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Abstract 

Despite the widespread use of Ultrasonic Pulse Velocity (UPV) to estimate the dynamic properties of materials, the 

accuracy of its results for concrete and rock cylinders, even though it does not depend on cylinder slenderness, is directly 

affected by the a priori assumption of a specific value of the Poisson's ratio (𝑣), which can lead to errors of up to 50% in 

the calculation of the dynamic modulus of elasticity (Ed). In contrast, the Impact Echo (IE) method allows the calculation 

of Ed without the need-to-know Poisson’s ratio, with an error of approximately 2%, but its results are affected not only by 

the slenderness ratio (L/D) but also by the inertia effect and the mass of the sensor. In this study, both UPV and IE—

longitudinal and torsional—tests were carried out on cylindrical steel and aluminium specimens for six different 

slenderness values and L/D values ranging from 1-5. The experimental results fully confirm the authors’ proposed shape 

correction factor (SCF). A numerical analysis of short cylinders is conducted to examine how the mass of the accelerometer 

used on the IE affects the results. Specifically, aluminium and steel specimens with six different slenderness values were 

simulated via the finite element method (FEM) via experimental evaluation. Inertia and mass interactions significantly 

affect the results. Two new correction factors were proposed for steel and aluminium cylinders to address this issue, and 

three different combinations of NDTs were tested to find that the dynamic properties are very sensitive to these parameters. 

Poisson’s ratio has been accurately calculated for steel and aluminium cylinders and can be calculated for concrete and 

rock cores by applying the proposed correction factors. 

Keywords: Impact-Echo; Ultrasonic Pulse Velocity; Finite Element Method; Dynamic Poisson’s Ratio; Dynamic Young’s Modulus;                 

Non-Destructive Testing; Acoustic Resonance. 

 

1. Introduction 

Non-Destructive Testing (NDT) is a cornerstone of modern civil engineering, offering numerous advantages in terms 

of time efficiency, cost-effectiveness, and sustainability. NDT techniques allow inspections to be performed at various 

stages of a project's lifecycle, such as during construction, regular maintenance, or retrofitting, without disrupting 

operations. This adaptability minimizes downtime and ensures that projects stay on schedule. Furthermore, the cost-

effectiveness of NDT lies in its ability to detect defects or issues early, thus preventing costly repairs and replacements. 

Providing detailed data for informed decision-making reduces unnecessary expenditures on materials and labor. 

Additionally, because NDT methods are nonintrusive, structures can remain operational during inspections, which is 

particularly beneficial for large-scale infrastructure projects. 
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From a safety perspective, NDT ensures compliance with regulations by identifying structural defects such as cracks, 

voids, or corrosion that could compromise integrity. Addressing these issues proactively leads to safer environments for 

both workers and occupants while reducing liability risks for stakeholders. Moreover, the non-destructive nature of these 

methods aligns with sustainable practices, as they generate no waste and preserve resources. In an era where balancing 

progress with environmental considerations is critical, NDT contributes to more sustainable construction practices. 

Overall, non-destructive testing is indispensable in civil engineering, saving time, cutting costs, and ensuring the quality 

and safety of modern infrastructure. 

1.1. Ultrasonic Pulse Velocity Method 

One of the most commonly used NDT methods in civil engineering works is the UPV method. Its application varies 

and is very useful, especially in rock mechanics and in concrete construction, where through the calculation of dynamic 

elastic moduli, the compressive strength of rock and concrete can be calculated. Owing to its ease of use and low-cost 

equipment, the UPV method is very popular and is the most utilized NDT method. A schematic diagram of the method 

can be found in Figure 1. The fundamentals are described in ASTM C597, and the concept is that by measuring the time 

that a longitudinal ultrasonic pulse takes to travel through a medium, one can calculate the pulse velocity [1]. When the 

material density is known, the constrained or P-wave modulus (M) can be calculated as shown in Equation 1: 

𝑀 = 𝜌 × 𝑉𝑝
2  (1) 

where Vp denotes the velocity of a P-wave and ρ denotes the density of the material through which the wave is 

propagating. 

 

Figure 1. Schematic diagram of the UPV method 

The constrained modulus is related to the dynamic Young’s modulus (Ed) according to Equation 2. Poisson’s ratio 

(v) acts as a correction factor and must be known in advance for the calculation. [2] 

𝐸𝑑 =  
𝜌×𝑉𝑝

2×(1+𝜈)×(1−2𝜈)

1−𝜈
  (2) 

The UPV is broadly used in combination with either other NDT or destructive methods. The material property 

most strongly correlated with the UPV is the compressive strength. Many researchers have used empirical equations 

to estimate the compressive strength of concrete [2–6]. The interest in the research of the method is not diminishing. 

The well-established theoretical basis makes the application of the method easy and fast, with low-cost equipment. 

