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Abstract 

Stress concentration factors (SCFs) are often calculated using formulas based on experimental testing and finite element 

analysis (FEA). While maximum SCF could occur at any location along the brace axis of the tubular T-joint’s brace, only 

the SCFs at the crown and saddle points can be determined from the available formulae, which can result in imprecise 

fatigue life determination. The current study presents a methodology to determine the SCFs in T-joints using FEA and 

ANN. ANNs are more effective than conventional data-fitting techniques at modelling intricate phenomena. In this work, 

parametric equations to estimate the SCFs of the T-joint’s brace under compressive loading were developed. Utilizing 

parametric equations allows for rapid estimates of SCFs, in contrast to time-consuming FEA and expensive testing. The 

equations are based on an artificial neural network’s training weights and biases (ANN). 625 finite element simulations 

were performed on tubular T-joints with various dimensions under compressive loads to determine the SCFs at the brace 

of the T-joint. These SCFs were then used to train an ANN. The weights and biases of the ANN were subsequently used 

to derive equations for calculating SCFs based on dimensionless parameters. The equations can estimate the SCF of a T-

joint brace with less than 7% error and a root mean square error (RMSE) of less than 0.19. 

Keywords: Artificial Neural Network; Brace Side SCF; Compressive Loads; Fatigue Design; T-Joint. 

 

1. Introduction 

A prevalent form of structural failure in offshore construction is fatigue failure [1], which is frequently caused by 

cyclic stresses that reoccur [2]. A crucial part of designing offshore structures is figuring out how long each joint will 

last due to repeated cyclic loads. The fatigue life of each component has a major effect on overall durability and 

performance. Consequently, precise calculation of the fatigue life for each element is crucial for maintaining the 

structural integrity and durability of the complete offshore assembly [3]. 

Generally, these constructions are fabricated using circular hollow section (CHS) tubular members. Aside from CHS, 

there are various other types of hollow sections, such as Square Hollow Sections (SHS), Rectangular Hollow Sections 

(RHS), and hybrid sections like CHS-RHS, CHS-SHS, and RHS-SHS [4-8]. CHS are preferred due to their exceptional 
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bending strength, resistance to buckling in any direction, high strength-to-weight ratio, and minimal wave resistance [9]. 

The tubular joint comprises branching elements, referred to as braces, and the main structural element, chord [3]. The 

T-joint configuration with a brace perpendicular to the chord is shown in Figure 1. 

 

Figure 1. T joint configuration 

S-N curves from design codes are used to compute the number of cycles (N) before fatigue failure once the maximum 

stress or hotspot stress (HSS) is known [10-15]. The HSS requires precise SCF calculations. Accurately predicting the 

number of cycles before the fatigue failure ensures the long-lasting durability and reliability of these structures. The 

calculation of SCFs involves complex relationships due to their dependence on various factors, such as the shape of the 

joint, the magnitude of the applied stress, the size and type of the weld, and the distance from the weld. ANNs can be 

used to develop parametric equations to account for the non-linear relationship of these factors, leveraging large datasets 

for enhanced accuracy. Despite five decades of intensive research, the design codes’ accessible equations address the 

SCF equations only at two points: the saddle and the crown [16-22]. This may lead to incorrect calculations of fatigue 

cycles due to the potential occurrence of hotspot stress between these two sites [23]. 

The multidirectional attributes of the sea impose multiaxial stresses on offshore structures, resulting in the presence 

of HSS at locations other than the saddle and crown [24]. Gulati et al. [25] advocated for the calculation of HSS by 

integrating stresses from all axes. This methodology is deemed accurate and comprehensive [24] by the UEG [21] and 

the API [26].  

The fatigue life is typically assessed using experimentation and finite element analysis. The numerical model is 

normally validated experimentally, which is expensive. FEA is utilized for additional analysis and to derive numerical 

equations. These equations provide the SCF values, which, along with nominal brace load, are used to calculate the HSS 

and, eventually, the fatigue life through the design codes’ S-N curve. In the past 35 years, several parametric models 

have been developed to determine SCFs for tubular joints [16–22]. The Lloyd’s Register (LR) [18] extensively assessed 

mathematical equations for offshore connections developed in the past five decades [16–22]. The equations were derived 

through an empirical investigation of tubular joints. The LR equations [18] minimize the difference between the actual 

and estimated SCF for two positions only (saddle & crown). 

