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Abstract 

Pavement Management Systems (PMS) depend upon reliable pavement performance models. In this paper, our aim is to 

develop International Roughness Index (IRI) prediction models for the heavily trafficked (right-hand) lanes of motorways in 

the province of Gipuzkoa (Spain) in flexible, semi-rigid, and composite pavements. A deterministic approach was selected, 

based on the available information in the PMS employed in that province, covering complete pavement structures. Omitting 

pavement type, the model yielded a determination coefficient (R²) of 0.696 with only three variables: pavement age, 

cumulative volume of heavy vehicles travelling through the section, and total thickness of bituminous layers. Then, two 

superior models were generated with pavement type as a variable, yielding R² values of 0.781 and 0.795, respectively. Unlike 

the opaque features of Machine Learning (ML), the deterministic models captured precise relationships between the variables 

to a high degree of accuracy. They can moreover be applied to all pavements with bituminous layers, unlike many other 

models that are only applicable to a single pavement type. Furthermore, the models are presented for freeways where traffic 

is randomly distributed between lanes; a less widely covered topic in the literature. 

Keywords: International Roughness Index; Pavement Performance Model; Flexible Pavement; Semi-Rigid Pavement; Composite Pavements. 

 

1. Introduction 

Road pavement structures consist of layers of graded materials that are normally referred to as surface, base, and 

subbase (the latter at times unnecessary), all resting upon a compacted subgrade [1]. Together, all the layers create a 

robust foundation that can withstand vehicular traffic and environmental stress [2]. There are at present two main 

pavement surfaces: Portland cement concrete and bituminous materials, usually referred to as asphalt concrete. 

Pavements may therefore be categorised as either rigid or flexible, respectively [3]. Rigid pavements have a concrete 

slab poured over a subbase layer of either granular or stabilised materials. Flexible pavements have a layer of asphalt 

mix over unstabilised aggregates [4, 5], the latter category representing approximately 95% of all road networks 

throughout the world [3]. 

The load transmission of each pavement type differs, regardless of the different surface materials and subsequent 

treatments. The general objective is to ensure that the subgrade materials will withstand the stress distribution patterns. 

The high degree of stiffness of the concrete slab enables it to carry most of the load [6], so the stress concentrations of 

the underlying layers are in that way minimised. In contrast, traffic loads over the surface layer of a flexible pavement 
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result in deformation of the base material of unstabilised aggregates. At greater depths, loads are distributed over larger 

areas, so high-intensity stress levels that are generally recorded close to the surface subsequently diminish at deeper 

layers [7, 8]. It is therefore essential to utilise the highest quality materials at the surface, incorporating lower quality 

materials at deeper layers [4]. Nevertheless, as traffic volumes are constantly increasing, pavements are required to 

withstand ever higher stresses and more frequent loading cycles, which can result in permanent deformation of granular 

bases and asphalt surface layers [2, 9]. Treatments to enhance base-layer performance include a variety of methods and 

the following materials: cement, lime, bituminous materials, recycled asphalt pavement, fly ash, slag, and calcium 

chloride [8, 10-13]. Treated or stabilised base materials increase the strength of the pavement structure and broaden load 

distribution over wider areas, thereby diminishing subgrade stress levels [14]. Pavements comprising an asphalt mixture 

layer or layers over a treated base or subbase are categorised as semi-rigid pavements [15-17]. Semi-rigid pavements 

may be categorised as an intermediate type somewhere between flexible and rigid pavements, although their behaviour 

is always closer to flexible rather than rigid pavements [18]. 

The composite pavement is the last pavement type, formed of a bituminous layer placed over a Portland cement 

concrete base. Its construction method combines the durability and strength of concrete with the flexibility and 

smoothness of an asphalted surface. In this pavement type, an asphalt mixture layer or layers are extended over a Portland 

cement concrete base [4]. Often used for the rehabilitation of Portland cement concrete pavements at the end of their 

functional lifespan, the surface is overlaid with Hot-Mix Asphalt (HMA) layers. The extension of HMA layers is a 

standard maintenance treatment for rigid pavements in the U.S. Midwest [19, 20]. As well as its use in roadways, this 

technique is usually applied over concrete structures, such as bridges, where the concrete base constitutes part of the 

overall structure. The robust support of a composite pavement ensures that a bridge can withstand significant loads and 

environmental weathering. The bituminous layer also introduces flexibility and enhances surface characteristics, such 

as improving skid resistance, which is vital for vehicle safety [21]. It is a combination that effectively distributes loading 

while absorbing thermal expansion and contraction, which is of particular importance in bridge applications. 

Although pavements are designed as per the relevant standards, deterioration is inevitable over time, due to a number 

of factors, including traffic loads, material ageing, environmental factors, and construction deficiencies [22-27]. Given 

that the total cost of maintenance and rehabilitation (M&R) works is generally higher than available funds, road agencies 

must implement Pavement Management Systems (PMS) for optimal budgeting and maintenance planning [28-31]. 

According to AASHTO [32], a PMS is “a set of tools or methods that assist decision makers in finding optimum 

strategies for providing, evaluating, and maintaining pavements in a serviceable condition over a period of time”. A 

PMS therefore relies upon: 1) data collection procedures to assess current pavement conditions; 2) the forecasting of 

future conditions using pavement performance or deterioration models; and 3) the development of customised 

maintenance strategies considering local characteristics and traffic, available materials and funding [28, 32-34]. 

Highway agencies employ various indices directly measured on the road network in their evaluations of pavement 

conditions. Although the surface merely corresponds to one layer of the pavement structure, it is the layer in contact 

with the tyres of a travelling vehicle and is therefore of paramount importance. Cracking, potholes, rutting, ravelling, 

depressions, pavement strength, and drainage can all worsen surface roughness [35]. In turn, surface roughness has a 

direct influence on Vehicle Operating Costs (VOC), user comfort and safety, road maintenance costs, and service life 

[36-40]. Among the numerous indices for pavement roughness assessment, including the Present Serviceability Index 

(PSI) and Present Serviceability Rating (PSR), the International Roughness Index (IRI) is the most widely used [27, 41]. 

The IRI was an unanticipated outcome of the International Roughness Experiment conducted in Brazil in 1982, and the 

World Bank went on to develop it during the 1980s [42, 43]. Sayers [44] devised the algorithm that is used to calculate 

the IRI, which represents the accumulated suspension stroke of a vehicle divided by the distance travelled, expressed in 

mm/m or m/km. The stability of the IRI over time and its transferability throughout the world are all reasons for its 

extensive global use [45]. Examples of its employment can be found in both developed [46-49] and developing countries 

[50-53]. 

In the province of Gipuzkoa (Spain), the Provincial Council of Gipuzkoa (PCG) is responsible for the management 

of motorways (freeways) and interurban highways, while local councils assume responsibility for the management of 

local roads. The PCG manages a comprehensive network of over 1,100 km of roadways. Similar to other highway 

agencies, it collects IRI values in order to evaluate the current condition of the road network. The information is stored 

on the agency database together with other inputs to the PMS, such as traffic volumes, pavement structures, M&R 

activities, climate data, etc. [54]. 

Taking advantage of this information, the objective of this paper is to present a comprehensive IRI prediction model 

for dual-carriageways, specifically freeways, and multilane highways. The model encompasses all potential pavement 

structures in Gipuzkoa, including flexible, semi-rigid, and composite pavements. It was developed for the right-hand 

lanes of dual-carriageways; the lanes on which most heavy vehicles circulate and therefore the lanes that deteriorate 

more rapidly than any other. Highway agencies need to know the condition of the right-hand lane to carry out M&R 

works in proper time. The model is based on a rigorous selection of variables that, as has been demonstrated, exert 

significant influence on IRI performance. 
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The structure of this paper is organised as follows. In the following section, the state-of-the-art pavement 

deterioration models classified by pavement type are presented with a special focus on motorways. Then, the information 

registered in the PMS of the PCG, a discussion of the methodology and a list of the selected variables for modelling are 

all presented in Section three. In the fourth section, the results are detailed and discussed. Finally, the conclusions are 

drawn in the last section. 

2. Literature Review  

2.1. Classification of Pavement Performance Models 

Pavement performance models, also known as pavement deterioration models, evolution models, deterioration 

models, and pavement performance prediction models, all serve as mathematical frameworks to foresee changes to 

pavement characteristics over specified periods of analysis [55, 56]. A wide variety of pavement performance models is 

available, as well as various classifications and categories within which to group those model types. For example, Haas 

et al. [57] firstly grouped the models that road agencies developed for pavement management into four fundamental 

categories: purely mechanistic, mechanistic-empirical, regression (or deterministic), and subjective (which included 

probabilistic models, as the latter were sometimes subjectively developed). In a more recent publication, the Pavement 

Management Guide [54], the models are categorised in four distinct groups: deterministic, probabilistic, Bayesian, and 

subjective (or expert-based). Some years earlier, Uddin [58] had proposed that, in addition to deterministic and 

probabilistic models (which included Markov chains and Bayesian models), a further category, the Artificial Neural 

Network (ANN), should also be considered. Over more recent years, interest has been growing in the use of ANN models 

and, more generally, Machine Learning (ML) models for the prediction of pavement performance. The broad variety of 

ML models has a series of classifications. For instance, Justo-Silva et al. [59] classified them into three basic groups: 

supervised learning, unsupervised learning, and reinforcement learning. Nevertheless, despite the wide range of 

available models, deterministic and probabilistic models are still regarded as the fundamental groups [26, 49, 60-62]. 