Recently, Choi et al. (2022) [7] used UPV to estimate the compressive and splitting tensile strengths of rubber 

concrete. All these empirical equations, when shown individually, have a very good correlation, but compared to 

each other, it is obvious that there is a large scatter in their results [8]. This is because it has a very serious drawback. 

Along with UPV readings, other parameters must be known or assumed. Espinosa et al. (2023) [9], in their research 

on self-compacting concrete with recycled aggregates, reported that the modulus elasticity can be est imated with a 

deviation of ±10% to ±20% on the basis of the known compressive strength of the samples. As seen in Equation 2, 

if Poisson’s ratio (v) is not known, a value must be assumed to calculate the Young’s modulus [10]. The error behind 

this assumption can be significant. In a previous study, our research team demonstrated an arbitrary assumption of 

Poisson’s ratio. Figure 2 reported that this assumption can lead to an error ranging from 8.5% overestimation to 

15.5% underestimation of the dynamic Young’s modulus, whereas for a high value of Poisson’s ratio of v= 0.40, the 

error can reach 50% underestimation [8]. 
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Figure 2. Error in the Ed estimation is associated with the selection of an arbitrary Poisson’s ratio value [8] 

1.2. Impact Echo Method 

In contrast, the IE method does not require Poisson’s ratio assumption from the beginning. This NDT method was 

developed and optimized by Professor Sansalone in 1983. It uses an inverse process to determine the dynamic properties 

of a material whose dimensions are known [11]. 

A lightweight accelerometer with a high enough frequency range is used to measure the specimen's response after a 

small object—typically a metallic sphere—impacts a supported sample. The surface motion is then recorded as a digital 

waveform in the time domain. This method has been increasingly investigated in recent years. Coleman and Schindler 

(2022) evaluated concrete bridge decks via three different NDT methods and discovered that the best way to assess the 

state of bridge decks was via IE [12]. The novel use of AI and machine learning has been used to analyze the results, 

yet recently, these methods have been applied. In addition to their typical application, Thurnherr et al. (2024) used drone-

based impact-echo measurement sensors to apply the method to concrete structures that are difficult to inspect, such as 

bridges and piers [13]. Semi-supervised learning has been utilized to analyze and distinguish a large volume of IE test 

data measured at multiple points in a short period [14]. A similar approach to this study on FEM simulations of IE was 

used by Bahati et al. (2022), who reported how IE can be used to quantify and verify the depth and position of cavities 

in concrete slabs [15]. 

The popular fast Fourier transform (FFT) algorithm is used to translate these waveforms to the frequency domain. 

The spectrum peaks can be utilized to determine the wave velocity and assess the dynamic characteristics and structural 

integrity of materials [16]. From Equation 3, it becomes apparent that the Poisson’s ratio value does not need to be 

known to calculate Ed. Moreover, the dynamic shear modulus (Gd) can be calculated via Equation 4. A schematic 

diagram of the method is presented in Figure 3. 

𝐸𝑑 = 𝜌 ⋅ 𝑉𝑐
2  (3) 

𝐺𝑑 = 𝜌 ⋅ 𝑉𝑠
2  (4) 

where Vc and Vs are the longitudinal and torsional velocities, respectively, and ρ is the density of the material. 

While it has been used by many researchers to determine the thickness and detect defects on plates and cylinders 

[16–23], yet this method does not come with no drawbacks. Accurately determining which peaks correspond to the 

resonant frequency is one of the difficulties with this approach. While Pandum et al. (2024) [24] employed artificial 

intelligence and deep learning methods to address this issue, Malone et al. (2023) [23] employed a multi-impact 

nonlinear analysis to discover fundamental IE frequencies [23, 24]. 
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Figure 3. Schematic diagram of the IE method 

The main issue, however, is that the measured resonant frequency depends on the slenderness of the sample and 

must be corrected. The shape correction factor (SCF) depends on Poisson’s ratio, which reflects the need to know 

Poisson's ratio in advance. With a minimum slenderness ratio of two, according to ASTM C-215, the best outcomes are 

achieved when this ratio falls between three and five. This is because other vibration modes may interfere with the 

resonance frequency if the lateral dimensions are not five or six times larger than the dimensions parallel to the impact 

[25–27]. The dynamic Young’s modulus and shear modulus (Gd) can be calculated via Equations 5 and 6, and the 

Poisson’s ratio can be calculated via Equation 7 [11]. 

𝐸𝑑 = 5,093 (
𝐿

𝐷2) ∙ 𝑚 ∙ 𝑓𝑐
2
  (5) 

𝐺𝑑 = 4 (
𝐿∙𝑅

𝐴
) ∙ 𝑚 ∙ 𝑓𝑠

2
  (6) 

𝑣 =
𝐸𝑑

2𝐺𝑑
− 1  (7) 

where L is the length and D is the diameter of the cylinder, R is the shape factor, m is the mass, A is the cross-sectional 

area of the test sample, and finally, fc and fs are the resonant longitudinal and torsional frequencies, respectively. 