Efthymiou [22] presented SCF equations for two positions only (saddle and crown) for KT, X, T, Y, and K joints 

that are presently employed in the API [26], DNV [27] and ISO-19902 [28]. However, they result in frequent 

underpredictions, as they are based on mean fitness [18]. The equations by Wordsworth/Smedley (W/S) from the acrylic 

material tubular joints without fillet weld address the SCF for the same two positions only [18]. The UEG equations 

[21] were derived from the W/S and Wordsworth equations by incorporating an adjustment to account for joints 

characterized by β (>0.6) and high γ (>20) values. These equations [21] were produced through least squares curve 

fitting, resulting in conservative SCFs [18]. Additionally, Vinas-Pich [24] found that the stress distribution equations of 

the UEG [21] are not accurate enough for the entire brace-chord junction.  

Kaung et al. [19] formulated equations to calculate the SCFs of KT, K, T, and Y joints using a finite element model. 

The equations were formulated based on statistical analysis of data obtained from examining FE joints. Precise 
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localization of the stress hotspot surrounding the weld is not possible; instead, it is classified as either chord-side or 

brace-side. The SCFs are likely to be underestimated for extended chord lengths, as Kuang generally employed joints 

with shorter chord lengths. [18]. Smedley and Fisher [16] developed equations for joints (T, X, Y, KT, and K), although 

the equations are not applicable for calculating the SCF around the intersection.  

While stress distribution along the weld line of the tubular joint is important [29-33], most research has concentrated 

on finding the SCF at the saddle and crown locations. In this work, the SCF of a T-joint’s brace under compressive load 

is modeled using Artificial Neural Networks (ANNs). ANNs are a successful tool for approximating complex 

phenomena, as demonstrated in previous studies [34, 35], and can generate comprehensive and precise predictions [23, 

29, 36, 37]. It offers several advantages, such as its capacity to accurately approximate universal functions, perform 

parallel data processing, and successfully manage nonlinearity [29, 36]. The calculation of SCFs involves complex non-

linear relationships due to their dependence on various factors, such as the shape of the joint, the magnitude of the 

applied stress, the size and type of the weld, and the distance from the weld. Parallel processing with ANNs can expedite 

this process, while their ability to learn from large datasets enhances accuracy and is particularly well-suited for these 

requirements. 

2. Research Methodology 

The Design of Experiment (DoE) dataset was simulated using ANSYS [38]. The results from the DoE were 

subsequently transferred to MATLAB [39]. The nntool program of MATLAB was employed to construct a neural 

network model. The parameters were taken as input, while the SCF was the output. The model was trained in nntool, 

and weights and biases were used to derive mathematical formulas for SCFs. 

For ANN-based mathematical modelling, the first step is to determine the input parameters range. Following this 

step, design combinations are established, and then, FEA is performed. In the end, the equations are constructed by the 

outputs of the ANN. The methodology of this concept is depicted in Figure 2. The DOE was generated using a range of 

design factors frequently employed in offshore structures and modelled using Finite Element Analysis (FEA). The 

results were imported into MATLAB [39] to construct a neural network model. The equations were later formulated 

using the weights and biases from the ANN as acquired through MATLAB [39]. These stages are explained in depth in 

the following subsections. 

 

Figure 2. Flow diagram for ANN-based SCF modelling 

2.1. Finite Element Modelling 

Incorporating both dimensionless and dimensional parameters, finite element modelling of T-joints was conducted 

using ANSYS 2021 [38] and CREO 5.0 [40]. The models were built based on DOE in CREO [40] and further improved 

in ANSYS [38]. ANSYS 2021R1 software was utilized to determine stress concentration factors in tubular joints through 

linear elastic static analysis [41, 42]. 
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2.2. Parametric Modelling 

The tubular T-joint was modelled utilizing CREO 5.0 [40]. The T-joint models (Figure 1) were developed through 

parametric equations, integrating parameters as variables. The parametric modelling accelerated the regeneration process 

for the subsequent iteration. 