The deterministic model is useful whenever data on historical pavement conditions and adequate survey data can be 

used to identify patterns of deterioration. Regression analysis is typically applied in the development process. 

Deterministic models, of proven efficiency for large experimental and historical datasets [51, 63], establish both linear 

and nonlinear relationships between affecting factors and the predicted variable, offering simplicity and reliability [62, 

64]. However, their utility is constrained by their inability to extrapolate beyond the limits of experimental data [65], 

and they need to be calibrated when applied to an alternative site. 

Unlike the precise index values of the deterministic model, the probabilistic model generates an estimate of the 

probabilistic distribution of the expected values [52, 66]. Both models predict future conditions, although inherent 

uncertainties over future pavement conditions can be built into probabilistic models [26, 67]. In fact, pavement 

deterioration is now understood as probabilistic in nature with some uncertainty levels [26, 68, 69]. Over the past three 

decades, various forms of probability-based models have emerged, and Bayesian and Markov probabilistic models have 

attracted significant interest [49, 60, 70-72]. 

Machine learning models for empirical modelling are also gaining ground, employing parallel computations for 

knowledge representation and processing [59, 73]. Capable of solving complex problems that traditional approaches 

cannot, they require significant amounts of data [27, 74-76]. Nonetheless, their results are not easily interpreted, as their 

"black box"-type definitions establish no clear causal relationships between inputs and outputs [49, 77, 78]. A drawback 

that limits transferability to other regions or countries.  

Subjective or expert-based models that integrate subjective opinions into performance modelling are less formal. 

They are suitable whenever historical data are limited and new practices or materials must be introduced. 

2.2. IRI Performance Models for Flexible Pavements 

Flexible pavements that consist of bituminous layers spread over an unbound material base are common road 

surfaces around the world [3]. Hence, the first pavement performance models were designed for that pavement type. 

Initially, empirical approaches were used to establish relations between pavement roughness and various affecting 

factors. Among the earliest, the AASHO model [79] listed the material properties and the thicknesses of the layers, 

subgrade strengths, and environmental data for estimating the maximum number of Equivalent Single Axle Load 

(ESAL) applications. After developing the IRI, the World Bank published HDM-III [80] and HDM-IV [81], which 

contained some of the first models. The model proposed by Paterson [82] can be used to identify the main variables 

affecting the IRI: cracking, potholing, rutting, structural deformation (caused by traffic loads), and weathering. In 

general, it could be said that there has been a shift away from empirical models to more complex mechanistic-empirical 

(M-E) models, i.e., linking theoretical mechanics with empirical data to improve accuracy [83]. A leading example of 

this transition is the Mechanistic-Empirical Pavement Design Guide (MEPDG) that AASHTO [84, 85] proposed, as an 

outcome of the National Cooperative Highway Research Program (NCHRP) 1-37A [86]. The models used in North 
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America for pavement structures with equations for various distress types are presented in the MEPDG. The following 

Equation 1 is proposed in the IRI for Hot Mix Asphalt pavements and Hot Mix Asphalt overlays over flexible pavements: 

𝐼𝑅𝐼 =  𝐼𝑅𝐼0 + 40.0 · 𝑅𝐷 + 0.4 · 𝐹𝐶𝑇𝑜𝑡𝑎𝑙 + 0.008 · 𝑇𝐶 + 0.015 · 𝑆𝐹  (1) 

where IRI is the predicted IRI value (in/mi.); IRI0 is the initial IRI after construction (in./mi); RD is the average rut depth 

(inches); FCTotal is the area of fatigue cracking (combining longitudinal, alligator cracking, and reflection cracking along 

the wheel path), as a percentage of total lane area; TC is the length of transverse cracking, including the reflection of 

transverse cracks in existing HMA pavements (ft/mi); and SF is the site factor, obtained from Equation 2: 

𝑆𝐹 = 𝐴𝑔𝑒1.5 · {𝑙𝑛[(𝑝𝑟𝑒𝑐𝑖𝑝 + 1) · (𝐹𝐼 + 1) · 𝑝02]} + {𝑙𝑛[(𝑝𝑟𝑒𝑐𝑖𝑝 + 1) · (𝑃𝐼 + 1) · 𝑝200]}  (2) 

where Age is the pavement age (years); precip is the annual precipitation (inches); FI is the average annual freezing 

index (°F); PI is the plasticity index of the soil; and p02 and p200 are the respective percentages that pass through the 0.02 

and the 0.075 cm sieves. The proposed model, Equation (1), yielded a determination coefficient (R2) of 0.56 with 1926 

data points, and a standard error of the estimate (SEE) of 0.298 m/km (18.9 in/mi.). 

Abdelaziz et al. [87], Pérez-Acebo et al. [88] and Sandamal et al. [27] presented a set of tables with some IRI 

prediction models for flexible pavements. The listed models covered a wide variety of variables, which could be 

classified as age, climate factors, distress (mainly rutting, potholes, and cracking), initial IRI, traffic volumes, and soil 

and material parameters (mainly structural numbers and material characteristics) [87-91]. Wu et al. [62] also employed 

similar variables in their most recently developed models. Likewise, Shokoohi et al. [26] included data on cumulative 

annual freeze-thaw cycles, cumulative annual precipitation rates (climate factors), cumulative ESAL in one direction 

(traffic factor), Structural Numbers (structural index), initial IRI and pavement age. Similarly, Marcelino et al. [92] used 

climate factors (temperature, precipitation, freezing index), and traffic and material properties for predicting future IRI 

values. Kaloop et al. [93] advanced eight variables: initial IRI, pavement age, distress indices, freeze index and material 

properties. Using data from Korea, Choi & Do [94] fed traffic, climate and distress data into their prediction model. 

Sandamal et al. introduced data on pavement age and traffic volume as their variables [27]. Moreover, Nguyen et al. 

developed an IRI performance model in Vietnam with no other data than distress indices [95]. As previously mentioned, 

factors such as pavement age, traffic loads, pavement material properties, and environmental factors were among the 

key variables included in all the above models. Additionally, as shown by Kaloop et al. [93], it must be noted that at 

present, there is a trend to develop deterioration models for flexible pavements using data from the LTPP where many 

variables are available. However, many other highway agencies have far less data and far fewer variables recorded, so 

there is a need to develop specific models that include the variables that highway agencies apply in their own PMS. 

2.3. IRI performance Models Applied to Semi-Rigid Pavements 

Over recent years, the use of treated base materials that are laid under semi-rigid pavements has been popularised, 

especially in China, where high traffic demand drives the construction of this more resistant type of pavement [16, 17, 

96]. Despite the immense effort invested in characterising the treated materials of semi-rigid pavements [16, 97-99], few 

IRI performance models have been developed for this pavement type. Despite the IRI models for flexible pavements 

that were presented in the first and second versions of the MEPDG [84, 85], neither version included models for semi-

rigid pavements. However, a model for semi-rigid pavements did appear in the third version of the MEPDG [100], which 

is shown below as Equation 3: 

𝐼𝑅𝐼 = 𝐼𝑅𝐼0 + 40.8 · 𝑅𝐷 + 0.575 · 𝐹𝐶𝑇𝑜𝑡𝑎𝑙 + 0.0014 · 𝑇𝐶 + 0.00825 · 𝑆𝐹  (3) 

where IRI, IRI0, RD, FCTotal and TC are defined in Equation 1, and SF is a site factor defined in Equation 2. 

Pérez-Acebo et al. [101] presented two IRI prediction models specifically developed for semi-rigid pavements. The 

first one, shown in Equation 4, yielded a determination coefficient (R2) of 0.569: 

𝐼𝑅𝐼 = 2.22 + 0.22 · 𝑙𝑛(𝑅. 𝐴𝑔𝑒) − 1.16 · 10−6 · 𝑇𝑜𝑡𝑉𝑒ℎ · 𝑇𝑜𝑡𝐵𝑖𝑡 + 1.87 · 10−4 · 𝑇𝑜𝑡𝐻. 𝑉𝑒ℎ + 𝐵𝐴𝑆𝐸 · 𝐵𝑡ℎ𝑖𝑐𝑘  (4) 

where IRI is the predicted IRI (m/km); R.Age is the real pavement age (years); TotBit is the thickness of the bituminous 

layers (cm); TotVeh and TotH.Veh represent the total numbers, respectively, in thousands of vehicles and heavy vehicles 

that travel over the section; BASE is a variable that considers the materials used in the treated base; and Bthick is the 

thickness of the treated base layer (cm). 

An improved model that incorporated the variable SURF, an estimate of surface-layer bituminous material, was also 

presented in Pérez-Acebo et al. [101], as shown in Equation 5, that yielded an R2 of 0.645. 