Owing to the slenderness effect, both the longitudinal and torsional frequencies must be corrected, whereas ASTM 

C-215 proposes a shape correction factor only for torsional frequencies, which for cylindrical samples is equal to 1. The 

majority of research has examined the impact of samples with L/D> 2.0. However, since this is the usual size of concrete 

cores drilled from existing structures, it is more helpful to acquire data for samples with L/D=1. The current calculation 

methods are insufficient to represent the IE implementation findings for small, short cylinders because they are 

fundamentally different from those for long cylinders. The measured frequencies need to be adjusted to account for the 

impact of L/D. Yao et al. (2022) also recognized the necessity for IE implementation correction and suggested Equation 

8 for frequency correction [28]. 

𝑓𝑖𝑒 = [(0.58𝐿−1,01) ⋅ 𝐷 − 0.060] 
0.92⋅𝐶𝑝

2𝐷
  (8) 

where fie denotes the frequency correction, L denotes the specimen length, D denotes the specimen diameter, and Cp 

denotes the wave propagation velocity. 

Wang et al. (2012) and Siorikis et al. (2020, 2022, 2024) confirmed that there is a need to apply an SCF at the 

longitudinal frequency. The latter proposed the SCF of Equations 9 and 10, which results in a significantly smaller error 

than using only the UPV alone [8, 29–31]. In Figure 4, SCF versus slenderness L/D for six Poisson’s ratio values is 

depicted. 

y = yo + A1e
−x

t1⁄ + A2e
−x

t2⁄   (9) 

𝑆𝐶𝐹 =
𝑓𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑓𝐹𝐸𝑀
  (10) 

where 𝑦 denotes the shape correction factor; 𝑥 denotes the L/D ratio; and 𝑦𝑜, Α1, A2, t1, and t2 are coefficients that depend 

on Poisson’s ratio. A combination of Equations 3 and 9 results in Equation 11. 

𝑉𝑐 = (𝑓𝑚  ⋅ 𝑆𝐶𝐹) ⋅ 2𝐿  (11) 

where fm denotes the measured resonant frequency. 
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Figure 4. Shape correction factor versus slenderness L/D for six Poisson’s ratio values  

It becomes obvious that the value of Poisson's ratio must be assumed at the beginning or as a part of a correction 

factor and then calculated through an iterative process for the optimum value to be obtained. This can be achieved either 

by two consecutive tests of IE, longitudinal and torsional measurements through Equation 7 or by the combination of 

two methods, UPV-IE longitudinal tests, through Equations 1, 3, 11, and 12, and UPV and IE torsional tests, through 

Equations 1, 4, and 14 [32]. The latter has been applied to concrete cores through a new methodology, ultrasonic pulse 

impact echo synergy (UPIES) [8]. 

ν =
E𝑑−𝑀+𝑆

4·𝑀
  (12) 

S =  ±√Ed
2 + 9M2 − 10EdM  (13) 

ν =
𝑀−2·G𝑑

2·𝑀−2·G𝑑

  (14) 

Therefore, in this study, an experimental evaluation of the proposed SCF on steel and aluminium specimens is 

conducted. Using FEM analysis, a simulation of the IE method on short cylinders is presented, and the effects of the 

inertia and mass of the sensor are confirmed. Two new safety factors are proposed on the basis of the FEM results. 

Finally, a comparison between three methods of Poisson’s ratio calculation is presented using UPV and IE tests in 

combination before conclusions are drawn. 

2. Research Methodology 

In the present study, experimental evaluation of the SCF for the longitudinal frequency mode was conducted on both 

steel and aluminum specimens with different slenderness ratios. To cover a wide range of configurations, a total of six 

distinct slenderness ratios were chosen. The specimens’ set is shown in Figure 5. The two materials were selected 

because of their disparate mechanical characteristics, which provide a thorough foundation for comparison. 

 

Figure 5. Steel and Aluminium cylinders of six different slenderness 
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The specimens were tested under both longitudinal and torsional impact tests, and the results were corrected by 

applying the proposed SCF of Siorikis et al. (2020, 2022, 2024) [8, 29, 31], as well as inertia and mass correction factors 

derived from the following numerical analysis. 

2.1. Specimen Properties and Apparatuses 

The experimental program was designed to replicate the boundary conditions and loading scenarios used in the FEM 

simulations of the SCF. Key parameters such as material size and mass as well as the frequency spectra after excitation 

were recorded and analyzed. The properties of the specimens are shown in Table 1, where W is the weight, L is the 

length, D is the diameter, γ is the specific weight and ρ is the density of the specimens. 