α =2L/D (1) 

β = d/D (2) 

γ = D/2T (3) 

τ = t/T (4) 

αb =2l/d (5) 

where L, D, and T are the length, diameter, and thickness of the chord, respectively, and t, l and d are the thickness, 

length and diameter of the brace, respectively (Figure 1). 

Parametric modelling allowed for the rapid and effective modification of the model based on the DoE. The creation 

of sub-zone meshing, as illustrated in Figure 3, was achieved through sub-components-based modelling. 

2.3. Weld Profile 

A proper evaluation of the Stress Concentration Factor (SCF) requires an accurate weld profile. AWS D 1.1 standard 

[43] was followed for weld dimensions. The weld profile adhered to full joint penetration (CJP) weld profiles [44] 

outlined by AWS D 1.1 and discussed in detail by Lotfollahi-Yaghin et al. [31]. Residual stresses are minimized through 

post-heating after fabrication, which helps reduce welding-induced stresses in tubular joints [45]. 

2.4. Material Model 

The characteristics of the steel material for the T-joint were derived from the experimental test results conducted by 

Masilamani & Nallayarasu [46] and are presented: Yield stress 300 MPa; Ultimate stress 415 MPa; Young’s modulus 

207.9 GPa; Poisson’s ratio 0.29. 

2.5. Meshing 

A finer mesh size was utilized for areas of high concentration, whereas a coarser mesh size was employed for areas 

of lower concentration. The sub-components were individually meshed (refer to Figure 3), and rigid contacts in ANSYS 

[38] were utilized to establish their connection. 

 

Figure 3. Mesh created in ANSYS 2021 for a T-joint’s FEA analysis [38] 

A mesh sensitivity study was initially conducted to evaluate the accuracy and efficiency of the FE model, offering 

direction for the optimized mesh before finalizing the FEA models. 
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2.6. Boundary Conditions and Loads 

The load magnitudes were chosen such that the deformation is within the linear elastic region [47]. The chord’s end 

faces were fixed, and a 10 MPa stress was exerted at the top face of the brace. Keeping the stresses in the DoE’s weakest 

joint below the elastic limit was the deciding factor in selecting this stress. Figure 4 displays the boundary conditions 

and applied axial load. 

 

Figure 4. Boundary conditions and axial load 

2.7. SCF Calculation 

To automate stress determination and extrapolation, a Python code was incorporated into ANSYS. This code 

retrieves the stress and positional coordinates of the reference locations and calculates the stress at the weld toe by linear 

extrapolation. The Python script measures the von Mises stresses at 0.4*t and 1.4*t from the weld toe (where t is the 

thickness of the brace) and then extrapolate it. The extrapolation region was partitioned into 48 equidistant segments 

from 0̊ to 360.̊ This division allows for stress measurements at a 15̊ angle relative to the axis of the brace. Twenty-four 

sites were chosen to assess stress around the brace axis, as illustrated in Figure 5. 

𝑆𝐶𝐹 =
σℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑡𝑟𝑒𝑠𝑠

σ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠
⁄   (6) 

The extrapolation points and the extrapolation procedure, as shown in Figure 5, followed the guidelines of IIW-XV-

E-(1999) [48]. 

 

Figure 5. Extrapolation points and the linear extrapolation [48] 

The length of the brace has no impact on the SCF, given that the ratio αb (where αb = 2 l/d) is above a crucial threshold 

(Chang et al. [24]). So, to exclude it from the parametric study, the brace length was set to 1000mm for the DOE. 
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2.8. Design Parameters and Their Ranges 

The parametric equations to build the model employ the design variables as a mathematical function. Typical ranges 

of dimensionless parameters usually employed in offshore structures were selected for design variables. 