𝐼𝑅𝐼 = 1.397 + 0.184 · 𝐿𝑛(𝑅. 𝐴𝑔𝑒) − 7.72 · 10−7 · 𝑇𝑜𝑡𝑉𝑒ℎ · 𝑇𝑜𝑡𝐵𝑖𝑡 + 1.88 · 10−4 · 𝑇𝑜𝑡𝐻. 𝑉𝑒ℎ + 𝐵𝐴𝑆𝐸 · 𝐵𝑡ℎ𝑖𝑐𝑘 + 𝑆𝑈𝑅𝐹  (5) 

where the rest of variables are as defined for Equation 4. 
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Using data from the LTTP, Hanson [102] proposed Equation 6 for IRI predictions relating to semi-rigid pavements 

with varied volumes of cement in the treated base layer: 

𝐼𝑅𝐼 = 1.0 + 0.019𝑡 − 0.00832𝑎 + 0.0072𝑏 + 0.0346𝑐  (6) 

where IRI is the predicted IRI value (m/km); t is the pavement age (years); a is the thickness of the asphalt concrete 

layer (cm); b is the thickness of the cement-treated base (cm); and c is the cement content (%). However, Equation 6 

yielded a very low R2 of 0.09. 

Assogba et al. [103] studied the mechanical response of three semi-rigid sections under traffic load and nonlinear 

temperature gradients. The results of an initial Finite Element Method (FEM) analysis were verified in a full-scale track 

pavement test. It was observed that the non-linear thermal gradient of the pavement temperatures and the contact 

condition of the interfaces significantly affected both the stress and the strain patterns within the pavement system. Both 

the FEM and the in-situ results of Yang et al. [96] demonstrated that with higher resilient moduli in the base materials 

(i.e., semi-rigid pavements), the rutting of the asphalt and base layers was reduced, but when only considering surface 

layer rutting, more resilient materials at the base implied higher deformation levels. Dong et al. [16] noted that the 

stiffness of the base materials pre-treated with cement had slightly increased after 10 years, although it had decreased in 

base materials treated with lime and fly ash. They also developed a fatigue model that was restricted to a specific 

structure.  

Although those studies [16, 96, 103] represent important advances in the characterisation of semi-rigid pavements, 

there are still no specific models for predicting future IRI values other than those presented in Equations 3 to 6. 

Consequently, more IRI prediction models must be developed for semi-rigid pavements. 

2.4. IRI Performance Models for Composite Pavements 

Composite pavement prediction models have mainly been developed in the U.S., due to their frequent use as 

rehabilitation solutions for PCC pavements. Khattak et al. [19] presented an IRI prediction model for composite 

pavements (asphalt-overlay over concrete) in the state of Louisiana. Their deterministic (regression analysis) model 

yielded R2 values of 0.63, using nine variables: pre-treatment IRI value, HMA, and PCC layer thicknesses, cumulative 

ESAL, functional classification, treatment age, cumulative temperature index, precipitation index, and a variable delta. 

Using data from the LTPP, Barros et al. [104] compared five ANN models and the best performing ones used 14 input 

variables, including initial IRI, climate factors, asphalt and concrete thicknesses, and traffic loads, yielding an R2 of 

0.88. Moreover, Barros et al. [105] also compared an ANN and a Multiple Linear Regression (MLR) model for IRI 

prediction in the context of composite pavements within the wet non-freeze climate zone of the LTPP with 11 variables, 

including Initial IRI, age, material properties and climate factors. The R2 values of the MLR and ANN models increased 

to 0.37 and to 0.86, respectively. After data clustering the composite pavement section characteristics on the LTTP 

database into three groups, Neema [106] applied Markov chain analysis and Monte Carlo simulation to develop a 

performance model for each cluster. Using this family of models to map trends of deterioration, flooding was 

incorporated to predict pre-and-post flood IRI values in affected sections. Some authors compared various model types 

(generally deterministic and ANN models) for predicting composite pavements, such as Kaya et al. [107] for pavements 

in Iowa (U.S.) and Abdelaziz et al. [87] using LTPP databases, in both cases with better results for the ANN models. As 

shown in Equation 3, the MEPDG [84, 85, 100] also contains a model for composite pavements, which is the same as 

for semi-rigid pavements. 

Most of the models for composite pavements are used in the US and reflect the local characteristics of that technique. 

The localisation of the models adds to the need to develop models for other countries that are capable of capturing 

regional particularities. 

2.5. IRI Performance Models for Freeways 

There are many models for forecasting the IRI of different (mainly flexible) pavements types. Nevertheless, none 

have been specifically developed for the various lanes of dual carriageway roads, such as freeways and multilane 

highways. When researchers employ data from the LTPP, the highway characteristics are never indicated. However, as 

heavy vehicles are not uniformly distributed between the lanes of the carriageway, different pavement deterioration 

patterns may be expected. Some models are expressly indicated for single carriageway roads [88, 90]. However, very 

few have been explicitly developed for dual-carriageway highways. Al-Suleiman & Shiyab [108] developed a specific 

model for the slow (right-hand) lane -Equation 7-, in which heavy vehicles circulate more often, and another one for the 

faster (left-hand) lane -Equation 8-, both as an exponential function of pavement age, yielding determination coefficients 

of 0.801 and 0.61, respectively: 

𝐼𝑅𝐼𝑠 = 0.796 · 𝑒0.0539·𝐴𝑔𝑒  (7) 

𝐼𝑅𝐼𝑠 = 0.824 · 𝑒0.0359·𝐴𝑔𝑒  (8) 

where IRIs is the IRI value in the slow lane, IRIf is the IRI value in the fast lane, and Age is the pavement age since 

construction or last overlay. 
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Georgiou et al. [109] developed an ANN model and a Support Vector Machine model for predicting IRI values on 

the heavy-trafficked slow lane of a high-volume motorway, obtaining slightly better accuracy with the ANN model. 

In summary, while multiple models have been developed for flexible pavements, very few have been advanced for 

semi-rigid and composite pavements. Composite pavement sections are mainly constructed in the U.S., reflecting their 

local particularities. There is therefore a need to continue research on modelling semi-rigid pavements in general and 

composite pavements outside the US. However, there is no global model that includes all three pavement types. 

Additionally, very few models have been specifically produced for freeways where performance levels of the various 

lanes differ, as heavy traffic is never uniformly distributed between all the lanes. With the aim of bridging those two 

gaps identified in the literature, a complete IRI performance prediction model was developed in the present research for 

three possible road structures: flexible, semi-rigid and composite pavements for the right-hand lane of freeways using 

the data held on the PMS of the Provincial Council of Gipuzkoa (PCG). 

The methodology proposed to develop this model is shown in Figure 1. 

 

Figure 1. Flowchart of the proposed methodology 

3. Data, Methodology, and Variables 

3.1. The Data Held on the Pavement Management System of the Provincial Council of Gipuzkoa 

Gipuzkoa, located in the north of Spain, is one of the three provinces of the autonomous region of the Basque 

Country. Its population stands at approximately 726,000. Its surface area, covering some 1,997 km², makes it the smallest 

province in Spain. Due to their special autonomous status, the provincial councils of the three Basque provinces are in 

charge of all road infrastructure, including all the highways and motorways (freeways), even those that form part of the 

long corridors connecting the provinces to other regions and to France. The PCG is therefore responsible for the 

management and maintenance of the province's complete interurban road network, excluding municipal roads. As a 

result, the PCG manages over 1,100 kilometres. It has implemented a comprehensive Pavement Management System 

(PMS) and collects the full range of infrastructural data on culverts, bridges and drainage installations, as well as 

geometric specifications (detailing carriageway configurations and interchange layouts) and exhaustive road and 

segment identification records throughout the network. In addition, the PCG compiles traffic data: Annual Average 

Daily Traffic, and the percentage of heavy vehicles. On that basis, the Annual Average Daily Traffic of heavy vehicles 

is calculated and published in an annual report online [110]. According to the Spanish standard [111], the maximum 

authorised weight of a heavy vehicle is at least 3,500 kg. 

Besides, the PCG also incorporates environmental data into its PMS. Nevertheless, the decision not to include 

climatic data in the model was taken due to the relatively small surface of Gipuzkoa (1,997 km²) and the homogeneous 

oceanic climate throughout the province, which meant that climate-related data were not considered an affecting factor. 

In small areas with homogeneous climatic conditions, environmental data show little variance and are, therefore, not 

generally included in regional pavement modelling [101]. 

Analysis of the PCG PMS 

for motorways 
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Furthermore, information on the pavement structures of new roads and the maintenance and rehabilitation (M&R) 

activities of the PCG over the last two decades are also added to the PMS. The PCG works to maintain a comprehensive 

dataset encompassing project parameters and pavement specifications. Each project entry records project details, 

pavement features, and material specifications, providing a solid basis for planning and maintaining the road 

infrastructure. 

Finally, the PCG records pavement condition data, including indices on roughness, skid resistance, structural 

integrity, and surface defects, in order to maintain an overall picture of the state of the roads. Specifically, pavement 

roughness is collected by means of the International Roughness Index (IRI). IRI data are collected on an intermittent 

rather than on an annual basis. Data collected between 2018 and 2021 represent the only available data on the entire 

road network. IRI values are registered during summer and are reported at 100-metre intervals along the road, with 

precise initial and final Kilometre Point (KP) markers. For single-carriage dual-direction roads, IRI values are provided 

for both the right and left-hand lanes, while for double-carriageway roads only the IRI values for the right-hand lane are 

detailed in both directions. Thus, IRI prediction models for dual carriageways, as analysed in the present study, are 

models that have been specifically developed for the right-hand lane, which is the slowest lane with the heaviest traffic 

and, hence, the one that will need to be repaired before any other. 

