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Abstract 

Incorporating waste foundry sand (WFS) into concrete is a sustainable approach to enhance green construction practices. 

Waste foundry sand is a byproduct of the metal casting industry and is often discarded in landfills, posing environmental 

concerns. Using it as a partial replacement for natural sand in concrete addresses both waste management and resource 

conservation. In this research paper, advanced machine learning models have been reported on the soft computing of the 

optimal waste foundry sand in concrete based on strength properties for sustainable green structures. The machine learning 

techniques such as “Group Methods Data Handling Neural Network (GMDH-NN)”, “Support Vector Machine (SVM)”, 

“K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest (RF)” were applied on a database for the 

compressive strength containing 397 records, for elastic modulus containing 146 records, and for split tensile strength 

containing 242 records. Each record contains C-Cement content (kg/m³), WFS-Waste foundry sand content (kg/m³), W-

Water content (kg/m³), SP-Super-plasticizer content (kg/m³), CA-Coarse aggregates content (kg/m³), FA-Fine aggregates 

content (kg/m³), TA-Total aggregates content (kg/m³), and Age-The concrete age at testing (days), considered as the input 

parameters and CS_WFS-Compressive strength of waste foundry sand concrete (MPa), E_WFS-Elastic modules of waste 

foundry sand concrete (GPa), and STS_WFS-Split tensile strength of waste foundry sand concrete (MPa), which are the 

output parameters. A 75/25 partitioning pattern for train/test of the database was used in line with established rules. At the 

end of the model operation, it can be observed that kNN, SVM, and RF were paramount in terms of performance and 

therefore outclassed the other models in the three-state strength condition of the WFS cement concrete. Hence, these were 

selected as the decisive models for the prediction of the compressive strength, elastic modulus, and splitting tensile strength 

of the WFS cement's concrete. The sensitivity analyses showed that Age, WFS/C and CA/C are more impactful on the 

compressive strength, Age, FA/TA, and W/C are more impactful on the elastic modulus; and 1000SP/C, WFS/C, and W/C 

are more impactful on the splitting tensile strength of the WFS cement concrete. Generally, these models provide a 

foundation for optimizing material use, ensuring quality, and meeting environmental goals. Industries leveraging these 

tools can produce eco-friendly, high-performance concrete while addressing waste management challenges and reducing 

their carbon footprint. 
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1. Introduction 

The construction industry is approaching a tipping point where embracing sustainability is no longer an option but a 

must. Extensive study has been conducted to identify the compelling reasons why this sector should continue to prioritize 

sustainability [1]. Notably, the building business has a considerable impact on energy consumption, waste output, 

resource depletion, and greenhouse gas emissions [2]. Addressing these environmental concerns is critical, and the 

construction industry has a tremendous opportunity to reduce its ecological impact through sustainable practices. 

Resource efficiency is a primary priority in this industry, which relies largely on natural resources such as water, raw 

materials, and electricity [3, 4]. The industry may greatly minimize resource consumption and waste output by using 

sustainable practices such as material recycling and optimized energy usage [5]. To address sustainability problems in 

the construction sector, environmentally friendly materials are created by combining various forms of waste or recycled 

materials into cementitious composites, either completely or partially replacing the major components of concrete [6]. 

For example, silica fume, fly ash, rice husk ash, and blast furnace slag are pozzolanic materials with high silica content. 

Other sustainable concretes include those made using recycled aggregate glass sands, waste foundry sand (WFS), tire 

rubber, and ceramic [7]. Waste foundry sand concrete (WFSC) is being used as an alternative to fine aggregate in 

ecologically friendly concrete production. However, the high cost of landfilling WFS creates substantial economic and 

environmental problems [8]. Experimental tests reveal that when WFS is substituted with fine aggregate at a rate of 15-

20%, the mechanical parameters of the control concrete remain equivalent. However, beyond a 10% substitution level, 

strength qualities decrease [9]. WFS composition, mix proportions, percentage, and the physical properties of concrete 

materials all have an impact on this behavior. Mineral admixtures, fungal-treated WFS, and a low water-cement ratio 

can all help improve strength. When the water-cement ratio is less than 0.5030, adding WFS into concrete provides only 

limited benefits. Machine learning-based prediction models can assist in addressing these difficulties and ease the long-

term reuse of WFS in industry [10]. 