Table 1. Specimen properties 

No. Specimen W (g) L (m) D (m) γ(kN/m3) ρ (kg/m3) 

1 Steel 1968.1 0.20 0.04 76.81 7830.70 

2 Steel 1575.4 0.16 0.04 76.86 7835.40 

3 Steel 1182.3 0.12 0.04 76.91 7840.37 

4 Steel 787.8 0.08 0.04 76.87 7836.39 

5 Steel 473.3 0.048 0.04 76.83 7831.99 

6 Steel 394.1 0.04 0.04 76.90 7839.38 

7 Aluminium 707.4 0.20 0.04 27.61 2814.66 

8 Aluminium 565.7 0.16 0.04 27.60 2813.56 

9 Aluminium 425.5 0.12 0.04 27.67 2821.35 

10 Aluminium 285.3 0.08 0.04 27.90 2796.68 

11 Aluminium 171.6 0.048 0.04 27.91 2845.06 

12 Aluminium 142.0 0.04 0.04 27.50 2803.97 

2.1.1. UPV Test 

For the UPV test, the pulse velocity Vp was measured via a Proceq Tico apparatus with a measurement range of -15 

to 6550 μs and a resolution of 0.1 μs. According to BS 1881: Part 203, typical 54 kHz transducers are not suitable due 

to the specimens’ size and 150 kHz transducer must be used [33]. Proceq Tico is compatible with transducers of such 

frequency. For this case, ProceqUPV 150 kHz transducers were used with a sensitivity of ±10 kHz [33]. The apparatus 

is depicted in Figure 6. 

 

Figure 6. UPV tests on short cylinders 

2.1.2. Impact Echo Test  

For the IE test, the longitudinal and torsional rod velocities were measured independently via a lightweight Kistler 

KS94C100 accelerometer with a mass of 4 grams, a sensitivity of 100 mV/g and a frequency range larger than 70 kHz. 

This IEPE piezoelectric vibration transducer is appropriate for situations where small sensor dimensions are crucial as 

well as for lightweight measurement devices. Another benefit is their high upper cutoff frequency. Equally high 

accelerations and, when combined with the right amplifier, very low accelerations can be recorded owing to the 

incredibly low-noise piezoelectric measurement method. The response of the specimens after excitation in the time 

domain was recorded. The signals were recorded via the Spider 20HE Digital Signal Analyzer (DSA) of Crystal 

Instruments with a maximum sampling rate of 512 kHz and a maximum useful bandwidth of 115.2 kHz in any case 

larger than 20 kHz and a block size of at least 1024 points of the waveform. Its input is individually programmable to 

accept voltage from an IEPE (ICP) sensor with built-in electronics such as the KS94C100 accelerometer. 
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The experimental setup is shown in Figure 7. In Figure 8, an example of the frequency spectrum of a steel cylinder 

specimen with L/D= 4.0 with the first dominant frequency marked is presented. The dominant frequencies are those that 

were recorded when a waveform analyzer was used; the resonant frequency is the frequency with the highest peak in 

the amplitude spectrum or the power spectrum obtained from the fast Fourier transform of the recorded accelerometer 

signal [11]. 

 

Figure 7. Impact echo tests on short cylinders 

 

Figure 8. Frequency spectrum of a steel cylinder with a slenderness of L/D= 4.0 

2.2. Experimental Evaluation of SCFs 

From the measured UPV travel time, the pulse velocity and, consequently, through Equation 1, the constrained 

modulus, M, can be calculated. 

From the first IE test after a longitudinal impact, the measured longitudinal frequencies were corrected via Equations 

9 and 10 with a Poisson’s ratio of 0.285 for steel and v= 0.341 for aluminium specimens and reference rod velocities of 

5155 m/s and 5070 m/s, respectively, on the theoretical basis that from that value, slenderness L/D= 5 and above, the 

cylinder behaves as an infinite rod. Finally, the results are compared to the curves of the SCF for the corresponding 

Poisson’s ratio values. The specimens were then subjected to a second IE test under torsional impact to measure the 

torsional frequencies. The frequencies from both the longitudinal and torsional IE tests were then corrected due to the 

inertia effect and the mass of the accelerometer interaction. The inertia correction factor (ICF) and mass correction factor 

(MCF) were obtained from extensive numerical analysis. 

Finally, using the pulse velocity Vp, the corrected values of the longitudinal rod velocity Vc, shear velocity Vs, and 

Poisson’s ratio are calculated via three procedures: 

By IE (longitudinal) and IE (torsional) tests through Equation 7. 

By UPV and IE (longitudinal) tests through Equation 12. 

By UPV and IE (torsional) tests through Equations 5 to 7. 
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All the procedures required two independent tests. The first differs in that only the IE method was used yet again, 

with two implementations. 

2.3. Numerical Investigation 

The finite element method (FEM) is a powerful computational tool widely used in civil engineering, offering 

numerous advantages for solving complex problems in structural analysis, design, and material behavior. In recent years, 

researchers have used FEM analysis to simulate the IE method on cylinders to estimate the dynamic properties of 

materials [8, 29, 31, 34]. Slenderness of the specimen and mass of the sensor are among the parameters that affect the 

results. Since the specimen’s mass (W) to the accelerometer’s mass (W0) ratio is considerably small for certain 

specimens, a numerical investigation is essential to assess the effect of the partially attached mass on a specimen when 

Vc and Vs are determined from the IE test. In this context, a total of 24 simulations were conducted to determine the 

required corrections to the measured frequencies. The software used for the abovementioned simulations is Plaxis 3D 

from Bentley Systems. 