3.2. Applied Methodology 

Given the extensive dataset within the PCG PMS database, including IRI values at 100-meter intervals, information 

on pavement structures, and annual traffic volumes of light and heavy vehicles, deterministic modelling was considered 

appropriate. A type of model that incorporates statistically significant variables for predicting IRI values on flexible, 

semi-rigid, and composite pavements. The model description discussed in the previous section implies the rejection of 

expert-based models, due to the inherent subjectivity of those models, and the availability of large data sets, suggesting 

alternative methodologies. Probabilistic models, including Bayesian and Markov chain models, were similarly 

discarded, because a different model for each unique factorial combination had to be developed, resulting in a large 

quantity of models. Furthermore, the superior accuracy of ML algorithms and Artificial Neural Networks (ANN) 

compared to deterministic models [26, 87] is acknowledged, with determination coefficient (R2) values over 0.90, and 

even over 0.95. Between both groups, ML models rather than ANN models with tabular data are preferred [112, 113]. 

Nevertheless, both models were omitted due to the opaque characteristics of their results [49, 78]. A further objective 

of the research was to verify the feasibility of developing high accuracy model, which could clearly show the influence 

of each factor. When ML or ANN models are presented, other researchers or technicians of highway administrations 

cannot directly test the new models with their own data, because the model is unknown. Consequently, an additional 

output of the study was to provide an equation that can be used directly by any other road administration with similar 

weather patterns and, hence, a deterministic approach was selected. 

Various curve types are used in deterministic models for data fitting, including linear, quadratic, cubic, logarithmic, 

and other functional forms, each displaying distinct patterns. While a single variable may be sufficient for a prediction 

model, multiple variables are commonly introduced, leading to the utilisation of MLR models. MLR is used to analyse 

interrelations between a quantitative dependent variable (the predicted variable) and various quantitative independent 

variables (the predictors or predicting variables), defined by known values. Moreover, qualitative predictors may be 

incorporated after their transformation into quantitative variables. Several hypotheses that assure post-model validation 

and development are assumed in the MLR analysis [90, 114, 115]: 

• Linear association between dependent and independent variables. Tested with the Pearson coefficient (R), if the 

coefficient is low, then the variables can be transformed. 

• Observation independence: each data point must be drawn independently from the population, which implies that 

errors are independent between them. A fact that can be checked with the Durbin-Watson statistic, ranging between 

0 and 4. A value of 2 represents total independence, and values between 1.25 and 2.75 imply independent errors. 

• Homoscedasticity: implying that the variance of errors must be equal across all levels, not depending on the 

observation. Homoscedasticity can be verified in a plot of the standardised predicted values vs. the standardized 

residuals, if no patterns are seen. 

• Normal distribution of errors. Residuals must follow a normal distribution. 

• Minimal or no multi-collinearity in the dataset, checked with the Variance Inflation Factor (VIF). If the VIF is 

over 10, the model has a serious multi-collinearity problem. 

Moreover, the most general form of linear regression modelling is the Generalised Linear Model (GLM), a regression 

model that covers both MLR models with quantitative predictors and MLR models that use both quantitative and 

qualitative predictors. It is a broad framework that includes all Analysis of Variance (ANOVA) and Analysis of 

Covariance (ANCOVA)-related models. 
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3.3. Model Variables 

In this section, the selection of the IRI prediction model variables is described in the light of PCG data. 

As shown in the literature review, the most commonly used IRI prediction model variables cover pavement age 

(measured in years since construction or the last M&R work), traffic volumes, and structural parameters, which include 

information on the materials and the material properties of the section [62, 87, 88]. Given the significance of the 

pavement structures and their thicknesses and properties, only those pavement sections where the entire structure was 

documented were considered worth analysing —specifically, sections where the surface layer, base, and subbase were 

known, excluding the subgrade. So, the IRI model for deterioration only included fully documented sections. A 

comprehensive analysis was conducted on a road-by-road basis, focusing on road segments with well-defined pavement 

sections. Information on those segments was collected from the time they were opened to traffic until M&R activities 

were performed. The influencing variables for inclusion in the deterministic model were as follows:  

• Age. Pavement age is commonly used for roughness modelling. [26, 93, 116]. It was, therefore, included in the 

analysis in two difference ways: “Age” and “RealAge”. The former variable represents the difference between 

the calendar year when the road section opened to traffic (or the most recent M&R activity) and the year of data 

collection (2018 and 2021). Since those dates can vary throughout the year, the latter variable was also 

incorporated. So, “Real Age” provided a more precise measurement of pavement age, taking into account the 

exact dates both of the road opening (or the most recent M&R activity) and of data collection. Expressed in years 

with a decimal fraction, a real age of 0.5 corresponds to six months. Pavement age expressed as a number of years 

with a decimal fraction can be found in other studies, among which [26]. 

• Traffic Volume. Traffic volume is generally incorporated into IRI models using the Equivalent Single Axle Load 

(ESAL), which standardises the damage caused by various vehicle weights to the damage caused by a standard 

load [26, 84, 92]. In Spain, the ESAL standard load is 13 tonnes. However, the specific numbers of each vehicle 

type passing through each section are not recorded in Gipuzkoa, as traffic data only differentiate between light 

and heavy vehicles. So, the following variables were included as potential influencing factors to account for 

traffic volumes.  

• Annual Average Daily Traffic (AADT): the AADT of the year of IRI data collection (2018 or 2021). It refers to 

bidirectional AADT and to vehicles/day. A further variable, AADTprev, referring to the year preceding data 

collection (2017 and 2020) was also considered. 

• Annual Average Daily Traffic of Heavy Vehicles (AADT-HV): the AADT of heavy vehicles, measured as heavy 

vehicles/day, in both directions. A further variable, AADT-HVprev referring to the preceding year of data 

collection was also considered. 

• Total Vehicles (TotalVeh): the number of vehicles travelling on a road segment since it was opened or since its 

most recent M&R activity. Expressed as millions of vehicles, it takes into account the AADT of each year since 

the segment of road was opened to traffic until the date of data collection. Both directions are taken into account. 

The exact dates of both the road opening (or the most recent M&R activity) and data collection activities were 

used for its calculation. 

• Total Heavy Vehicles (TotalHVeh): the total number of heavy vehicles circulating in both directions on the 

segment of road since its opening or since the most recent M&R activity up until the date of IRI data collection, 

and expressed in millions of heavy vehicles. The precise dates of the road opening and data collection activities 

were used for its calculation. 

• Total thickness of bituminous layers (BitThick): a standard variable employed in roughness modelling [19, 88, 

101, 105], which was therefore incorporated in the analysis. It represents the total thickness of the bituminous 

layers (surface, base, and subbase layers) in the pavement section, expressed in cm., considering all of the 

bituminous layers. 

• Environmental data: as previously commented, climatic conditions within Gipuzkoa are quite similar, so there 

are no observable differences due to weathering throughout the road network. For example, annual average 

precipitation ranges between 1300 and 2000 mm within the province and between 1400 and 1600 mm within the 

areas of the selected freeways. Such a small difference was therefore not considered to be a real affecting factor. 

Consequently, environmental data were not considered to be a significant influencing factor. 

• Pavement type (PaveType): a qualitative, non-numerical variable, which refers to pavement type: flexible, semi-

rigid or composite. There are no rigid pavements in Gipuzkoa. 

• International Roughness Index (IRI): the dependent variable that is to be predicted. As mentioned above, the PCG 

conducts an assessment of road network conditions based on data collection, and roughness values are indicated 

using the IRI. However, the IRI was only recorded throughout the entire road network in 2018 and 2021. IRI 
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values are specified for every 100 metres of the road, indicating the exact initial and final Kilometre Points (KPs) 

of each segment, considering each carriageway separately on double carriageway roads. IRI values for the right-

hand lane were recorded for each carriageway. The IRI is measured in the right-hand lane where deterioration is 

higher due to higher rates of heavy vehicle circulation. IRI data were recorded for the left and the right wheel 

paths of the right-hand lane, which therefore yielded two IRI values. The mean value of both could be calculated, 

although it was decided to maintain both values with the aim of reflecting a degree of variability in the values. 

When analysing the IRI values for each 100-metre section, wide variance was observed within sections with the 

same predictive values. For example, in a homogeneous 2 km stretch with the same pavement section from the 

same project and traffic volume, the 20 IRI values of each wheel path (left and right wheel paths, considered 

separately) showed variance. Therefore, the mean IRI was calculated for both wheel paths (right and left) on each 

stretch with identical pavement structure characteristics in age and traffic volume. It is a logical and common 

approach [88, 101], as deterministic models are meant to predict the mean IRI from certain variables, unlike 

probabilistic models for which the complete range of values is considered [70].. 

There were no further PMS database variables for inclusion in the modelling process. With these variables or 

transformed variables, firstly an MLR was developed, using all the numerical variables (excluding PaveType). Then, a 

GLM was created using all the (quantitative and qualitative) variables, as shown in Figure 1. 