2.9. Design’s Dataset for DoE 

Two phases were involved in the development of the DoE design dataset. Firstly, all possible combinations were 

made for the parameter’s entire ranges. Due to the enormous number of possible combinations, a partial factorial design 

was utilized to restrict the number of simulations that were performed, with five distinct values assigned to each 

parameter. For each variable, e.g., α, all possible combinations were made with five different values of other variables 

(β,γ and τ). The partial factorial design resulted in 625 design points, which were simulated for DoE. The entire range 

of variables was modelled in Creo 5.0 [40] for physical filtering to ensure that none of them created an error in the 

regeneration of the T-joint. The parametric modelling facilitated rapid and efficient model regeneration. 

2.10. MATLAB nntool for ANN Modelling 

The MATLAB nntool was used for modelling with artificial neural networks (ANN), which are based on the 

universal approximation theorem. According to this theorem, a neural network provided with certain inputs is capable 

of approximating continuous functions [49]. To determine the brace’s Stress Concentration Factor (SCF) under 

compressive loads, this research combined ANN and FEA to build empirical equations. The dimensionless parameters 

and the SCFs were the input and output data for MATLAB [39], respectively. These datasets were then imported into 

the nntool package in MATLAB to generate a neural network. Due to its efficient second-order convergence rate [29, 

36, 49-51], the Levenberg–Marquardt backpropagation method was employed for supervised learning. Figure 6 

illustrates the design of a typical neural network. Two inputs, three neurones, and two outputs are represented in the 

input, hidden, and output layers, respectively. 

 

Figure 6. Typical ANN model 

The designated input and output data were used to train the ANN. Equation 7 is used in the hidden layers, and 

Equation 8 is the linear transfer function in the input and output layers. To evaluate the ANN’s ability to generate 

outcomes that were very consistent with the training data, the R2 value of the model was utilized. The R2 value ranges 

from 0.0 to 1.0 and indicates the correlation between the training data points and the ANN plot’s regression line. 

Correlation is considered strong when the R2 value is high. 

𝑎(𝑥) =
2

(1+𝑒−2𝑥)−1
  (7) 

f(𝑥) = 𝑥 (8) 

2.11. Formulation of Mathematical Model 

The ANN’s biases and weights were used to obtain the equations. An ANN is represented by a matrix in Equations 

9 and 10. Neurons in the next hidden layer (ℎ 𝑛𝑥) are linked to the inputs (𝑖𝑝𝑥) by weights (𝑊𝑊𝑥). An activation 

function A(x) is applied after multiplying the values by their respective weights and adding them together. A hidden 

layer neuron receives input from the cumulative total up to the output layer, and the output is then mixed with a bias 
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value (Bx). 

[
ℎ𝑛1
ℎ𝑛2

] =  [
𝑊1 𝑊3 𝑊5
𝑊2 𝑊4 𝑊6

] [

𝑖𝑝1
𝑖𝑝2
𝑖𝑝3

] + [
𝐵1
𝐵2

]  (9) 

[𝑜𝑝] =  [𝑊7 𝑊8] [
ℎ𝑛1
ℎ𝑛2

] + [𝐵3]  (10) 

3. Results 

3.1. Establishment of the Precise Ranges of Design Parameters 

The geometry of the T-joint is defined by parameters (Figure 1). To build a DoE that meets the standards for offshore 

structures, these parameters and their ranges were chosen [18, 52]. The variable ranges are presented in Table 1. The 

simulation dataset included 625 design points. 

Table 1. Parameters and their corresponding ranges 

Sr.No. Type of parameter Parameter Range References 

1 

Dimensionless 

α 8-40 

[18, 52] 

2 β 0.3-0.7 

3 γ 12-28 

4 τ 0.4-1 

5 

Dimensional 

ϴ 90 ̊  

6 D 300mm 

7 l 1000mm 

Table 2 presents the results of the sensitivity analysis. The experimental and FEA results were compared for 

sensitivity analysis. A mesh of 16757 elements was used after the sensitivity analysis. 

Table 2. Mesh sensitivity analysis 

The FEA model was validated using HSE OTH 354 experimental results for the T-joint UKOSRP II T215 [18]. The 

joint’s geometric parameters were the same as those of the experimental test model (Table 3).  