In this investigation, the IE test under both longitudinal and torsional impact was simulated for steel and aluminum 

specimens, as shown in Figure 9. The material of the simulated specimens was modeled as linear elastic, with Vp= 5910 

m/s and Vp= 6410 m/s for the steel and aluminium models, respectively. Poisson’s ratios of v= 0.285 and v= 0.341 were 

applied for the steel and aluminium models, respectively. The specific weights of the simulated materials were set to 

match those of the original specimens, as listed in Table 1. The accelerometer was modeled as a cylinder with a diameter 

of 10 mm and a height of 8 mm, with a specific weight of γ= 46.84 kN/m³, resulting in an accelerometer mass of Wo= 3 

g, which was the mass of the accelerometer used in the IE tests. 

 

Figure 9. Finite element modeling in PLAXIS 3D for simulating longitudinal and torsional IE tests under longitudinal and 

torsional impact 

The mesh density was set to approximately 16 elements per square centimeter. Dynamic excitations were applied as 

half-period pulse loads parallel to the axis of the specimen for the longitudinal models and as a pair of half-period pulse 

forces applied transverse to the axis of the specimen for the torsional models, as shown in Figure 9. The frequency is 

equal to half of the expected dominant eigenfrequency, f1. The time increment between the steps in the analysis was 

selected to ensure that the maximum frequency captured was at least fmax=3f1. For model validation, dynamic analyses 

were performed on reference FEM specimens without the accelerometer’s mass, and the results were compared with 

analytical solutions. To minimize the error between the reference FEM results and the analytical solutions, each time 

increment was divided into at least 10 substeps. 

The properties of the finite element model (FEM) used for the simulation of both longitudinal and torsional IE tests 

are presented in Table 2. 
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Table 2. Specimen properties as modeled in PLAXIS 3D for IE test simulations under longitudinal and torsional impact 

No. Specimen W (gr) Wo (gr) L (m) D (m) L/D W/Wo 

1 Steel 1968.1 3.0 0.20 0.04 5.0 656.0 

2 Steel 1575.4 3.0 0.16 0.04 4.0 525.1 

3 Steel 1182.3 3.0 0.12 0.04 3.0 394.1 

4 Steel 787.8 3.0 0.08 0.04 2.0 262.6 

5 Steel 473.3 3.0 0.048 0.04 1.2 157.8 

6 Steel 394.1 3.0 0.04 0.04 1 131.4 

7 Aluminium 707.4 3.0 0.20 0.04 5.0 235.8 

8 Aluminium 565.7 3.0 0.16 0.04 4.0 188.6 

9 Aluminium 425.5 3.0 0.12 0.04 3.0 141.8 

10 Aluminium 285.3 3.0 0.08 0.04 2.0 95.1 

11 Aluminium 171.6 3.0 0.048 0.04 1.2 57.2 

12 Aluminium 142.0 3.0 0.04 0.04 27.50 2803.97 

The correction factor for the longitudinal IE tests is determined by the mass correction factor (MCF) from 

Equation 15, whereas the correction factor for the torsional IE tests is given by the inertia correction factor (ICF) 

from Equation 16. 

𝑀𝐶𝐹 =
𝑓𝐿

𝑓𝐿,𝑚𝑎𝑠𝑠
  (15) 

𝐼𝐶𝐹 =
𝑓𝑇

𝑓𝑇,𝑚𝑎𝑠𝑠
  (16) 

where 𝑓𝐿 and 𝑓𝐿,𝑚𝑎𝑠𝑠 represent the frequencies obtained from FEM simulations of the longitudinal IE test, without and 

with the accelerometer mass, respectively, and where 𝑓𝑇 and 𝑓𝑇,𝑚𝑎𝑠𝑠 correspond to the frequencies obtained from the 

torsional IE test, with and without the accelerometer mass, respectively. 

3. Results and Discussion 

3.1. Numerical Results–Inertia & Mass Correction Factors 

The dynamic analysis of the IE test simulations, both with and without the mass of the accelerometer, indicates 

that corrections must be applied to the measured longitudinal frequencies when the accelerometer mass is 

included to align them with the frequencies obtained without the mass. When the W/W0 ratio is lower than 200, 

the MCF should be applied. For high values of the W/W0 ratio, this MCF seems to have no significant influence, 

as for a value of approximately 600, which is approximately the same as a typical drilled concrete or rock core 

with L/D= 1, the corresponding correction is approximately 3.5%. Thus, taking into account only the mass of the 

sensor effect, IE can be applied without any correction to the longitudinal or torsional frequencies of the concrete 

cores. 