4. Results and Discussion 

4.1. Multiple Linear Regression Model 

After segmenting sections of the dual carriageway road network of Gipuzkoa with similar pavement structure 

characteristics, ages and traffic volumes, including flexible, semi-rigid, and composite pavements, a dataset of 119 

stretches was compiled for modelling purposes. The dependent variable in this analysis was the average IRI over the 

selected sections, while potential predictor (independent) variables included Age, RealAge, BitThick, AADT, AADT-

HV, AADTprev, AADT-HVprev, TotalVeh, and TotalHVeh. 

First, the correlations between each of the nine independent variables and the IRI were calculated using the Pearson 

correlation coefficient (R), and the significance of the correlations was then analysed (Table 1). 

Table 1. Correlations between IRI and the independent variables (Pearson coefficient, R) and significance of the correlations 

Independent Variables 
Correlation with IRI  

(Pearson coefficient, R) 

Significance of the Correlation  

(Bilateral) 

Age 0.342** < 0.001 

RealAge 0.349** < 0.001 

BitThick 0.478** < 0.001 

AADT -0.020 0.832 

AADT-HV 0.053 0.568 

AADTprev 0.020 0.827 

AADT-HVprev 0.058 0.533 

TotalVeh 0.497** < 0.001 

TotalHVeh 0.557** < 0.001 

** Significance level of correlation 0.01. 

The analysis of the correlations between the dependent variable and the various independent variables revealed some 

remarkable results. On the one hand, the strongest correlations were observed with the following variables: TotalHVeh, 

TotalVeh, BitThick, RealAge, and Age. On the other hand, variables such as AADT, AADT-HV, AADTprev, and 

AADT-HVprev yielded low correlations that were not statistically significant. It can be logically construed that high 

annual traffic volumes over a freshly laid pavement (only a few years old) will not deteriorate as much as an old 

pavement with lower annual traffic volumes [26]. 

Additionally, transformations of the variables were explored, so that the curves that best captured the relations 

between the dependent variable and each independent variable could be obtained. Table 2 shows the equations that 

generated the curves that yielded optimal fits. Nonetheless, the curves that showed superior fits were not always selected, 

since the quadratic and the cubic curves produced better fits, even though they never represented an expected pattern 

proposed in the literature, which in no case simulated experimental patterns [101]. Furthermore, in cases where the 

marginal improvement in the coefficient of determination (∆R²) from linear to other curves was negligible (∆R² < 0.05), 

the linear model was retained and the predicting variable was not transformed. 
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Table 2. Best correlations of each individual independent variable with the dependent variable 

Independent 

Variable 

Equation 

Type 
R² 

Summary of the Model Parameter Estimates 

F Sig. 
Degrees of 

freedom 1 

Degrees of 

freedom 2 
Intercept b1 b2 

Age Quadratic 0.213 15.656 <0.001 2 116 1.690 -0.066 0.010 

RealAge Quadratic 0.226 16.911 <0.001 2 116 1.717 0.071 0.010 

BitThick Lineal 0.229 34.676 <0.001 1 117 0.788 0.046  

AADT Inverse 0.015 1.796 0.183 1 117 1.564 3048.76  

AADT-HV Quadratic 0.019 1.110 0.333 2 116 1.433 4.95·10−6 1.02·10−7 

AADTprev Quadratic 0.022 1.28 0.282 2 116 1.187 5.46·10−5 9.91·10−10 

AADT-HVprev Potential 0.033 4.033 0.047 1 117 1.004 0.070  

TotalVeh Quadratic 0.274 21.907 <0.001 2 116 1.459 -0.01 5.620·10−5 

TotalHVeh Quadratic 0.331 28.682 <0.001 2 116 1.440 0.004 0.007 

As shown, various modifications can be implemented to improve the correlation between each predictor variable 

and the IRI (the dependent variable). Age and RealAge improved their correlation using a quadratic transformation 

(Age2 and RealAge2), but BitThick showed a better correlation with a linear relationship. Once again, RealAge showed 

a better correlation than Age. In the case of annual traffic volumes, there was no improvement with their correlations 

with IRI, and no significant models were obtained (except for the case of AADT-HVprev). 

Utilising transformed and untransformed variables, the influence of each factor was assessed in a multiple linear 

regression framework using step-by-step and forward functions. The MLR models were built and tested using SPSS 

Statistics software v. 28. Furthermore, if different MLR models showed global significance (if a p-value lower than 0.05 

was obtained in the Fisher-Snedecor test) and if all the variables were of significance (in Student t-tests), then they were 

explored and accepted. Table 3 presents a subset of the tested models. 

Table 3. Proposed MLR for IRI performance in flexible, semi-rigid and composite pavements in Gipuzkoa 

Proposed Model R² Comments and Observations 

IRI= Int + BitThick + TotalHVeh2 + TotalVeh2 0.451 Medium significance of TotalVeh2 (p = 0.09) 

IRI= Int + BitThick + Age2 + TotalVeh2 0.645 All variables are significant (p < 0.05) 

IRI= Int + BitThick + RealAge2 + TotalVeh2 0.649 All variables are significant (p < 0.05) 

IRI= Int + BitThick + RealAge2 + TotalVeh+ TotalVeh2 0.650 No significance of TotalVeh (p = 0.569) 

IRI= Int + RealAge + TotalHVeh2 + TotalVeh2 0.557 Low significance of TotalVeh2 (p = 0.064) 

IRI= Int + Age2+ TotalHVeh2 + TotalVeh2 0.672 All variables are significant (p < 0.05) 

IRI= Int + RealAge2+ TotalHVeh2 + TotalVeh2 0.679 All variables are significant (p < 0.05) 

IRI= Int + BitThick + RealAge2+ TotalHVeh+ TotalH Veh2 0.700 Low significance of TotalHVeh (p = 0.195) 

IRI= Int + BitThick + RealAge2+ TotalVeh+ TotalHVeh2 0.701 Low significance of TotalVeh (p = 0.165) 

IRI= Int + BitThick + Age2+ TotalHVeh2 0.696 All variables are significant (p < 0.05) 

IRI= Int + BitThick + RealAge2 + TotalHVeh2 0.696 All variables are significant (p < 0.05) 

IRI= Int + BitThick + RealAge2+ TotalHVeh2+ TotalVeh2 0.713 All variables are significant (p < 0.05) 

The summary of tested models in Table 3 shows that the variables BitThick, RealAge2, and TotalHVeh2 were always 

significant in the different models that were tested. Additionally, RealAge2 provided higher accuracy than Age2, 

highlighting the importance of knowing the exact age and introducing the precise dates of both construction (or M&R 

activities) and data collection [26]. The last two models on the list had the highest coefficients of determination, all the 

variables of which were significant. The last one, with a higher R2 (0.713), had some problems in the collinearity 

diagnosis. In particular, one Correlation Index was 16.843 and the Variance Inflation Factor of both TotalVeh2 and 

TotalHVeh2 was over 23, exceeding the usual limit of 10 for not considering multicollinearity. In fact, both variables 

were highly correlated, with a Pearson coefficient (R) of 0.974. This extremely high value was due to the small variance 

of the percentage of heavy vehicles in Gipuzkoa, which is between 3 and 10%. Consequently, it was preferred to propose 

the preceding model, of almost similar accuracy (R² = 0.696), and to verify all the hypotheses of an MLR model, as 

shown in in Equation 9: 

𝐼𝑅𝐼 = 0.772 + 0.020 · 𝑇𝑜𝑡𝐵𝑖𝑡 + 0.007 · 𝑅𝑒𝑎𝑙𝐴𝑔𝑒2 + 0.008 · 𝑇𝑜𝑡𝐻𝑉𝑒ℎ2  (9) 
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where IRI is the predicted mean IRI (m/km) value of the segment with identical variable values of age, traffic, and 

thickness of bituminous layers in flexible, semi-rigid, and composite pavements. RealAge is the actual age of the 

pavement, computed from the precise date of the road opening (or the most recent M&R activity) up until the desired 

evaluation time, expressed as a decimal fraction. BitThick is the total thickness of the bituminous layers over flexible, 

semi-rigid, and composite pavements, measured in centimetres. TotalHVeh is the cumulative number of heavy vehicles 

that have traversed the segment during the specified period, since the road was opened to traffic (or the most recent 

M&R activities) up until the desired evaluation time, expressed per million of heavy vehicles. 

The statistical results of the model described in Equation 9 are presented in Tables 4 to 6 and Figure 2. Examination 

of the model parameters in Table 4 revealed a highly significant F-test result with a p-value < 0.001, confirming the 

validity of the proposed relations. In addition, the parameter coefficients were found to be significant and different from 

zero based on Student t-tests, as evidenced by the 95% confidence intervals not including zero. The significance of the 

model is the first point to be checked in any MLR. 

