
 Available online at www.CivileJournal.org 

Civil Engineering Journal 
(E-ISSN: 2476-3055; ISSN: 2676-6957) 

 Vol. 11, No. 02, February, 2025 

 

 

 

  

    

779 

 

Numerical Analysis of the Shear Behavior of Shallow-Wide 

Concrete Beams via the Concrete Damage Plasticity Model  

 

Hewan Dejene 1, 2* , Muluken Bogale 2 , Marina Rynkovskaya 1  

1 Department of Construction Technology and Structural Materials, RUDN University, Moscow 117198, Russia. 

2 Faculty of Civil Engineering, Arba Minch Institute of Technology, Arba Minch University, Arba Minch 4400, Ethiopia. 

Received 01 November 2024; Revised 19 January 2025; Accepted 25 January 2025; Published 01 February 2025 

Abstract 

Shallow reinforced concrete beams are broadly used in buildings for their aesthetic and economic benefits, but their shear 

performance remains insufficiently known, especially considering the impact of stirrups. While experimental 

investigations provide a good understanding, they are expensive and provide limited insight, creating a gap in the 

understanding of the complex shear behavior of shallow RC beams. This study bridges this limitation by conducting 

finite element analysis and calibrating the critical concrete damage plasticity parameters such as the dilation angle, Kc 

values, eccentricity, damage parameters, and loading time. Additionally, the numerical model validated the experimental 

results by accounting for the effects of the stirrup spacing, width, and longitudinal-to-stirrup ratio to achieve the ultimate 

load and corresponding deflection differences within 1.69% and 10.7%, respectively. The findings revealed that 

increasing the stirrup spacing enhanced ductility without increasing strength, whereas increasing the beam width and 

longitudinal-to-stirrup ratio increased strength and ductility. Finally, a comparison with design codes and machine 

learning revealed greater accuracy of FEA prediction, presenting new insight into upgrading the design code for shallow 

RC beams. 
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1. Introduction 

Recently, modern buildings have required efficient space utilization for architectural purposes, including higher 

and obstacle-free floor heights. Providing shallow reinforced concrete (RC) beams that are wider than twice as deep as 

the depth offers architectural flexibility, simple and quick formwork, and reduced cost [1-3]. Despite their decent 

resistance to shear stress, these beams are prone to shear failure after initiating a flexural crack [4, 5] or torsional crack 

[6], which prevents full flexural capacity development. Understanding and preventing this susceptibility is crucial for 

guaranteeing good structural performance. Experimental studies have investigated the factors that influence the shear 

strength of shallow RC beams. For example, Mahmoud et al. [6] studied the torsional behavior of seven wide beams, 

and reported that the load eccentricity, stirrup spacing, compressive strength, and longitudinal reinforcement ratio 

significantly affect the torsional capacity. Soliman et al. [2, 7] conducted multiple studies investigating the shear 

performance of fourteen shallow RC beams, revealing the significance of the concrete strength, width-to-depth ratio, 

shear reinforcement ratio, and arrangement. Elansary et al. [1] also proposed using spiral transverse reinforcement to 

improve ductility, although a slight strength improvement was achieved. Said et al. [8] experimentally explored how 

reducing the web reinforcement spacing improves the shear strength and ductility. While these studies provide critical 

insights, experimental approaches are expensive and limit detailed insight into structural behavior under loading. 
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Finite element analysis (FEA) offers a cost-effective, time-efficient, and accurate alternative for studying the 

behavior of structural members. The key part of FEA is accurately modeling nonlinear material behavior such as 

cracking and crushing concrete, softening, aggregate interlocking, and rebars dowel action. Several material models, 

such as the Drucker‒Prager theory, Continuum Damage Mechanics (CDM), and Concrete Damage Plasticity (CDP), 

have been presented to account for this nonlinearity [9-11]. The Drucker-Prager model is suitable for predicting the 

ultimate strength and postpeak behavior, the CDM model is appropriate for simulating material failure, and the CDP 

model combines both previous models to capture damage, plastic deformation, load‒deflection response, and postpeak 

behavior. On the other hand, concrete behaves complexly and nonlinearly during loading, damaging high tensile and 

compressive stress zones, and the CDP model in the Abaqus module can adequately define this nonlinearity [12]. 

However, the accuracy of the CDP-based model relies primarily on the calibration and sensitivity analysis of the 

material parameters, mesh, and loading conditions. Various studies have explored the calibration of CDP parameters 

for structural members to identify critical parameters and optimal values for simulating structural elements. Behnam et 

al. [13] conducted a comprehensive sensitivity analysis for RC beam‒column joints under cyclic loading and reported 

that a dilation angle of 40o, a Kc value of 0.667, and full damage parameters are critical for validating the experimental 

results. Raza et al. [14] studied rectangular RC columns reinforced with glass fiber polymer (GFRP) under axial 

loading and reported that a mesh size of 20 mm, viscosity of 0.0058, Kc value of 0.667, and dilation angle of 35o were 

critical parameters and were in good agreement with the experimental result. 