Slenderness had no effect on the IE test results under torsional impact; therefore, no shape correction was  

applied. Inertia, on the other hand, plays a significant role, especially for small slenderness, and the ICF has to be 

applied. In Table 3, the results of the MCF and ICF are presented for the 12 FEM specimens of steel and 

aluminium obtained from longitudinal and torsional IE test simulations, respectively. In Figure 10, the mass 

correction factor (MCF) results for the steel and aluminium FEM specimens, obtained from FEM impact echo 

(IE) tests under longitudinal impact with and without accounting for the accelerometer mass versus the specimen-

to-accelerometer mass ratio (W/W₀ ) can be seen, whereas in Figure 11, the inertia correction factor (ICF) results 

for the steel and aluminium FEM specimens, obtained from FEM Impact Echo (IE) tests under torsional impact 

with and without accounting for the accelerometer mass, versus the specimen-to-accelerometer mass ratio 

(W/W₀ ) is illustrated. 
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Table 3. MCF and ICF results from IE test numerical simulations under longitudinal and torsional impact 

No. Specimen L/D W/W0 MCF ICF 

1 Steel 5.0 656.0 1.0035 1.0008 

2 Steel 4.0 525.1 1.0042 1.0009 

3 Steel 3.0 394.1 1.0045 1.0012 

4 Steel 2.0 262.6 1.0068 1.0015 

5 Steel 1.2 157.8 1.0096 1.0041 

6 Steel 1 131.4 1.0120 1.0072 

7 Aluminium 5.0 235.8 1.0075 1.0091 

8 Aluminium 4.0 188.6 1.0083 1.0091 

9 Aluminium 3.0 141.8 1.0110 1.0109 

10 Aluminium 2.0 95.1 1.0136 1.0136 

11 Aluminium 1.2 57.2 1.0214 1.0233 

12 Aluminium 27.50 2803.97 1.0297 1.0347 

 

Figure 10. Mass correction factor (MCF) results for steel and aluminium FEM specimens under longitudinal impact versus 

the mass of specimen to mass ratio of the accelerometer (W/W0) 

 

Figure 11. Inertia correction factor (ICF) results for the steel and aluminium FEM specimens under torsional impact versus 

the mass of specimen to mass ratio of the accelerometer (W/W0) 
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3.2. Experimental Evaluation of SCFs 

3.2.1. UPV Results 

Table 4 shows the results after the 12 specimens were tested via the UPV method. The 3rd column shows the 

slenderness of the specimen L/D, the 4th column shows the pulse travel time in μs, the 5th column shows the calculated 

pulse velocity in m/s, and the 6th column shows the calculated constrained modulus and average value in column 7. 

Table 4. UPV Results 

No. Specimen L/D tp (μs) Vp (m/s) M (GPa) Maver (GPa) 

1 Steel 5 34.0 5882 270.96 

273.93 

2 Steel 4 27.1 5904 273.13 

3 Steel 3 20.3 5911 273.97 

4 Steel 2 13.7 5926 275.19 

5 Steel 1.2 8.1 5926 275.03 

6 Steel 1 6.8 5926 275.29 

7 Aluminium 5 31.70 6310 114.19 

115.79 

8 Aluminium 4 25.10 6349 115.04 

9 Aluminium 3 18.90 6443 113.36 

10 Aluminium 2 12.60 6486 116.09 

11 Aluminium 1.2 7.40 6441 119.70 

12 Aluminium 1 6.21 6369 116.33 

3.2.2. IE Results–Longitudinal Mode 

The experimental results confirmed the need to use an SCF for the longitudinal mode, whereas the MCF retrieved 

from the numerical analysis revealed that the mass of the accelerometer interaction with the mass of the specimen was 

significant and cannot be ignored. Figures 12 and 13 show the experimental results for steel and aluminium cylinders 

with six different slenderness values with SCF and MCF and without correction. The deviation is notable, whereas the 

plotted curves for Poisson’s ratio v= 0.285 for steel and v= 0.341, which are in line with the results, confirm the need 

for shape and mass correction on the measured frequencies. The dynamic Young’s modulus was calculated on the basis 

of the corrected frequencies/longitudinal velocities. In Table 5, the results for the 12 specimens subjected to longitudinal 

impact can be seen where the 3rd column is the slenderness of the specimen L/D, the 4th column is the mass of specimen 

to the mass of the accelerometer ratio, the 5th column is the measured longitudinal resonant frequency in Hz, the 6th 

column is the SCF, the 7th column is the MCF derived from the FEM curve in the 8th column is the final correction 

factor, the 9th column is the corrected rod velocity, the 10th column is the ratio of the rod velocity to the UPV velocity 

ratio, and the 11th column is the calculated dynamic Young’s modulus and their average value in column 12. 

