 -0.03245 -0.03245 0.00607 0.01231 0.00000 0.01006 

Deformation modulus 0.00804 0.00935 0.00804 0.00804 -0.00034 0.00379 0.00000 0.00253 

Cohesion 0.04051 0.02410 0.04051 0.04051 0.01779 0.01769 0.00470 0.02105 

Friction angle 0.05461 0.02959 0.06973 0.06973 0.03757 0.01969 0.00000 0.03973 

Poisson's ratio -8.36241 -0.02728 -8.36167 -8.36167 0.00082 0.00023 0.00000 0.00198 

Dilatancy angle 0.00819 0.00444 -0.09259 -0.09259 0.00564 0.00295 0.00000 0.00596 

Constant 7.71206 1.18510 7.71144 7.71144 0.04100 0.00026 2.44149 0.00295 

Figure 7 illustrates the performance indicators of different regression models during both the training and testing 

phases. Typically, most models exhibit an R2 value around 0.85 for training and 0.75 for testing datasets, an exception 

being the Quantile model, which shows significantly lower performance, scoring approximately 0.27 and 0.17, 

respectively. Moreover, the RMSE values for most models hover around 0.25 and 0.35 for training and testing, whereas 

the Quantile model presents higher RMSEs of 0.45 and 0.53, respectively. This trend is similarly reflected in the MAE 

values. 
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Figure 7. Performance of the developed regression models 

5. Comparison with Traditional Methods 

The study results are discussed herein focusing on comparing the new regularized regression approaches against 

traditional methods' outcomes. The comparative analysis, depicted in Table 4 and Figure 8, reveals that while most 

regularized models demonstrate comparable performance, the SGD and Bayesian Ridge models stand out with the 

lowest error rates. Conversely, the Quantile regression model records the highest error figures, reinforcing the earlier 

observation of its inferior predictive prowess. Among the traditional methods, the Bishop method exhibits the lowest 

RMSE value of 0.33, closely followed by the Morgenstern-Price method with an RMSE of 0.33. The Janbu and 

Fellenius methods, however, show higher RMSEs of 0.45 and 0.42, respectively, surpassing most of the new 

models. 

Table 4. Comparison between the traditional and proposed safety factor estimation 
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Figure 8. Benchmarking the proposed regularized regression models 

Despite the slightly better accuracy of the Bishop and Morgenstern-Price methods compared to the SGD and 

Bayesian Ridge models, the latter are significantly simpler and faster, offering a reasonable compromise in 

performance. Overall, the findings suggest that regularized regression models are adept at delivering dependable 

predictions for the safety factor of road embankments. Those findings highlight that regularized regression can deliver 

proper estimates of the slope safety factor, provided that suitable hyperparameters are chosen. The superior results of 

SGD and Bayesian Ridge might originate from their balanced control of model complexity, with Bayesian Ridge 

introducing a Bayesian view that guards against extreme coefficient values and SGD benefiting from iterative gradient 

updates and flexible penalty terms. The best-performing models reached good predictions, which suggests they can 

be practical alternatives to the more time-consuming finite element methods, at least for routine tasks that aim to 

check slope stability at early design stages. 

6. Alternative Advanced Machine Learning Models 

This section aims to provide further exploration of ways to improve the accuracy of estimating the safety factor 

by investigating the use of advanced machine learning models. In this regard, 5 commonly used machine learning 

techniques were used. These techniques include Supported Vector Machine (SVM), Artificial Neural Networks 

(ANN), K-Nearest Neighbor (KNN), Extra Trees (ERT), and Gradient Boosting (GB). These techniques have been 

used a lot in the past and proved efficient in the field of civil engineering and hence their use for this problem holds 

good potential. These models were developed and optimized using the methodology outlined in Section 3.3 and their 

performance was calculated using the procedure detailed in Section 3.4. The results of these models are given in 

Figures 9 and 10 and Table 5. 
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Figure 9. Performance of the developed machine learning models for the training dataset 

 

Figure 10. Performance of the developed machine learning models for the testing dataset 

Table 5. Comparison between the developed machine learning models for safety factor estimation 

Model 

Training Dataset Testing Dataset 

R2 RMSE MAE 
Max 

Error 
R2 RMSE MAE 

Max 

Error 

SVM 0.97 0.07 0.06 0.10 0.94 0.10 0.08 0.49 

KNN 0.89 0.14 0.09 0.10 0.71 0.22 0.17 0.49 

ANN 0.97 0.07 0.06 0.42 0.94 0.10 0.08 0.68 

ERT 1.00 0.00 0.00 0.00 0.99 0.04 0.01 0.32 

GB 1.00 0.00 0.00 0.00 0.99 0.03 0.01 0.30 

In general, it can be seen that the proposed machine learning models significantly surpasses the regularized linear 

regression ones as expected at the cost of more complexity. In this context, the GB model reached the best results in 

both training and testing cases followed by the ERT then the SVM and ANN, whereas the worst results in terms of 

advanced models, while again better than the regularized linear regression case, were reported in the KNN case. 

Accordingly, this study concludes that both the simplified and advanced models provides acceptable results; however, 

when higher accuracy is required the GB model can be used for the prediction. 
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7. Conclusion 

Finally, this study evaluated the effectiveness of various regularized regression methods in predicting the safety 

characteristics of road embankments, benchmarking them against four conventional techniques and the finite 

element method. The findings highlight the potential of these regularized approaches for accurate prediction, with 

the SGD and Bayesian Ridge models emerging as the most effective simpler methods in minimizing maximum 

error. Most of the proposed models significantly outperformed traditional methods like Fellenius and Janbu, offering 

simpler and faster alternatives without compromising much on accuracy. Although both SGD and Bayesian Ridge 

models demonstrated a favorable trade-off between accuracy and computational efficiency, the quantile regression 

model lagged behind due to its relatively higher error rates. Additionally, advanced machine learning models 

achieved greater predictive accuracy than regularized linear regressions but at the expense of increased complexity. 

Overall, both regularized linear regression and advanced machine learning models delivered acceptable 

performance in estimating safety factors, supporting their viability for practical applications. However, the study is 

limited by the relatively small size of the dataset used, which may constrain the generalizability of the findings. 

Future research should consider expanding the dataset and exploring a wider variety of machine learning algorithms 

to further enhance model robustness and predictive accuracy. 
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