Furthermore, Genikomsou et al. [15] also calibrated material parameters for RC slabs under cyclic loading; they 

reported that a dilation angle of 40o, damage parameters, and a mesh size of 20 mm were critical for accurately 

predicting the experimental result. Silva et al. [16] explored RC shear walls under axial loading and reported a dilation 

angle of 46.4o, a Kc value of 0.58, and a viscosity of 0.00001 for the optimized load‒deflection response. Szczecina & 

Winnicki [17] also conducted a sensitivity analysis on the effects of loading time and viscosity on the modeling of RC 

structures. This finding emphasized the importance of calibrating and conducting a sensitivity analysis of CDP 

parameters for particular structural members, and loading is necessary. However, its implementation for shallow RC 

beams, specifically shear behavior, is still undiscovered. Design codes and studies, including ACI, Eurocode, FIB 

modal Code III, truss model, and genetic programming, offer empirical equations for predicting the shear strength of 

RC beams [18-22]. However, these design codes and studies are mainly used for conventional RC beams. They may 

not accurately predict or estimate the complex behavior of shallow RC beams, specifically by accounting for the 

effects of transverse reinforcement. Therefore, these design code predictions should be assessed and compared with 

comprehensive finite element models to ensure efficient and accurate design. 

This study fills these gaps by conducting a comprehensive sensitivity analysis on critical CDP parameters of the 

shear performance of shallow RC beams via the FEA software Abaqus. The numerical model was subsequently used 

to validate the experimental results [2, 7] to assess the load‒deflection curve, failure mechanisms, and crack patterns 

in detail. Following validation, the effects of the transverse reinforcement spacing, width-to-depth ratio, and the 

longitudinal-to-transverse reinforcement ratio on the shear behavior of these beams are investigated. Moreover, the 

FEA predictions are compared with design codes and study predictions from the ACI, Eurocode, Fib Modal Code III, 

truss model, and genetic programming to evaluate their applicability to shallow RC beams and their capacity to 

account for the effects of stirrups. The workflow of the study is presented in Figure 1. 

 

Figure 1. Workflow of the study 
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2. Description of the Experimental Investigation 

Soliman et al. [7] studied the impact of transverse reinforcement on the shear behavior of seven shallow reinforced 

concrete beams under a three-point load, as shown in Figure 2. Two beams (B1 and B3) were selected to validate the 

numerical model. Both samples are 1200 mm long and 200 mm thick, with a compressive strength of 31 MPa. B1 has 

8-mm-diameter four-leg stirrups with a width of 600 mm, twelve tension rebars (18 mm diameter), and eight 

compression rebars (10 mm diameter), as shown in Figure 3. B3, on the other hand, has 8-mm-diameter six-leg 

stirrups with a width of 900 mm, eighteen tension rebars (18 mm in diameter), and twelve compression rebars (10 mm 

in diameter), as shown in Figure 4. The yield strength for the longitudinal rebar is 416 MPa, and for the stirrups, it is 

233 MPa. 

 

Figure 2. Layout of the shallow concrete beam 

 

Figure 3. Beam detailing of B1 

 

Figure 4. Beam detailing of B3 

Soliman et al. [2] extended the experimental investigation to examine how the amount and arrangement of shear 

reinforcement affect seven shallow RC beams. In the present study, beam B2 was selected for numerical validation 

among seven beams. Figure 5 shows that B2 has the same characteristics as B1 and uses six-mm-diameter four-leg 

stirrups with 45 mm longitudinal spacing. 

 

Figure 5. Beam detailing of B2 

Tables 1 and 2 summarize the material properties of the reinforcement and concrete used in the experimental 

investigation. 
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Table 1. Reinforcement properties 

Bar diameter Beam type Yield stress (MPa) Ultimate stress (MPa) Elastic modulus (MPa) Poisson’s ratio 

6 B2 233 370 200,000 0.3 

8 B1, B3 233 370 200,000 0.3 

10 B1, B2, & B3 416 600 200,000 0.3 

18 B1, B2, & B3 416 600 200,000 0.3 

Table 2. Concrete properties 

Beam type Concrete strength (MPa) Elastic Modulus (MPa) Tensile strength (MPa) Poisson’s ratio 

B1, B2 & B3 31 30.891 3.341 0.2 

3. Finite Element (FE) Model 

3.1. Element Type and Loading Conditions 

A 3-D linear brick element with reduced integration (C3D8R) was used to model the concrete part from the 

Abaqus/standard module [23]. The longitudinal rebar and stirrups were simulated by a 2-node linear in space (B31). 

An embedded constraint was used in the interaction between the concrete and reinforcement, which prevents the 

translation of the reinforcement at the node. An analytically rigid element with high rigidity and stiffness was defined 

for the load pin and support to prevent deformation. 

A reference point is attached to the bottom and upper surface of the support and load pin to define the boundary 

condition, as shown in Figures 6 to 8. A tie constraint is then defined at the contact surface of the beam and support 

pin to ensure compatibility throughout the loading process. A tie constraint is also used between the beam and the load 

pin. The constraints of the pin (Ux=Uy=Uz=0) and roller (Ux=Uy=0) are applied at the reference points of the support 

pin's right-hand and left-hand bottom sides, respectively. Displacement is used at the boundary condition of the load 

pin reference point to simulate the experimental loading. 

 

Figure 6. Model of the shallow beam 

 

Figure 7. Model of the reinforcement 
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Figure 8. Boundary conditions and loading 

3.2. Material Modeling 

3.2.1. Concrete Modeling 

Abaqus uses the concrete damage plasticity model to simulate the nonlinear properties of concrete by defining four 

parameters: plasticity, compressive behavior, tensile behavior, and damage parameters. 