Table 4. Analysis of Variance of the Equation 9 based Model and Parameter Estimates 

Source Sum of Squares d.o.f. Mean Squares F value p-Value Durbin-Watson Root Mean Square Error R 

Model 35.772 3 11.924 

87.676 < 0.001 1.075 

 0.834 

Error 15.640 115 0.136 R² Adj. R² 

Corrected total 51.412 118  0.696 0.688 

Parameter Estimates Collinearity Statistics 

Variable Parameter Estimate Std. Error t Value p-Value Lower bound Upper bound Tolerance VIF 

Intercept 0.772 0.108 7.119 <0.001 0.557 0.987   

BitThick 0.020 0.005 3.590 <0.001 0.009 0.030 0.841 1.188 

RealAge2 0.007 0.001 10.263 <0.001 0.005 0.008 0.923 1.083 

TotalHVeh2 0.008 0.001 10.787 <0.001 0.007 0.009 0.818 1.223 

Table 5. Coefficient correlation, R, between the independent variables of the model based on Equation 9 

  TotalHVeh² RealAge² BitThick 

Correlations 

TotalHVeh² 1.000 0.256 -0.385 

RealAge² 0.256 1.000 -0.196 

BitThick -0.385 -0.196 1.000 

Covariances 

TotalHVeh² 5.528·10-7 1.263·10-7 -1.560·10-6 

RealAge² 1.263·10-7 4.406·10-7 -7.082·10-7 

BitThick -1.560·10-6 -7.082·10-7 2.965·10-5 

Table 6. Collinearity diagnosis of Equation 9 

Dimension Eigenvalue 
Condition 

Index 

Proportions of the variance 

Intercept BitThick RealAge2 TotalHVeh2 

1 2.854 1.000 0.01 0.01 0.04 0.03 

2 0.781 1.912 < 0.01 < 0.01 0.46 0.27 

3 0.317 2.999 0.07 0.03 0.50 0.62 

4 0.047 7.759 0.92 0.96 0.01 0.08 

The evaluation of the Durbin-Watson statistic yielded a value of 1.249, confirming the independence of the errors 

and the absence of autocorrelation (Table 4). Furthermore, the analysis revealed no significant correlations between the 

independent variables of the model, with a low-medium Pearson coefficient (R = -0.385) between BitThick and 

TotalHVeh2 (Table 5). Besides, the Variance Inflation Factors of all the variables were low (VIF < 10) (Table 6). No 

patterns of homoscedasticity were visually discernible in Figure 2. No Correlation Index exceeded 30 (Table 6), 

suggesting that there were no multicollinearity problems and therefore an absence of multicollinearity. The residual 

analysis showed that the distribution was normal, verified by the Shapiro-Wilk test. Additionally, the plot of observed 

values versus predicted values of the model shown in Figure 3 is closely aligned with the main diagonal, indicating a 

satisfactory fit of the model. 
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Figure 2. Scatter plot of the standardized predicted values vs. standardized residuals of Equation 9 

 

Figure 3. Observed values vs. Predicted values of Equation 9 

The selected variables had a significant impact on the evolution of the IRI. Moreover, the exact influence of 

each factor can be easily inferred with the deterministic approach that was selected [87, 88]. Specifically, an increase 

in real age and accumulated heavy vehicles was associated with higher IRI values. Additionally, the exact age of 

the pavement, rather than solely time elapsed since construction, was considered critical for accurate modelling. 

Positive correlations between IRI and the variables traffic and age have been widely verified in the literature [108, 

117, 118]. The coefficient of BitThick indicated that thicker bituminous layers implied greater deterioration 

(expressed by the IRI), which could be contradictory. Higher bituminous layer thicknesses have always been 

correlated with more resistant pavements [19, 117]. However, when heavy traffic is expected on a motorway, 

stronger structural solutions are chosen, with semi-rigid being preferred to flexible pavements thanks to their greater 

load-bearing capacity. It should at this point be mentioned that semi-rigid pavements are generally designed with 

thinner bituminous layers due to the higher compressive strength and modulus of elasticity of the treated materials 

of the base and subbase layers [101, 119]. As shown, all the coefficients in Equation 9 are logical and reflect the 

influence on IRI progression, as well as being highly significant. 
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4.2. Generalized Linear Model (GLM) Including a Qualitative Variable 

While Equation 9 incorporated the bituminous layer thickness effect, different pavement materials and their potential 

influence were overlooked to achieve a single equation applicable to all pavement types. Nevertheless, it is plausible to 

infer that, in addition to layer thickness, different base materials may have a significant role in IRI progression. Indeed, 

as mentioned in the introduction, flexible, semi-rigid, and composite pavements all performed in different ways due to 

the specific compressive resistance of each base material [19, 92, 93, 101, 102, 104]. Therefore, a qualitative variable 

called PaveType was introduced in the model so as to account for the base materials and their different effects on the 

evolution of the IRI. Considering the base material, this variable was used to categorise pavement structures into flexible 

pavements (32 sections), semi-rigid pavements (71), and composite pavements (16). 

A GLM was employed due to the inclusion of a qualitative variable. Several models were then tested by combining 

the available quantitative variables (those from the previous model) with the qualitative variable, PaveType. The aim 

was only to include the significant variables, i.e., those that really influenced the progression of the IRI. Table 7 shows 

some of the numerous trials that were examined, listing those of higher accuracy. 

Table 7. Proposed GLM models for IRI performance in flexible, semi-rigid, and composite pavements in Gipuzkoa 

No. Proposed Model R² Comments and Observations 

1 IRI= Int + BitThick + RealAge2 + TotalHVeh2 + PaveType 0.781 All variables are significant (p < 0.05) 

2 IRI= Int + BitThick + RealAge2 + TotalHVeh2 + TotalVeh2 + PaveType 0.781 TotalVeh is not significant (p = 0.963) 

3 IRI= Int + BitThick + RealAge + TotalHVeh2 + PaveType 0.713 All variables are significant (p < 0.05) 

4 IRI= Int + BitThick + RealAge2 + TotalVeh2 + PaveType 0.777 All variables are significant (p < 0.05) 

5 IRI= Int + BitThick + RealAge + TotalVeh2 + PaveType 0.716 All variables are significant (p < 0.05) 

6 IRI= Int + PaveType* BitThick + RealAge + TotalHVeh 0.697 All variables are significant (p < 0.05) 

7 IRI= Int + PaveType* BitThick + RealAge + TotalHVeh + TotalVeh 0.698 TotalVeh (p = 0.588) and TotalHVeh (p = 0.331) are not significant 

8 IRI= Int + PaveType* BitThick + RealAge + TotalHVeh2 0.708 All variables are significant (p < 0.05) 

9 IRI= Int + BitThick + PaveType* RealAge2 + TotalHVeh2 + TotalVeh2 0.750 No significance of BitThick (p = 0.918) 

10 IRI= Int + PaveType* BitThick + RealAge2+ TotalVeh 0.753 All variables are significant (p < 0.05) 

11 IRI= Int + BitThick + PaveType*RealAge + TotalHVeh2 0.675 No significance of BitThick (p = 0.155) 

12 IRI= Int + PaveType*BitThick + RealAge2 + TotalVeh2 0.763 All variables are significant (p < 0.05) 

13 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh 0.769 All variables are significant (p < 0.05) 

14 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 0.773 All variables are significant (p < 0.05) 

15 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh + TotalVeh 0.770 No significance of TotalVeh (p = 0.466) 

16 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh + TotalVeh2 0.771 No significance of TotalVeh2 (p = 0.322) 

17 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 + TotalVeh 0.773 No significance of TotalVeh (p = 0.692) 

18 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 + TotalVeh2 0.773 No significance of TotalVeh2 (p = 0.618) 

19 IRI= Int + PaveType*BitThick + RealAge2+ PaveType*TotalHVeh2 0.774 All variables are significant (p < 0.05) 

20 IRI= Int + PaveType*BitThick + RealAge2 + PaveType*TotalHVeh2 + TotalVeh2 0.775 
No significance of TotalVeh2 (p = 0.438), medium significance of 

PavType*TotalH.Veh2 (p = 0.115) 

21 IRI= Int + PaveType*BitThick + PaveType*RealAge + TotalHVeh2 0.776 All variables are significant (p < 0.05) 

22 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + TotalHVeh2 0.788 All variables are significant (p < 0.05) 

23 IRI= Int + PaveType*BitThick + PaveType* RealAge2 + TotalHVeh2 + TotalVeh2 0.789 No significance of TotalVeh2 (p = 0.488) 

24 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + PaveType*TotalHVeh2 0.790 All variables are significant (p < 0.05) 

25 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 + PaveType 0.786 All variables are significant (p < 0.05) 

26 IRI= Int + BitThick + PaveType*RealAge2 + TotalHVeh2 + PaveType 0.795 All variables are significant (p < 0.05) 

27 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + TotalHVeh2 + PaveType 0.800 All variables are significant (p < 0.05) 

28 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + PaveType*TotalHVeh2 + PaveType 0.808 All variables are significant (p < 0.05) 

In Table 7, the summary of the models that were tested merits some reflection. If only one of the variables, TotalVeh2 

or TotalHVeh2, was included, then the model was significant when the qualitative variable was introduced even though 

it was not combined with any quantitative variables (models 1-5). As with the MLR models, RealAge2 achieved a better 

R2 than RealAge. When PaveType was combined with the quantitative variables, all the variables of the models were 
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significant including the combination PaveType*BitThick, (models 6, 8, 10, and 12-14), given that only one traffic 

variable was included. Models with both traffic volume variables showed non-significant variables (model 7, 15-18, 20 

and 23). A result that underlines the strong correlation between the two variables, as commented in the MRL section. It 

can be concluded that the pavement type is directly related to the bituminous thickness, as shown in the pavement design 

guides [84, 85, 100, 111]. However, when PaveType was only combined with RealAge (PaveType*RealAge), BitThick 

became insignificant (models 9 and 11 of Table 7). Finally, the qualitative variable can be combined with two 

quantitative variables, obtaining a higher determination coefficient (R2) (models 19, 21, and 22) and even higher when 

combined with three quantitative variables (model 24), as long as TotalVeh and TotalHVeh were not included together. 