Table 3. Chord diameter and the other geometrical parameters used for the validation 

Reference joint D (mm) α β γ τ 

UKOSRP II joint T215 [18] 914 5 0.5 14.3 0.5 

For validation purposes, Table 4 compares the FEA results with the experimental test results [18], the American 

Petroleum Institute (API) [26], and the LR equations [18]. Table 4 presents the percentage error among the experimental 

test results and those derived from the LR equations [18], API equations [34], and the current FEA study, respectively. 

The present study had a maximum error of 7.93%, suggesting that the FE model can accurately predict the SCF. 

Table 4. Comparison of LR equations [18], API [26], and experimental test results [18] with FEA results 

Joint Position Exp. results LR API FEA results % Err. 1 % Err. 2 % Err. 3 

UKOSRP II joint T215 
Crown 1.80 1.89 2.24 1.83 -4.90 -19.71 -1.64 

Saddle 4.90 4.53 5.44 4.54 8.26 -9.99 7.93 

3.2. Creation of the Design’s Dataset 

ANSYS [38] was used to run the simulations after the FE model was verified. The stress values were acquired using 

a Python script at a 15° angle around the axis of the brace in ANSYS Mechanical [38] and subsequently stored. 

Additionally, the von Mises stresses were calculated at 0.4*t and 1.4*t. Hotspot stresses at the weld toe were extrapolated 

Serial No. Mesh elements SCFcrown (FEA) SCFsaddle (FEA) SCFcrown FEA/ SCFcrown (Exp) SCFsaddle FEA/ SCFsaddle (Exp) 

1 14309 1.68 4.16 0.93 0.85 

2 16757 1.83 4.54 1.02 0.93 

3 18777 1.83 4.54 1.02 0.93 
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based on the calculated stresses. Due to the fact that linear extrapolation and non-linear extrapolation exhibit less than 

10% variation, the linear method was implemented [18]. Von Mises stresses in the T-joint around the weld line are 

shown in Figure 7. The areas near the weld line are under higher stresses as compared to the areas away from the weld 

line. The International Institute of Welding’s IIW-XV-E-(1999) [48] guidelines were followed when estimating hotspot 

stress at the weld toe. Equation 6 was used to calculate SCFs from these hotspot stress values, which were then employed 

to train the ANN. In total, 625 design combinations were used to generate outputs, resulting in 24 SCFs at 15° intervals 

per cycle. 

 

Figure 7. Von mises stresses in T-joint 

3.3. Using MATLAB’s nntool for ANN modelling 

The dataset used for training consisted of 625 simulated design points. The ANN model generated SCF values at 15° 

intervals using input parameters (𝛼, 𝛽, ɣ, 𝜏). A feed-forward neural network (FFNN) with input, output, and one or more 

hidden layers was selected. The training dataset comprised 70%, while testing and validation received 15% each [37]. 

The architecture of the developed ANN models is shown in Figure 8. The optimal architecture of the neural network 

was determined by trial and error by adjusting the total number of hidden layers and neurons [34]. A neural network 

with a single hidden layer comprising nine neurons was used. 

 

Figure 8. The developed ANN 
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Figure 9 displays regression plots for the ANN created using MATLAB R2021 [39]. The diagrams include separate 

plots for training, validation, and testing and a combined view of all three. The linear regression line of best fit between 

the intended output and the output of the ANN is illustrated in these plots. The solid line represents the true line of the 

strongest fit, whereas the dashed line represents the ideal or perfect outcome. In each plot, the solid and dotted lines 

align closely, as observed in Figure 9, showing that the ANN’s outputs are very consistent with the data used for training. 

The ANN achieved an R2 value of 0.99916 (Figure 9), demonstrating exceptional accuracy. The R2 value of 0.99916 

demonstrates a robust correlation between the SCF predictions generated by the ANN and those obtained from the FEA 

analysis. 

Figure 9 shows trained ANN validation. Empirical modelling utilized the weights for each neuron and the biases for 

each layer. 