Concrete Plasticity 

Plasticity defines the permanent deformation of concrete after the stress reaches the yield point, and the Drucker‒

Prager yield criterion describes this phenomenon. This plasticity behavior was captured by assigning five parameters: 

the dilation angle on the stress plane (ψ), the eccentricity of the flow (e), the ratio between the biaxial and uniaxial 

compressive yield stresses (fbo/fbc), the yield surface on the tensile meridian to the compressive meridian (kc), and the 

relaxation time or viscosity (μ). Table 3 shows the default CDP parameter values used for the model. 

Table 3. The CDP parameter used for the model 

Test ψ e fbo/fbc Kc μ 

Soliman et al. [2, 7] 30 0.1 1.16 0.67 0.01 

Compressive Strength of the Concrete 

Eurocode [19] provides a three-phase stress‒strain model to express the behavior of concrete under compressive 

stress, as illustrated in Figure 9. In the initial stage, concrete demonstrates an elastic linear stress-strain relationship up 

to stress values of σc=0.4fcm, expressed in Equation 1. The stress‒strain relationship subsequently becomes nonlinear, 

and the stress reaches its ultimate value of σc=fcm. In the final stage, the stress‒strain properties of the concrete begin 

to soften, as expressed in Equation 3.  

 

Figure 9. Uniaxial stress‒strain diagram for compressive strength 
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𝜎𝑐 = 𝐸𝑐𝑚 ∗ Ɛ𝑐;  0 ≤ Ɛ𝑐 ≤  (
0.4𝑓𝑐𝑚

𝐸𝑐𝑚
)  (1) 

𝐸𝑐𝑚 = 22 ∗ (𝑓𝑐𝑚)0.3  (2) 

𝜎𝑐

𝑓𝑐𝑚
 =  

𝑘∗(
𝜀𝑐

𝜀1
)− (

𝜀𝑐

𝜀1
)

2

1+(𝑘−2)∗(
𝜀𝑐

𝜀1
)

;  (
0.4∗𝑓𝑐𝑚

𝐸𝑐𝑚
)  ≤ Ɛ𝑐 ≤  Ɛ𝑐𝑢 = 0.0035  

(3) 

𝑘 =
1.05∗𝐸𝑐𝑚∗|𝜀1|

𝑓𝑐𝑚
  (4) 

where εc1 represents the strain at the ultimate strength, fcm represents the ultimate strength of the concrete, and εcu 

represents the failure strain. Ecm and Ɛc represent the initial elastic modulus and strain, respectively. 

Tensile Strength of the Concrete 

Allam et al. [24] proposed a tension‒stiffening stress‒strain response for concrete under uniaxial tensile stress, as 

shown in Figure 10. The tensile stress on the concrete initially exhibits a linear elastic property until it reaches failure 

stress at the values of fctm, which can be calculated via Equation 5. After that, microcracks form on the concrete 

surface, leading to softening of the stress‒strain response and the formation of significant cracks. 

𝑓𝑐𝑡𝑚 = 0.3 ∗ 𝑓𝑐𝑚
2

3  (5) 

where fctm is the ultimate tensile stress, and where Ɛcr is the strain at the ultimate stress. 

 

Figure 10. Uniaxial stress‒strain diagram for tensile strength 

Damage Evolution of Concrete 

In the elastic stage, concrete unloading does not impact the elastic modulus; however, in the softening stage, the 

elastic modulus decreases. This failure initiation and stiffness degradation can be defined via the compressive (dc) and 

tensile damage variables (dt), as shown in Figures 11 and 12. The following equation can expresses this damage 

evolution: 

𝑑𝑐 = 1 −  𝜎𝑐/𝜎𝑐, 𝑚𝑎𝑥  (6) 

𝑑𝑡 = 1 −  𝜎𝑡/𝜎𝑡, 𝑚𝑎𝑥  (7) 

where σc and σt are arbitrary compressive and tensile stresses and where σc, max, and σt, max are the ultimate 

compressive and tensile stresses, respectively. 
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Figure 11. Compression damage parameter 

 

Figure 12. Tensile damage parameter 

3.2.2. Reinforcement material properties 

A bilinear stress‒strain response is used to simulate the nonlinear characteristics of the reinforcement, as shown in 

Figure 13. The stress‒strain response exhibits elastic linear behavior before the yield strain; beyond that, the strain 

hardens with a slope of 0.01. 

 

Figure 13. Stress‒strain diagram of the reinforcement 
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4. Investigation of Material Parameters  

Before calibration, beam B2 was chosen as a control beam to study the sensitive parameter in the concrete damage 

plasticity model. The calibration process accounts for the effects of CDP parameters such as the dilation angle, 

eccentricity, Kc values, damage parameters, loading time, and mesh size. Once the CDP parameters were calibrated, 

they were applied to the FE model of the remaining three wide beams. 

The FEA software Abaqus offers two options for static analysis: standard (static) analysis with viscosity 

regularization or explicit (quasi-static) analysis using a longer loading time. Moreover, static analysis depends heavily 

on the viscosity parameter and requires more computational time; quasi-static analysis is significantly influenced by 

the loading time. Additionally, Szczecina & Winnicki [17] suggested that using lower viscosity values with higher 

loading times results in an optimal solution for quasi-static analysis. This study investigated the effect of loading time 

on the load‒displacement response of control Samples with a constant viscosity of 0 for various loading times (0.5, 1, 

5, and 10 s). The loading time significantly influenced the load‒deflection response of the RC shallow beam, as shown 

in Figure 14.  