Table 5. IE longitudinal results 

No. Specimen L/D W/W0 
fcm 

(Hz) 
SCF MCF 

Final 

Correction 

Vc cor 

(m/s) 
Vc/Vp E (GPa) 

Eaver 

(GPa) 

1 Steel 5 492.0 12931 0.99777 1.00333 1.00109 5178 0.88027 209.96 

211.49 

2 Steel 4 393.9 16146 0.99886 1.00395 1.00281 5181 0.87757 210.35 

3 Steel 3 295.6 21485 1.00367 1.00493 1.00862 5186 0.87735 210.89 

4 Steel 2 197.0 31310 1.00956 1.00674 1.01636 5196 0.87676 211.54 

5 Steel 1.2 118.3 51400 1.04998 1.00979 1.06027 5211 0.87943 212.71 

6 Steel 1 98.5 59900 1.07697 1.01114 1.08897 5218 0.88060 213.48 

7 Aluminium 5 176.9 12775 0.99424 1.00731 1.00151 5118 0.80348 205.09 

208.42 

8 Aluminium 4 141.4 15900 0.99542 1.00862 1.00401 5124 0.80138 205.75 

9 Aluminium 3 106.4 21300 0.99551 1.01056 1.00602 5134 0.80999 206.67 

10 Aluminium 2 71.3 31100 1.00617 1.01397 1.02023 5152 0.79957 207.97 

11 Aluminium 1.2 42.9 50432 1.04938 1.02186 1.07232 5192 0.80038 211.10 

12 Aluminium 1 35.5 59900 1.08329 1.02825 1.11390 5224 0.81104 213.95 
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Figure 12. Experimental results for steel cylinders with six different slenderness values versus the SCF 

 

Figure 13. Experimental results for aluminum cylinders with six different slenderness values versus SCF 

3.2.3. IE Results–Torsional Mode 

The experimental results were corrected with the ICF. Through the corrected torsional frequencies/velocities, the 

dynamic shear modulus of the specimens was calculated. In Table 6, the results for the 12 specimens of steel and 

aluminium when tested under longitudinal impact can be seen where the 3rd column is the slenderness of the specimen 

L/D, the 4th column is the measured torsional resonant frequency in Hz, the 5th column is the inertia correction factor 

ICF derived from the FEM curve, the 6th column is the corrected torsional velocity, the 7th column is the torsional-to-

UPV velocity ratio, and the 8th column is the calculated dynamic Young’s modulus from Equation 1 and their average 

value on column 9. 
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Table 6. IE Torsional Results 

No. Specimen L/D fsm (Hz) ICF 
Vs cor 

(m/s) 
Vs/Vp G (GPa) 

Gaver 

(GPa) 

1 Steel 5 8075 1 3230 0.5491 81.70 

82.27 

2 Steel 4 10100 1 3232 0.54742 81.85 

3 Steel 3 13475 1 3234 0.547085 82.00 

4 Steel 2 20250 1 3240 0.54675 82.26 

5 Steel 1.2 33725 1.004 3251 0.54853 82.75 

6 Steel 1 40398 1.007 3254 0.549191 83.03 

7 Aluminium 5 7740 1.008652248 3123 0.490277615 76.36 

77.73 

8 Aluminium 4 9640 1.010819516 3128 0.489163867 76.66 

9 Aluminium 3 12850 1.014386179 3123 0.492717799 76.48 

10 Aluminium 2 19010 1.021453207 3153 0.489329202 77.89 

11 Aluminium 1.2 31940 1.035665754 3176 0.48957163 78.98 

12 Aluminium 1 38285 1.043102817 3195 0.495995077 80.02 

3.3. Poisson’s Ratio Calculation 

With the three moduli already calculated and using the equations described in the Methodology section, Poisson’s 

ratio was calculated. Table 7 shows the individual calculations for all the specimens as well as the average values of the 

two materials. The three methods were compared, and it is evident that the error in the Poisson’s ratio calculation when 

no correction factors are applied is significant. Figure 14 shows a Poisson’s ratio comparison of steel cylinders versus 

slenderness for three different test combinations, without accounting for the MCF in the IE test under longitudinal impact 

(used for calculating Ed) and the ICF under torsional impact (used for calculating Gd), whereas Figure 16 shows the 

same Poisson’s ratio calculation for aluminium. Figure 15 shows a comparison of the Poisson’s ratio for steel cylinders 

versus slenderness for three different test combinations, accounting for the MCF in the IE test under longitudinal impact 

(used for calculating Ed) and the ICF under torsional impact (used for calculating Gd), and Figure 17 shows the same 

results for aluminium cylinders. Their individual values have a very good distribution around the average. 