Additionally, good results were obtained when PaveType was introduced as a separate variable and combined with 

quantitative variables (models 25-28). 

The choice of the proposed model, in which all the variables were significant, was between the best solutions for 

each type of model that was developed: 

• Without combining the qualitative variables with the quantitative ones (model 1); 

• Combined with one, BitThick (model 14); 

• Combined with two quantitative variables (model 22); 

• Combined with three (model 24); 

• Separately included and combined with other quantitative variables (models 25-28). 

The coefficient of determination was at that point yet to be employed as a unique index for model selection. In 

general, models with more variables obtained higher accuracy levels (R2) (as long as all the variables were significant). 

However, the adjusted R2 (Adj. R2) index takes into account the obtained R2 and the number of variables used. The 

adjusted factors of the preselected models are presented in Table 8. Furthermore, in addition to the fact that all the 

variables were significant, the model shown in Table 8 was preferred, in which all the coefficients of each variable were 

also significant. 

Table 8. Adjusted R2 and significance of all the coefficients of the pre-selected models for GLM 

No. Proposed Model R² Adj. R2 Comments and Observations 

1 IRI= Int + BitThick + RealAge2 + TotalHVeh2 + PaveType 0.781 0.771 All coefficients significant (p < 0.001) 

14 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 0.773 0.763 All coefficients significant (p < 0.012) 

22 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + TotalHVeh2 0.788 0.775 All coefficients significant (p < 0.041) 

24 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + PaveType*TotalHVeh2 0.790 0.772 
The coefficient of [PaveType=Composite]*TotalHVeh2 

is not significant (p = 0.936) 

25 IRI= Int + PaveType*BitThick + RealAge2 + TotalHVeh2 + PaveType 0.786 0.775 
The coefficient of PaveType=Semi-rigid]* BitThick is 

not significant (p = 0.815) 

26 IRI= Int + BitThick + PaveType*RealAge2 + TotalHVeh2 + PaveType 0.795 0.782 All coefficients significant (p < 0.038) 

27 IRI= Int + PaveType*BitThick + PaveType*RealAge2 + TotalHVeh2 + PaveType 0.800 0.785 Two coefficients not significant (p > 0.275) 

28 
IRI= Int + PaveType*BitThick + PaveType*RealAge2 + PaveType*TotalHVeh2 

+ PaveType 
0.808 0.790 Three coefficients not significant (p > 0.164) 

As shown in Table 8, models 24, 25, 27, and 28 were rejected because at least one of the coefficients was not 

significant. Among the remaining models (models 1, 14, 22, and 26), model 26 had a higher R² (0.795) and a higher 

adjusted R² (0.782). Finally, both model 1 and model 26 (Table 8) were proposed. Model 1 was chosen because of its 

simplicity. The qualitative variables were directly introduced into the model with no need to combine them, and the 

same variables that appear in Equation 9 were used. Model 1 is shown in Equation 10: 

𝐼𝑅𝐼 = 1.904 − 0.038 · 𝑇𝑜𝑡𝐵𝑖𝑡 + 0.007 · 𝑅𝑒𝑎𝑙𝐴𝑔𝑒2 + 0.006 · 𝑇𝑜𝑡𝐻𝑉𝑒ℎ2 + 𝑃𝑎𝑣𝑒𝑇𝑦𝑝𝑒  (10) 

where BitThick, RealAge, and TotalHVeh are defined in Equation 9 and PaveType is a variable that takes into account 

the pavement type according to the base material and takes the values listed in Table 9: 

Table 9. Values of the variable PaveType in Equation 10 

Pavement Type Base Material PaveType 

Flexible pavement Granular material 0.807 

Semi-rigid pavement Treated material 0 

Composite pavement Concrete -0.739 
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Model 26 is presented in Equation 11: 

𝐼𝑅𝐼 = 2.054 − 0.042 · 𝑇𝑜𝑡𝐵𝑖𝑡 + A · 𝑅𝑒𝑎𝑙𝐴𝑔𝑒2 + 0.006 · 𝑇𝑜𝑡𝐻𝑉𝑒ℎ2 + 𝑃𝑎𝑣𝑒𝑇𝑦𝑝𝑒  (11) 

where BitThick, RealAge, and TotalHVeh are defined in Equation 9, A and PaveType are coefficients that take into 

account the pavement type based on the base material, with the values given in Table 10. 

Table 10. Values of the variables A and PaveType in Equation 11 

Pavement Type Base Material A PaveType 

Flexible pavement Granular material 0.008 0.709 

Semi-rigid pavement Treated material 0.005 0 

Composite pavement Concrete 0.004 -0.664 

The model based on Equation 10 was statistically analysed, as shown in Tables 11 and 12 and Figures 4 to 5. The 

new model, including the pavement type, improved its predictive accuracy, with a coefficient of determination (R² = 

0.781) that was higher than the previous model (Equation 9). The test of the Between-Subjects effect of Equation 1 is 

presented in Table 11, in which all the variables had a very high significance, with a p-value lower than 0.001. 

Furthermore, Table 12 presents the coefficients of the model, i.e., the estimates of the parameters, which again show a 

very high significance (p-values < 0.001). No coefficient was therefore zero with a confidence level higher than 99.99%. 

The extremely high significance levels of all the coefficients clearly demonstrate the adequacy of the selected variables 

for modelling, reflecting their importance in the IRI evolution. The dispersion graph of the variance by level in Figure 

3 shows that the points are not horizontally aligned, meaning non-homogeneous variances between the levels of 

PaveType, which is a key characteristic that must be verified in GLM regression equations [21]. The plot of predicted 

values against the standardised residuals in Figure 5 was random (no patterns observed), so the residuals showed no 

interdependence. This point must also be checked in a GLM equation. Besides, in Figure 6, the observed and the 

predicted IRI values were close to the main diagonal, highlighting the high accuracy of the model. 

Table 11. Test of Between-Subjects effects of the model based on Equation 10 

Origin 
Type III sum 

of squares 
d.o.f. Mean Square F Sig. 

Non-Centrality 

Parameter 

Corrected model1 40.129 5 8.026 80.379 < 0.001 401.895 

Intercept 9.451 1 9.451 94.650 < 0.001 94.650 

BitThick 1.433 1 1.433 14.350 < 0.001 14.350 

RealAge2 14.839 1 14.839 148.617 < 0.001 148.617 

TotalHVeh2 5.971 1 5.971 59.796 < 0.001 59.796 

PaveType 4.357 2 2.179 21.818 < 0.001 43.636 

Error 11.283 113 0.100    

Total 410.248 119     

Corrected total 51.412 119     

R² = 0.781 (adjusted R² = 0.771). 

Table 12. Parameter estimates for the model based on Equation 10 

Parameter B 
Std. 

Error 
t Sig. 

95% CI Non-Centrality 

Parameter 

Observed 

Power Lower bound Upper bound 

Intercept 1.904 0.201 9.476 < 0.001 1.506 2.302 9.476 1.000 

BitThick -0.038 0.010 -3.788 < 0.001 -0.058 -0.018 3.788 0.964 

RealAge2 0.007 0.001 12.191 < 0.001 0.006 0.009 12.191 1.000 

TotalH.Veh2 0.006 0.001 7.733 < 0.001 0.004 0.007 7.733 1.000 

[PaveType =Flexible] 0.807 0.127 6.342 < 0.001 0.555 1.059 6.342 1.000 

[PaveType = Composite] -0.739 0.145 -5.082 < 0.001 -1.028 -0.451 5.082 0.999 

[PaveType = Semi-rigid] 0 a        

a Set to zero because this parameter is redundant. 
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Figure 4. Scatter plots of the variance by level for Equation 10 

 

Figure 5. Plot of residuals (standardized), observed and predicted values of the model based on Equation 10 
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Figure 6. Observed values vs. Predicted values with Equation 10 

Tables 13 and 14 and Figures 7 to 9 show the statistical analysis of the model based on Equation 11. 

Table 13. Test of Between-Subjects effects of the model based on Equation 11 

Origin 
Type III sum of 

squares 
d.o.f. 

Mean 

Square 
F Sig. 