 

Figure 14. Influence of loading time 

The load‒deflection curve exhibited a stiffer response and higher ultimate load for a shorter loading time (0.5-1 

second). This behavior occurs because concrete shows rate-dependent stiffness at lower loading times, reducing 

micro-crack development (overestimating tensile strength) and the occurrence of inertial effects. However, as the 

loading time increased from 0.5 to 1 second, the computational time nearly doubled, as shown in Table 4. 

Additionally, the kinetic to internal energy (KE/IE) ratio for a 0.5-second loading time was 0.08, far exceeding the 

recommended minimum inertial effect (0.002) for quasi-static analysis. This suggests that inertial effects significantly 

influence the analysis and diverge from the assumed quasi-static analysis. 

Table 4. Summary of loading time, computational time, and kinetic-to-internal energy ratio 

Loading time (Second) Computational time (minute) KE/IE 

0.5 5 0.08 

1 11 0.0024 

5 61 0.00049 

10 92 0.00043 

Conversely, the load‒deflection curve shows more realistic behavior for longer loading (5-10 s). The gradual 

application of load allows the internal stresses and strain of concrete to be redistributed efficiently, resulting in a 

reduced ultimate load but stable analysis results. At a 5-second loading time, the ratio of KE/IE decreased 

significantly, indicating that inertial effects were minimized with enhanced load‒deflection predictions. However, 

further increasing the loading time to 10 s produced slight KE/IE ratio reductions while sustaining greater 

computational time and moderate load‒deflection prediction. On the bases of these findings, a loading time of 5 s and 

a viscosity of 0 were selected for modeling the remaining beams. 
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Concrete resists stress elastically up to the yield stress; however, it expands in volume after the yield limit, and a 

dilation angle characterizes this behavior. The plastic potential function captures this characteristic of concrete 

plasticity, which controls the direction of plastic strain increase during nonlinear concrete behavior, such as cracking 

and crushing [25]. The following equation mathematically expresses this function: 

ε̌p = λ
∂G

∂f
  (8) 

where 𝜀̌𝑝 is the plastic strain increment, 𝜆 is the plastic multiplier, G is the plastic potential function used in the CDP 

model, and f is the stress tensor. The following equations express these nonassociated Drucker–Prager hyperbolic 

functions of G: 

𝐺 = √(𝜀𝑓𝑡 tan 𝜓)2 + �̅�2 − �̅� tan 𝜓  (9) 

where Ɛ is the eccentricity of the flow potential surface on the �̅� − �̅� plane with values of 0.1, 𝑓𝑡 expresses the tensile 

strength, 𝜓 is the dilation angle, �̅� is the hydrostatic pressure and �̅� is the deviatoric stress. 

On the basis of the literature, initial dilation angle values for different structural members are recommended. For 

Example, Genikomsou et al. [15] calibrated dilation angles within the ranges of 20o – 42o and identified 40o as optimal 

for RC slab‒column joints. Behnam et al. [13] explored values between 310 and 42o, concluding that 40o provided 

accurate RC-wide beam‒column connections. Similarly, Raza et al. [14] investigated a range of 30o – 45o and 

recommended 35o as preferable for GFRP RC columns. Silva et al. [16] examined the dilation angle in broader ranges 

from 30o to 50o and recommended 46.4o as the optimal value for shear walls.  

On the bases of previous studies, an initial range of dilation angles from 30o – 46o was selected for calibration to 

ensure that model accurately predicted the volume expansion of the concrete under loading. Sensitivity analysis was 

subsequently conducted by iteratively analyzing the load‒deflection behavior by varying the dilation angle, as shown 

in Figure 15. The sensitivity analysis revealed three key aspects: failure load, postpeak behavior, and stiffness. As the 

dilation angle increases, the shallow beam has a higher failure load on the load‒deflection curves. The reason is that 

increasing the dilation angle results in high volume expansion and internal friction of the concrete under loading, 

resulting in stress redistribution and improved shear capacity. For dilation angles between 300 and 340, the postpeak 

behavior shows a flattened curve, which is consistent with the experimental investigation, indicating balanced ductile 

and stiff behavior in the softening stage. In contrast, dilation angles greater than 400 resulted in stiffer postpeak 

behavior, resulting in improved capacity with limited ductility. This finding recommends adapting the dilation angle 

between 300 and 340, which is suitable for ductile members, whereas a dilation angle greater than 400 is good for 

structural members that need greater strength and stiffness. On the basis of this sensitivity analysis, assigning a 

dilation angle of 320 is most suitable for calibrating the remaining samples and balancing the experimental 

observations' stiffness, strength, and softening behavior. 