 

Figure 9. Trained ANN regression plot 

3.4. Development of an Empirical Model 

The development of an empirical model involved exporting a matrix containing the ANN’s weights and biases. In 

order to avoid particular variables being very dominant, the inputs were normalized, while the outputs were 

denormalized. Equations 11 and 12 were employed for normalization and denormalization, respectively. For SCFs, 

empirical formulas are provided by equations 13 and 14. 

𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑖𝑛,𝑚𝑖𝑛 +
(𝑖𝑛,𝑚𝑎𝑥−𝑖𝑛,𝑚𝑖𝑛 )(𝑖−𝑖𝑚𝑖𝑛 )

(𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛 )
  (11) 

𝑜𝑑𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑜𝑚𝑖𝑛 +
(𝑜𝑛− 𝑜𝑛,𝑚𝑖𝑛)(𝑜𝑚𝑎𝑥−𝑜𝑚𝑖𝑛 )

(𝑜𝑛,𝑚𝑎𝑥−𝑜𝑛,𝑚𝑖𝑛 )
  (12) 

where 𝑖𝑛,𝑚𝑎𝑥 = 1, where 𝑖𝑚𝑎𝑥 is the maximum of the initial input data. 𝑖𝑛,𝑚𝑖𝑛 = -1, where 𝑖𝑚in is the minimum of the initial 

input data. 𝑜𝑛,𝑚𝑎𝑥 = 1, where 𝑜𝑚𝑎𝑥 = maximum value derived from the SCF data utilized in the training process. 𝑜𝑛,𝑚𝑖𝑛 = 

-1, where 𝑜𝑚in = minimum value derived from the SCF data utilized in the training process. 
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[
 
 
 
 
 
 
 
 
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8
ℎ9]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
−0.770 −8.445 −0.870 −1.192
0.313 −1.045 0.234 −0.115

−0.344 −1.435 1.579 −9.740
−0.220 0.497 0.441 −0.184
−0.167 0.229 0.233 −0.187
−0.040 0.442 0.042 −2.153
5.383 −0.214 −0.607 −0.330

−0.028 0.326 0.154 −1.786
−0.436 −3.791 0.127 0.341 ]

 
 
 
 
 
 
 
 

[

𝛼𝑛

𝛽𝑛

𝛾𝑛

𝜏𝑛

] +

[
 
 
 
 
 
 
 
 

7.886
0.185

−6.755
1.075
0.773
1.340
6.279
1.037

−3.506]
 
 
 
 
 
 
 
 

  (13) 

[
 
 
 
 
 
 
𝑆𝐶𝐹 0̊
𝑆𝐶𝐹 15̊
𝑆𝐶𝐹 30̊
𝑆𝐶𝐹 45̊
𝑆𝐶𝐹 60̊
𝑆𝐶𝐹 75̊
𝑆𝐶𝐹 90]̊

 
 
 
 
 
 

=

[
 
 
 
 
 
 
−0.093 −0.751 0.403 4.287 −8.398 −1.374 −0.710 2.171 0.648
−0.171 −0.510 0.368 4.239 −7.924 −0.710 −0.620 1.483 0.426
−0.244 −0.071 0.218 5.182 −8.083 0.272 −0.453 0.471 0.137
−0.218 0.730 −0.177 4.393 −4.996 −0.706 0.094 1.109 −0.117
−0.227 0.904 −0.380 1.953 −0.688 −1.478 0.431 1.530 −0.332
−0.306 0.948 −0.450 0.352 1.810 −1.828 −0.550 1.722 −0.471
−0.339 0.942 −0.476 −0.170 2.614 −2.067 0.601 1.926 −0.511]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8
ℎ9]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 

3.129
2.580
1.600

−0.269
−1.666
−2.241
−2.446]

 
 
 
 
 
 

  (14) 

The empirical model was validated against an independent dataset that differed from the testing, training, and 
validation datasets. With their respective maximum absolute differences, percentage errors, and root-mean-squared 
errors (RMSEs), Table 5 details five verification design points, which were distinct from training, validation and testing 
datasets. The comparison of SCF from the proposed ANN model and the SCF from FEA in ANSYS Workbench [38] is 

shown in Figures 10 and 11. 