Non-Centrality 

Parameter 

Observed 

Power 

Corrected model1 40.862 7 5.837 61.422 < 0.001 429.952 1.000 

Intercept 10.068 1 10.068 105.931 < 0.001 105.931 1.000 

BitThick 1.726 1 1.726 18.159 < 0.001 18.159 0.988 

PaveType*RealAge2 15.573 3 5.191 54.619 < 0.001 163.856 1.000 

TotalHVeh2 6.467 1 6.467 68.042 < 0.001 68.042 1.000 

PaveType 3.117 2 1.558 16.397 < 0.001 32.794 1.000 

Error 10.549 111 0.095     

Total 410.248 119      

Corrected total 51.412 118      

R² = 0.795 (adjusted R² = 0.782) 

Table 14. Parameter estimates for the model based on Equation 11 

Parameter B Std. Error t Sig. 
95% CI Non-Centrality 

Parameter 

Observed 

Power Lower bound Upper bound 

Intercept 2.054 0.205 10.005 < 0.001 1.647 2.461 10.005 1.000 

BitThick -0.042 0.01 -4.261 < 0.001 -0.062 -0.023 4.261 0.988 

[PaveType=Flexible]*RealAge2 0.008 0.001 12.174 < 0.001 0.007 0.010 12.174 1.000 

[PaveType=Semi-rigid]*RealAge2 0.005 0.001 3.082 0.003 0.002 0.007 3.082 0.863 

[PaveType=Mixed]*RealAge2 0.004 0.002 2.102 0.038 0.0002 0.008 2.102 0.549 

TotalHVeh2 0.006 0.001 8.249 < 0.001 0.005 0.007 8.249 1.000 

[PaveType=Flexible] 0.709 0.132 5.372 < 0.001 0.447 0.970 5.372 1.000 

[PaveType=Semi-rigid] 0 a        

[PaveType=Mixed] -0.664 0.189 -3.514 < 0.001 -1.038 -0.289 3.514 0.936 

a Set to zero because this parameter is redundant 
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Figure 7. Scatter plots by level of variance for Equation 11 

 

Figure 8. Plot of observed (standardized) residuals, and predicted values of the model based on Equation 11 
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Figure 9. Observed values vs. Predicted values with Equation 11 

Table 13 presents the Between-Subject effects test for the model based on Equation 11, with all the variables showing 

high levels of significance, as indicated by their respective p-values all below 0.001. Moreover, the individual 

significance of each parameter (Table 14) was also considerable, with the highest p-value at 0.038. It indicated that not 

all the coefficients were equal to zero with a 96.2% confidence level. Once again, these high significances confirmed 

that the right variables had been chosen for accurate modelling of pavement deterioration. Figure 7 illustrates the 

dispersion diagrams by level, offering a visual representation of the variance homogeneity. The absence of horizontal 

alignment between the points in Figure 7 means that the variances are not equal. There was therefore no identifiable 

relationship between the respective sizes of the means and the variance. It can be observed in Figure 8 that the plot of 

predicted values versus standardised results was random, lacking any discernible pattern. Additionally, the errors were 

homogeneous, as evidenced by the similar dispersion of the standardised residuals across all predicted values. Figure 9 

depicts a plot of predicted values versus observed values, with all the points situated close to the main diagonal, reflecting 

the high accuracy of the presented model. 

The proposed models (Equations 10 and 11) serve to reinforce the idea that the pavement type, whether flexible, 

semi-rigid or mixed, is a fundamental variable for the creation of a global pavement performance prediction model. The 

disparate behaviour of the models under traffic loads is reflected in the enhanced accuracy of both models, with R² 

values of 0.781 and 0.795, in comparison with the model without PaveType, Equation 9 (R² = 0.696). Indeed, the 

variables that significantly influenced the IRI progression were capable of developing IRI prediction models of high 

accuracy [87, 101]. An individual analysis of Equation 10 underlined that conclusion because the variable PaveType 

was separately included, rather than in combination with quantitative variables. In that model, the coefficients of the 

quantitative variables were an exact reflection of their effect on the dependent variable (IRI). The coefficients for 

RealAge and TotalHVeh were positive, indicating that higher values resulted in greater pavement deterioration, as with 

other models in the literature [19, 118]. Conversely, the coefficient of BitThick was negative, thereby confirming the 

hypothesis that thicker pavement layers require more time (or loads) before deterioration leads to damage. Generally, 

there was a negative correlation between bituminous thickness and IRI, as indicated in previous studies [117, 118]. 

Besides, the values of PaveType indicated which pavement type showed better performance. If the same values were 

maintained for all the remaining variables (BitThick, RealAge, and TotalHVeh), the IRI value of the mixed pavements 

would be superior, with a difference of 0.74 m/km when compared to a semi-rigid pavement and more than 1.5 m/km 

when compared to a flexible pavement. These coefficients were logical and in accordance with the anticipated 

deterioration rate of pavements in accordance with the base material. Treated cement base materials show higher elastic 

moduli than untreated materials [101, 119] but lower than concrete in composite pavements [120, 121]. It was also 

noteworthy that the coefficients associated with each variable in Equation 10 were highly similar to those established 

for Equation 9. Thus, the improved accuracy was due to the introduction of PaveType, which also minimally adjusted 

the values of the other coefficients. 
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The analysis of Equation 11 yielded analogous findings. The positive coefficient associated with TotalHVeh and 
RealAge indicated a positive contribution to the IRI, whereas the negative coefficient associated with BitThick indicated 
a contribution to longer-lasting pavements. The coefficients follow the logical trend presented for Equation 10. 

Similarly, the coefficients associated with the qualitative variable illustrate the disparate performance of each pavement 
type. The values of PaveType in Equation 11 showed the same nature (positive or negative) as in Equation 10, with 
highly similar values. Furthermore, all the values of A were positive, indicating that the age of the pavement has a 
deteriorating effect on its performance. However, all those coefficients also demonstrated that the same quantity of 
heavy vehicles had the most detrimental effect on flexible pavements and the least detrimental on mixed pavements, in 
correspondence with the different modulus of elasticity of each material. 

Unlike ML and ANN models, the exact influence of each factor in the model can be determined with the deterministic 
approach, which results in an equation that shows the exact relationship between the independent variable and the 

dependent variables. Although lower accuracy levels are generally obtained with deterministic models, the equations 
presented in this research demonstrate high determination coefficients, underlining that a transferable equation can 
forecast IRI progression with sufficient levels of accuracy. 

It must be noted that the proposed models in no way suggest optimal M&R interventions; they can nevertheless be 
used to predict future pavement conditions based on projected traffic volumes over coming years. It means that the IRI 
values may be anticipated over a previously established threshold, and future expenditure can therefore be foreseen. 
Moreover, various repair strategies were implemented on the selected stretches of road, which were used for modelling. 
So, the models were capable of capturing various M&R activities which are usually carried out in the region. The 

evaluation of various future repair strategies may therefore be analysed. 

Finally, the proposed models offer the added benefit of requiring only three or four input variables—pavement age, 

cumulative traffic volumes, and bituminous layer thickness—which are typically collected by highway agencies. In 
comparison to models such as the MEPDG, developed by AASHTO [84, 85, 100], which require up to nine input 
variables, our models are more efficient, easier to implement, and deliver higher accuracy. The data collected in 
Gipuzkoa could not be evaluated using the MEPDG models because most of the required variables were not available 
in the PCG’s Pavement Management System (PMS). This limitation was one of the main reasons the PCG needed to 
develop its own customized models. Moreover, our models could not be applied to data from other regions in Spain due 

to the lack of IRI (International Roughness Index) values for freeways. As previously mentioned, very few models exist 
for predicting IRI evolution on motorway lanes, and no other highway agencies were able to provide the specific data 
needed for applying our models. 

5. Conclusion 

Pavement performance models have become a key element of any Pavement Management System (PMS), due to 
their ability to predict future pavement conditions as a function of some known (or estimated) values. All highway 
agencies therefore need to further the development and practical use of a PMS. The Provincial Council of Gipuzkoa 

(PCG) manages the entire interurban road network in the province of Gipuzkoa, Spain, including the motorways 
(freeways) connecting to other regions and to France. The PCG PMS includes annual traffic volumes and the pavement 
structure obtained from the original and the M&R projects. International Roughness Index (IRI) data are collected 
throughout the network to assess pavement conditions. On dual carriageways, such as motorways, IRI values are 
collected on the right-hand lane of each carriageway, the most heavily trafficked lane, on both the right and left wheel 
paths. The literature review has shown that very few models have been proposed for motorways. Moreover, those models 

have generally been developed for a specific pavement type: either flexible, or rigid, or semi-rigid, or composite 
pavements. A deterministic approach to pavement deterioration modelling has therefore been followed on the basis of 
the available information.  

A deterministic IRI performance prediction model of sufficient accuracy with fewer variables than other more 
complex models has been developed in this study. The models have been used to predict the future IRI for the right-
hand lanes of motorways with the three above-mentioned pavement types within Gipuzkoa: flexible, semi-rigid, and 
composite pavements. Firstly, a simple multiple linear regression model was proposed based on only three variables, 
including pavement age, the total number of heavy vehicles passing through the section, and the total thickness of the 

bituminous layers, achieving a coefficient of determination (R²) of 0.696. Introducing an additional qualitative variable, 
pavement type (including the three available types), the accuracy increased, and two more generalised linear models 
were presented. Using those four variables, R² of 0.781 and 0.795 were obtained. As can be seen, this accuracy exceeds 
the accuracy of MEPDG models specified in the AASHTO [84-85, 100], which require nine variables. 

Furthermore, deterministic models directly show the exact relationships between the variables. Thus, the signs of 
the coefficients of the variables underline the effect of each one upon changes to the IRI. Pavement age and the total 
number of heavy vehicles contributed to higher rates of deterioration (observed as higher IRI values), and the thickness 
of the bituminous layers helped to reduce deterioration. The variable ‘pavement type’ clearly showed the different 

behaviour of the pavements. All other variables being equal, composite pavements had lower IRI values, while flexible 
pavements had greater deterioration. Semi-rigid pavements acted as an intermediate value between both types. The 
models reflected the different load distributions and, hence, the different performance levels and behaviours, which in 
turn underlined their validity. 
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