 

Figure 15. Influence of the dilation angle 

The effect of the non-uniform distribution of stress on the yield surface was calibrated for different eccentricity 

values (0.1, 0.13, 0.16, and 0.2), as shown in Figure 16. The effects of eccentricity on the load and deflection were 

negligible. Therefore, the default eccentricity value of 0.1 was used for the rest of the modelling. 
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Figure 16. Influence of eccentricity 

The parameter Kc represents the shape of the yield surface on the tensile and compressive meridians, which 

expresses the strength of the concrete against tensile and compressive stresses. The values of Kc range from 0.5 to 1, 

where 0.5 indicates high compressive strength with low tensile strength with an elliptical yield surface, and 1 

expresses balanced strength under both tensile and compressive stresses of concrete with a circular yield surface. The 

initial Kc values (0.5, 0.667, 0.834, and 1) were chosen on the bases of prior research conducted by Wosatko et al. [25] 

and used as a basis for conducting sensitivity analysis to investigate the effects of Kc on the stiffness, ultimate load, 

and postpeak behavior through load‒deflection analysis, as shown in Figure 17. The results showed that when Kc is 

0.5, the numerical results yield a higher ultimate load than the experimental results do. This overestimation occurs 

because the elliptical yield surface assumes that the compressive strength resists more load than the tensile strength 

does, which delays the onset of yielding and failure. As Kc increases to 0.667, the numerical ultimate load prediction is 

improved. This improvement can be attributed to increasing Kc, reducing the compressive strength contribution, and 

providing a more balanced concrete behavior. In contrast, for Kc values of 0.834 and 1, the numerical results 

underestimate the ultimate load of the experimental result. This underestimation arises because the CDP model 

assumes equal resistance to tensile and compressive stresses, which misjudges the compressive strength.  

 

Figure 17. Influence of Kc values 
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Kc values have similar initial stiffnesses, which align with the experimental results. Therefore, adjusting Kc near 0.5 

best aligns with the behavior of the control samples in terms of load‒deflection behavior and stiffness. Consequently, 

the kc value is adjusted to 0.667 for the remaining models. 

The mesh sensitivity of the samples was evaluated with four different mesh sizes (20 mm, 25 mm, 30 mm, and 40 

mm). The load‒deflection behavior of the control beam was investigated for these mesh sizes, with the smallest mesh 

size selected to be greater than the 25 mm coarse aggregate size, as shown in Figure 18. The results revealed that mesh 

sizes of 20 mm, 25 mm, and 30 mm produce similar predictions of the linear and postpeak behavior of the 

experimental load‒deflection curves. 

 

Figure 18. Influences of the mesh size 

The 20 mm mesh size provided the most accurate prediction of the ultimate load and postpeak softening response, 

as it captured localized stress and strain concentrations at the crack and interaction surfaces between the concrete and 

rebars. Similarly, the 25 mm and 30 mm meshes predicted the experimental ultimate load with 3% and 4% error, 

respectively, indicating that increasing the mesh size can still produce reliable results. However, the 40 mm mesh size 

failed to predict the ultimate load and residual softening behavior. This variation is attributed to the inability of larger 

mesh sizes to detect local stress gradients effectively and their redistribution.  

As the mesh size was refined, the number of elements and degrees of freedom at each node exponentially 

increased, as shown in Table 5. Consequently, adopting a 20 mm mesh size led to a computational time approximately 

twice that of the 25 mm mesh, six times that of the 30 mesh, and twelve times that of the 40 mm mesh. The extra 

computational cost corresponding to the 20 mm mesh was significant regardless of the enhanced accuracy. Notably, 

the 20 mm mesh predicted the ultimate load with only a 1% error compared with the 25 mm mesh, showing that 

further refinement resulted in negligible accuracy enhancement while increasing the computational cost. 

Table 5. Summary of the mesh size, computational time, and number of elements  

Mesh size (mm) Computational time (minute) Numbers of the concrete element 

20 72 18,000 

25 36 9,216 

30 12 5,880 

40 6 2,250 

The damage parameters consider the reduction in stiffness after the concrete reaches its crushing and cracking 

strength, represented by tensile damage (dt) and compression damage (dc). Figure 19 illustrates the impact of the 

damage parameter on the load‒deflection behavior. The initial values of the damage parameters (dt and dc) were 

selected on the bases of previous studies, and were used as reference points for a sensitivity analysis. This analysis 

evaluated their impact on the FEA model's stiffness, ultimate load, and postpeak behavior. When the damage 

parameters are neglected (dt=dc=0), the model underestimates the ultimate load capacity. This can be attributed to the 

model considering the permanent deformation of the concrete after yielding (plastic strain) while ignoring the strain 
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caused by damage stiffness degradation. Consequently, the residual softening behavior is not captured, as the model 

ignores the stiffness degradation of the concrete in the post yield surface. Activating only the tensile damage 

parameter (dt≠0, dc=0) leads the model to over predict the experimental ultimate load. This can be attributed to the 

tension stiffening effect, wherein the model assumes that the reinforcement primarily carries the stress after the 

concrete cracks. As a result, the crack growth is reduced, which results in a higher ultimate load prediction than the 

experimental result. Conversely, when only compression damage is considered (dc≠0, dt=0), the model underestimates 

the ultimate load. This underestimation arises from the formation and spread of cracks resulting from neglected tensile 

stress. As a result, the postpeak softening curve also gradually decreased, which indicates that the model accounts for 

only compressive degradation. When both compressive damage and tensile damage (dt≠0, dc≠0) are incorporated, the 

model appropriately predicts the initial stiffness, ultimate load, and residual softening behavior. This can be attributed 

to its ability to capture the combined effect of tensile crack development and compressive crushing, representing the 

nonlinearity of concrete. Overall, tensile and compression damage significantly influence the model and are essential 

for predicting the strength and stiffness degradation and understanding the failure mechanism. 