Table 5. Empirical model’s verification results 

Sr. No. α β γ τ Max. absolute difference Maximum % Error RMSE (Route mean square error) 

1 39.80 0.69 12.30 0.71 0.34 -6.55 0.18 

2 23.90 0.52 12.15 0.99 0.20 4.42 0.09 

3 31.75 0.31 19.90 0.41 0.14 -5.35 0.09 

4 32.10 0.49 20.12 0.42 0.26 -4.06 0.13 

5 31.90 0.32 24.13 0.73 0.39 -6.53 0.19 

 

Figure 10. Trained ANN validation 

 

Figure 11. Comparative Analysis of FEA and ANN Outcomes 
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The resulting equations yield a highly accurate SCF calculation, with an error of less than 7% and an RMSE of under 

0.2 in comparison to the SCF derived via FEA. ANN models learn from training data to predict outcomes within a ±7% 

margin of error for new, unseen values. Variability in predictions stems from the model’s complexity in capturing non-

linear relationships. Under compressive loads, these formulae can be used to swiftly calculate the SCF of the T-joint’s 

brace. 

4. Conclusion 

The equations derived using ANN can accurately calculate the SCFs of a tubular T-joint’s brace subjected to 

compressive loads. The combination of FEA and ANN is an effective approach to developing equations for calculating 

SCFs. These equations can accurately determine the SCFs of a T-joint’s brace under compressive load, exhibiting an 

error rate below 7% and a root mean square error (RMSE) under 0.2. These equations precisely compute the SCF at a 

15° offset from the crown to the saddle position. Practicing engineers can employ equations 13 and 14 to accurately and 

efficiently determine hotspot stress to mitigate the risks concerning offshore structure fatigue failure. This research 

contributes to the safety and reliability of offshore structures by enabling more precise assessments of stress distribution. 

The same method can be applied to calculate the SCF for the inclined braces of the tubular joint. Furthermore, this 

methodology can be used for various types of connections subjected to diverse loading situations to formulate equations 

enabling effective SCF computations. 

5. Nomenclature 

D Chord diameter d Brace diameter 

T Chord thickness t Brace thickness 

θ Angle between the brace and the chord L Chord length 

l Brace length β Ratio of the diameter of brace and chord 

γ Ratio of chord’s diameter and twice chord’s thickness τ Ratio of brace thickness to chord thickness 

α Ratio of twice the length of the chord to the diameter of the chord αb Ratio of twice the length of brace to the diameter of the brace 

r Brace radius t Brace thickness 

SCF Stress Concentration Factors ANN Artificial Neural Network 

FEA Finite Element Analysis DOE Design of Experiments 

R2 Coefficient of determination IPB In-Plane Bending Loads 

OPB Out-of-Plane Bending Loads 𝑖𝑚𝑎𝑥 Maximum of original input data 

𝑖𝑚𝑖𝑛 Minimum of original input data 𝑜𝑚𝑎𝑥 Maximum of SCF data used for training 

𝑜𝑚𝑖𝑛 Minimum of SCF data used for training F Force applied on the top of the brace 

AWS The American welding society IIW International Institute of Welding 

API American Petroleum Institute DNN Deep Learning Neural Network 

GA Genetic Algorithm GBDT Gradient Boosting Decision Trees 

σ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 Nominal brace stress applied on brace σℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 Maximum stress along the weld toe 

FFNN Feed-Forward Neural Network Design DNV Det Norske Veritas 

UEG Underwater Engineering Group HSS Hotspot stress 

CHS Circular Hollow Sections RHS Rectangular hollow sections 

SHS Square Hollow Sections N Fatigue load cycles 

σ1 , σ2  Stresses at Extrapolation points Bx Bias value 

A(x) Activation function ℎ 𝑛𝑥 Neurons in the hidden layer 

𝑖𝑝𝑥 Input parameters 𝑊𝑊𝑥 ANN weights 
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