Table 7. Poisson’s ratio calculation 

No. Specimen M - Ed M - Gd Ed - Gd 

1 Steel 0.284 0.284 0.285 

2 Steel 0.286 0.286 0.285 

3 Steel 0.287 0.286 0.286 

4 Steel 0.287 0.287 0.286 

5 Steel 0.285 0.285 0.285 

6 Steel 0.284 0.284 0.286 

 Average 0.285 0.285 0.285 

7 Aluminium 0.342 0.342 0.343 

8 Aluminium 0.343 0.343 0.342 

9 Aluminium 0.338 0.340 0.351 

10 Aluminium 0.344 0.343 0.335 

11 Aluminium 0.343 0.342 0.336 

12 Aluminium 0.337 0.337 0.337 

 Average 0.341 0.341 0.341 
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Figure 14. Poisson’s ratio comparison of steel cylinders and slenderness for three different test combinations without correction 

 

Figure 15. Poisson’s ratio comparison of steel cylinders and slenderness for three different test combinations with correction 

 

Figure 16. Poisson’s ratio comparison of aluminium cylinders and slenderness for three different test combinations without correction 
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Figure 17. Poisson’s ratio comparison of aluminum cylinders and slenderness for three different test combinations with correction 

Figure 18 illustrates a theoretical example of the Poisson’s ratio error versus the Poisson’s ratio obtained from the 

three different test combinations (M-Ed, M-Gd and Ed-Gd) when the error in the measured velocity ratio of the three test 

combinations, Vp/Vc, Vp/Vs and Vc/Vs, is 1%. The most unreliable seems to be the IE for the longitudinal and torsional 

tests, as a large fluctuation in the true Poisson’s ratio results in approximately the same error, especially if we narrow 

the range of the Poisson’s ratio between 0.25 and 0.35, where the true Poisson’s ratio value is uncertain. The other two 

methods are quite similar for high Poisson’s ratio values, but when again, if we focus on the abovementioned range, the 

combination of UPV and the longitudinal mode of IE yields more reliable results.  

 

Figure 18. Example of the Poisson’s ratio error versus the Poisson’s ratio from the three different test combinations when 

the error in the measured velocity ratio is 1% 

To determine the dynamic properties of short cylinders, the combination of two independent tests, a UPV and 

an IE in longitudinal mode, is a more reliable approach. When testing steel and aluminium cylinders, the slenderness 

effect must be considered. The mass of the sensor adds to the results as well. The measured frequencies must be 

corrected via SCF and MSC. For concrete cylinders, the frequencies must be corrected because of the slenderness 

effect, but due to the large W/W0 ratio, no mass correction is necessary. A flowchart of the methodology is shown 

in Figure 19. 
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Figure 19. Flowchart of Poisson’s ratio calculation using the proposed CF 

4. Conclusions 

This research focuses on the determination of the dynamic parameters of short cylinders via an increasingly widely 

used NDT method, impact echo (IE), through experimental and numerical analysis. Twelve cylindrical specimens, six 

made of steel and six made of aluminium, were tested via the UPV and IE methods. The pulse, rod and torsional 

velocities were calculated through their corresponding measured frequencies and corrected via the shape correction 

factor SCF. Twenty-four FEM simulations in Plaxis 3D showed that the inertia effect and the mass of the accelerometer 

interaction with the mass of the cylinder significantly affect the results. Specifically, slenderness affects the results in 

the longitudinal mode but does not affect the torsional mode. In contrast, mass and inertia affect both modes, especially 

the lower slenderness and lower mass of the specimen to mass of the sensor ratio. Two new correction factors, MCF and 

ICF, were proposed for mass and inertia correction, respectively. Three different combination methods were tested for 

Poisson’s ratio calculation. By comparing the experimental outcomes with FEM predictions, the reliability and 

limitations of the numerical model are critically evaluated, offering insight into its applicability for different slenderness 

and material combinations. 

The integration of the UPV and IE in longitudinal mode appears to be the optimal solution for determining the most 

reliable approach for calculating Poisson's ratio. This calculation for short cylinders is affected by slenderness, but it is 

also very sensitive to small changes in mass and inertia. For the tested materials with various parameters of slenderness 

and mass, the Poisson’s ratio can be accurately calculated. For typical concrete and rock cores with a slenderness of 

L/D=1, no significant effect on the Poisson’s ratio is observed because of the large mass of the specimen to mass of the 

sensor ratio (W/W0). For W/W0<200, the MCF and ICF must be applied. The MCF and ICF obtained from the numerical 

investigation are intended for use only in correcting the specimens of this study. Further investigations are needed to 

determine the correction factors that can be applied universally. Furthermore, replacing the accelerometer with an 

interferometer eliminates the need for mass correction. In conclusion: 

 The dynamic moduli can be determined via the UPV and IE. 

 The results must be corrected by applying a CF for slenderness, mass and inertia. 

 Poisson’s ratio was accurately calculated for the steel and aluminium specimens of the present study. 

 Poisson’s ratio can be calculated for concrete and rock cores with L/D = 1 because of the large W/W0 . 

 UPV in combination with IE in longitudinal mode is the most reliable method for Poisson’s ratio calculation. 
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