 

Figure 19. Influence of the damage parameter 

5. Numerical Analysis Results 

Three shallow reinforced concrete beams reported by Soliman et al. [2, 7] are used for validation. Table 6 

compares the load-to-midspan deflection between the FEA and experimental results. The maximum errors between the 

FEA and the experimental ultimate load and the corresponding deflection are 1.69% and 10.7%, respectively, 

indicating a strong agreement. In 5.1, 5.2, and 5.3, further analysis of the FE results was presented to investigate the 

load‒deflection behavior, failure pattern, and failure mechanism of wide beams. 

Table 6. Comparison of the experimental and FEA results 

Beam Fu, EXP (kN) Fu, FEA (kN) F error (%) ∆u, EXP (mm) ∆u, FEA (mm) ∆ error (%) 

B1 660 649 1.69 4.5 5.04 10.7 

B2 640 637 0.47 3.5 3.69 5.1 

B3 903 890 1.46 5.7 6.07 6.1 

Note: Fu, EXP, Fu, FEA, F error, ∆u, EXP, ∆u, FEA, ∆ error represents the experimental ultimate load, FE 

ultimate load, load variation ((Fu, EXP - Fu, FEA)/ Fu, FEA), experimental deflection at the 

corresponding load, FE deflection at the corresponding load, deflection variation ((∆u, EXP - ∆u, 

FEA)/∆u, FEA), respectively. 

5.1. Load-Deflection Curves of the Samples 

The load‒to‒midspan deflection curves of the experimental test and the finite element analysis results were 

compared for B1, B2, and B3, as shown in Figures 20 to 22. All the results exhibited similar behavior in the elastic 

stage, whereas the FEA result was stiffer than the experimental result. The reason for the high stiffness was that FEA 

uses linear properties in the elastic stage; however, actual concrete has some nonlinearity in the elastic stage due to 

microcracks.  
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Figure 20. Load‒deflection curve for B1 

 

Figure 21. Load‒deflection curve for B2 

 

Figure 22. Load‒deflection curve for B3 
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After the elastic stage, the FEA curve shows a gradual loss of stiffness relative to the experimental result. This is 

attributed to inelastic strain development modelled in Abaqus, which is governed by concrete damage parameters. This 

inelastic strain is expressed in terms of tensile damage, which is responsible for cracking, and compression damage, 

which accounts for crushing. This scenario expresses the transition of the elastic behavior of the beam to the inelastic 

behavior with some reduced stiffness compared with the experimental observations. When the load reaches the 

ultimate value, the stiffness slightly decreases because the inelastic strain approaches the maximum cracking and 

crushing strain, resulting in ductile shear failure. Overall, the load‒to‒midspan deflection of the FEA accurately 

predicts the experimental results. 

5.2. Failure Mechanism of the Samples 

A comparison of Figures 23 to 25 reveals that the experimental failure mechanism for wide beams B1, B2, and B3 

agrees well with the FEA results. During the initial stages of loading, flexural cracks were observed at the mid-bottom 

side of the simulated beam, and as loading increased, these cracks propagated and increased in number. This is due to 

the concrete damage plasticity model, which accounts for the increasing loads leading to an increasing plastic strain, 

along with damage parameters approaching the critical value of 1 (full crack or crush). Additionally, diagonal cracks 

were observed near the support, converging toward the location of the applied load. Notably, Figures 24 and 25 

exhibit enhanced crack development control attributed to the high density of stirrups, which provide greater 

confinement and resistance to shear stress. Conversely, Figure 23 shows more crack development due to the light 

density of the stirrups, which reduces the beam shear capacity. Figure 26 shows the plastic strain distribution in the 

reinforcement. The results revealed that the stirrups yielded before the longitudinal bar, indicating that the beam 

exhibited shear failure primarily, which was consistent with the experimental findings. 

 

Figure 23. Experimental crack pattern and FEA damage pattern of B1 

 

Figure 24. Experimental crack pattern and FEA damage pattern of B2 
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Figure 25. Experimental crack pattern and FEA damage pattern of B3 

 

Figure 26. Plastic strain distribution of the reinforcement 

5.3. Effects of the Stirrup Spacing, Beam Width, and Longitudinal to Shear Reinforcement Ratio 

The influences of the stirrup spacing, width of the shallow beam, and ratio of longitudinal to shear reinforcement 

are illustrated in Figure 27. All the beams (B1, B2, and B3) share a uniform longitudinal reinforcement ratio of 3.73% 

(ρl=As/(bd)). However, their transverse reinforcement ratios differ: B1 and B3 have a ratio of 0.33%, whereas B2 has 

a ratio of 0.42%. On the basis of the FEA and the experimental investigation, the following observations were made: 

 

Figure 27. Load‒deflection curves for all experimental and FEA shallow beams 
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Since all wide RC beams use the same concrete (31 MPa) and reinforcement (233 MPa and ρl=3.73%), they 

exhibit similar stiffnesses in the elastic region (approximately 90 kN). The FEA result captures this initial stiffness 

well. 

A comparison of beams B1 and B2 shows the impact of changing the transverse reinforcement ratios. While their 

sectional and material properties are the same, B1 has a transverse reinforcement ratio of 0.33% (4 legs Ø 8 mm with 

100 mm spacing), whereas B2 has a higher ratio of 0.42% (4 legs Ø 6 mm with 45 mm spacing). The results revealed 

that increasing the stirrup ratio increased the stiffness and crack development (Figures 23 and 24) and improved 

ductility but slightly reduced the shear strength. This improvement was attributed to the confinement effect of the 

stirrups, which strengthened the concrete compression strength. 

Examining wide RC beams B1 and B3 focuses on the influence of beam width and stirrup arrangement. Regardless 

of the exact longitudinal and transverse ratios (3.73% and 0.33%, respectively), B3 is characterized by an increased 

width size (900 mm) and a modified stirrup configuration (5 legs Ø 8 mm with 100 mm spacing). This change resulted 

in superior strength, stiffness, limited cracks (Figures 23 and 25), and postpeak ductility for B3 compared with those 

of B1 and B2. The larger cross-sectional area and closed-leg stirrup arrangement in B3 enhanced the concrete 

confinement by improving the shear strength performance. Furthermore, a wider beam can distribute stress efficiently 

over a larger area, which results in a higher shear strength.  

The longitudinal to transverse (LR/TR) ratio further emphasizes the relationship between the rebar distribution and 

shear capacity. B1, B2, and B3 had LR/TR ratios of 11.3%, 8.88%, and 11.3%, respectively. The results revealed that 

a higher LR/TR ratio increases the shear strength, as shown in B1 and B3. This improvement was due to the high 

amount of longitudinal reinforcement confining the concrete, which enhances the compressive strength and delay of 

cracking (Figures 24 and 25).  

5.4. Code Comparison and FEA Predictions 

A comparison was made between the experimental results of the shear strength of wide RC beams with the FEA, 

Eurocode, and ACI results, as shown in Table 8. The ACI calculates the shear strength of RC beams by considering 

the combined strength of the concrete and stirrups via the following Equation: 

𝑉𝑅𝐷 =
𝑓𝑐𝑚0.5∗𝑏𝑤∗𝑑

6
+ (

𝐴𝑠𝑤

𝑠
) ∗ 𝑑 ∗ 𝑓𝑦𝑤𝑑   (10) 

where bw is the beam width, d is the effective depth, Asw is the stirrup area, and fywd is the stirrup design yield strength. 

Eurocode assumes that the stirrups resist all the shear stress and uses the variable strut inclination method to 

compute the shear capacity, as shown in Equation 9. 

𝑉𝑅𝐷 =  𝐴𝑠𝑤 ∗ 𝑍 ∗ 𝑓𝑦𝑤𝑑 ∗ (𝐶𝑜𝑡𝜃 + 𝐶𝑜𝑡𝛼) ∗
𝑆𝑖𝑛𝛼

𝑆
𝑎𝑛𝑑 𝑍 = 0.9𝑑              (11) 

where θ is the inclination angle, which varies from 21.80 - 450, α is the stirrup angle, Z is the lever arm, and S is the 

stirrup spacing. 

The Fib Modal Code III provides an equation that predicts the shear capacity of RC beams on the basis of modified 

compression‒filling theory, which considers the strength between cracks or tension stiffening via the following 

Equations. 

𝑉𝑅𝐷 =
𝐴𝑠𝑤

𝑆
∗ 𝑍 ∗ 𝑓𝑦𝑤𝑑 ∗ cot 𝜃 + 𝐾𝑣 ∗ 𝑍 ∗ √𝑓𝑐𝑑 ∗ 𝑏𝑤  (12) 

𝐾𝑣 =
0.4

1+1500𝜀𝑥
(1 −

𝑉𝐸𝐷

𝑉𝑅𝐷,𝑚𝑎𝑥(𝜃)
)  (13) 

𝑉𝑅𝐷, 𝑚𝑎𝑥(𝜃) = 0.9 ∗ 𝐾𝑐 ∗ 𝑓𝑐𝑑 ∗ 𝑏𝑤 ∗ 𝑑 ∗ (
cot 𝜃+cot 𝛼

1+cot2 𝜃
)  (14) 

𝜀𝑥 =
1

2∗𝐸𝑠∗𝐴𝑠𝑙
∗ (

𝑀𝐸𝐷

𝑍
+

𝑉𝐸𝐷∗cot 𝜃

2
)  (15) 

where Kv is the contribution of the aggregate to the effective shear area, Ɛ𝑥 is the longitudinal strain at the middle 

depth of the effective shear area, Kc is the reduction factor that accounts for the concrete business and web strain rate, 

MED is the bending moment, and VED is the shear force. Asl is an area of longitudinal reinforcement. 

Using a truss model, De Domenico & Ricciardi [26] improved the Eurocode shear strength prediction equation of 

RC beams with transverse reinforcement via the following equations.  

𝑉𝑅𝐷 = 3.75 ∗
𝐴𝑠𝑤

𝑏 ∗ 𝑑
∗ 𝑓𝑦𝑤𝑑 ∗ (𝑏𝑤 ∗ 𝑧) (16) 

where ρw is the stirrup ratio. 
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Ebid & Deifalla [27] proposed a machine learning-based equation to predict the shear strength of RC beams with 

stirrups via genetic programming (GP) techniques. 

𝑉𝑅𝐷 =
1.25×ln|1.3+0.7𝜌𝑆×𝑓𝑦𝑤𝑑+0.2𝜌𝐿|

ln|45×
𝑎

𝑑
×

𝐸𝑐𝑚
𝐸𝑠

|
× 𝑏 × 𝑑 × √𝑓𝑐𝑚  (17) 

where ρS is the stirrup ratio, ρL is the longitudinal reinforcement ratio, a is the shear span length of the beam, and Es is 

the reinforcement elastic modulus. 

Table 7. Summary of experimental, FEA, Eurocode, ACI, modal code, Domenico shear prediction, and GP methods 

Beam V RD, Exp 
VRD, Exp / 

VRD, FEA 

VRD, Exp / 

VRD, ACI 

VRD, Exp / 

VRD, EC2 

VRD, Exp / 

VRD, MC 

VRD, Exp / VRD, 

Domenico 

VRD, Exp / 

VRD, GP 

B1 330 1.017 2.08 4.6 3.0 2.48 1.44 

B2 320 1.005 2.43 3.4 2.13 4.35 1.4 

B3 452 1.02 1.9 6.05 2.23 2.26 1.29 

The FEA, which uses the CDP model in Abaqus, achieved high accuracy in predicting shear strength, with an 

experimental-to-predicted ratio of 1.017 for B1, as shown in Table 8. This accuracy originates from the CDP model's 

ability to capture the nonlinear behavior of concrete, including tensile and compressive plasticity, residual strength 

between cracks (tension stiffening), and damage parameters. In comparison, the ACI method overestimates the shear 

strength at a ratio of 2.08, indicating a lower accuracy of the experimental results. The ACI approach considers the 

contributions of concrete and stirrups; however, it neglects essential factors such as crack development, tension 

stiffening, and nonlinear reinforcement behavior, leading to reduced accuracy. 

Eurocode, with a ratio of 4.6, produces highly conservative results because the stirrups resist all the shear stress 

effectively, ignoring the contribution of the concrete. The Fib Modal Code gives moderately conservative predictions 

with a ratio of 3, gaining an advantage for introducing tension stiffening. However, its partial consideration of non-

linear concrete behavior makes it less accurate than FEA. De Domenico & Ricciardi [26] incorporated the truss model 

in Eurocode, accounting for stress redistribution at the crack regions, whose prediction ratio is 2.48, offering better 

agreement with the experimental results than the Eurocode and Fib Modal Code. 

For B2, the FEA achieves an experiment-to-predict ratio of 1.005, precisely capturing the reduced area of the 

stirrups. Conversely, the ACI, Eurocode, Fib Modal Code, and De Domenico & Ricciardi [26] models fail to capture 

the effects of the decreasing stirrup area, resulting in prediction ratios of 2.43, 2.13, 3.1, and 4.35, respectively. For 

B3, the FEA again demonstrates its accuracy, with a ratio of 1.02, accurately predicting the influence of increased 

beam width and stirrup area. The ACI gives the next best prediction with a ratio of 1.9, followed by the Fib Modal 

Code (2.23) and De Domenico & Ricciardi [26] (2.26). However, Eurocode significantly underestimates the shear 

capacity, with a ratio of 6.05, reflecting its excessively conservative prediction.  

In summary, FEA provides greater accuracy in predicting the shear strength of a shallow RC beam than the 

traditional design codes developed for conventional RC beams. However, genetic programming (GP) becomes a 

strong option, performing accurate predictions for beams B1, B2, and B3 with experimental-to-predicted ratios of 

1.44, 1.4, and 1.29, respectively. This comparison among FEA, codes, and genetic programming emphasizes the 

importance of choosing design codes for shallow RC beams to satisfy safety requirements and optimization. 

6. Conclusions 

A numerical investigation of the shear behavior of a wide RC beam was performed via Abaqus software. Three 

samples with different stirrup spacing and widths of the beam were extracted from the experimental test to simulate 

their load‒deflection curve and failure mechanisms. Concrete damage plasticity was used to model the behavior of the 

concrete, and the CDP parameter values were calibrated to improve the accuracy of the FE model prediction. The 

following conclusions were drawn from the FE results. 

 The FEA captured the ultimate load and corresponding deflection with maximum variations of 1.69% and 

10.7%, respectively, which agreed with the test results. Furthermore, the cracking pattern and failure mechanism 

of the concrete were accurately captured, and the maximum plastic strain of the reinforcement also aligned with 

the test findings. 

 Selecting the dilation angle, Kc values, and damage parameters from the CDP parameters significantly 

influences the model behavior. 

 The dilation angle values (ranging from 30° to 46°) significantly influence the load-deflection behavior after the 

elastic limit, and the appropriate dilation angle for a shallow RC beam is 32°. 
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 Neglecting tension damage resulted in an underestimation of the shear strength, whereas neglecting compression 

damage resulted in an overestimation of the shear strength. Assigning proper damage parameters results in a 

better estimation of the FE model. 

 In quasi-static analysis, viscosity does not affect the accuracy of the FE result; however, the loading time 

significantly impacts the model, and increasing the loading time increases the computational time and accuracy. 

 Increasing the stirrup ratio increases the stiffness and ductility without significantly improving the shear strength. 

On the other hand, increasing the width and longitudinal-to-transverse reinforcement ratio enhances the strength 

and ductility. 

 The FEA prediction sets the highest standard for accurate shear strength predictions, whereas GP is the second-

best machine learning method. Although the truss model and Fib Modal Code provide enhancements based on 

the basis of traditional codes, they are far from accurate in terms of FEA and GP. 
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