Because of the development of AI, numerous soft-computing technologies have been used to forecast the properties 

of various types of concrete. For example, machine learning algorithms have been used to forecast the properties of 

recycled aggregate concrete, fiber-reinforced concrete, carbon fiber-reinforced concrete, geopolymer concrete, and 

concrete incorporating SCMs, including slag, fly ash, and silica fume. Among ML approaches, artificial neural networks 

(ANN), support vector regression (SVR), genetic engineering programming (GEPs), and decision trees (DT) are widely 

used [11]. According to the literature study, many studies used machine learning algorithms to estimate WFSC features. 

Shah et al. (2021) [12] employed sugarcane bagasse ash (SCBA) as a byproduct in green concrete production. Multi-

expression programming (MEP) was utilized to create predictive models of the mechanical parameters of SCBA 

substitute concrete. The models were trained on literature data and validated with laboratory results. The results 

demonstrated strong approximation capability and effectively resolved modeling overfitting. The MEP-based modeling 

approach, followed by validation, cross-validation, and parametric analysis, may be helpful for accurate concrete 

property modeling. Behnood & Mohammadi (2021) [13] forecasted the mechanical properties of concrete, including 

waste foundry sand (WFS), using an artificial neural network (ANN) and the multi-objective multi-verse optimizer 

(MOMVO) method. A thorough database was compiled and modeled in MATLAB. Several optimal ANN models were 

developed for compressive strength, splitting tensile strength, modulus of elasticity, and flexural strength. The results 

demonstrated satisfactory accuracy in estimating properties. Parametric research found that water to cement, fine 

aggregate to total aggregate, and coarse aggregate to cement had the greatest impact. 

Iqbal et al. (2021) [14] employed Multi-Expression Programming (MEP) to simulate the mechanical characteristics 

of concrete incorporating waste foundry sand (WFS), a significant environmental concern. The model accurately 

forecasts mechanical qualities when mix factors vary, eliminating mistakes and promoting the use of WFS in green 

concrete. This method can reduce landfill trash and contribute to sustainable construction. Also, Ghanizadeh et al. (2023) 

[15] used a hybrid ensemble learning (EL) approach that combines AdaBoost and forensic-based investigation 

optimization (FBIO) to estimate the strength and workability of concrete containing waste foundry sand (CCWFS). Data 

from 30 published articles were collected, and AdaBoost-FBIO was found to outperform other classical single ML 

approaches as well as the well-known random forest EL method. The models had R² values more than 0.90, and 

uncertainty analyses revealed that they were within the acceptable performance range. Ali et al. (2022) [16] studied 

decreasing the amount of fine aggregate used in concrete mixtures by partially substituting waste foundry sand (WFS). 

The WFS ratio and cure days were optimized in the study using the Central Composite Design tool in the Response 

Surface Methodology of the Design-Expert software [17]. The maximum mechanical qualities were attained after 56 

days of cure and 20% replacement. Twenty percent was the ideal replacement level, while thirty percent was the typical 

replacement amount. For conventional concrete strength, WFS can replace 20% of the natural fine aggregate; for non-

structural concrete, it can replace 30%. 

ALYousef et al. (2023) [18] predicted the mechanical properties of waste foundry sand concrete (WFSC) using 

machine learning techniques [19, 20]. Predictive models were constructed using five machine learning (ML) techniques: 

gene expression programming (GEP), deep neural network (DNN), and optimizable Gaussian process regressor 

(OGPR). A database containing 397 and 169 compressive and flexural strength values was gathered. With higher 

accuracy and lower error levels, the DNN2 model performed better. In order to effectively estimate WFSC traits, the 

study recommends that future research employ ensemble and hybrid algorithms as well as post-hoc explanatory 
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methodologies. All the above-discussed literature materials have presented the application of different AI techniques in 

predicting either the compressive strength or the tensile strength or the flexural strength and even at different curing 

regimes [21, 22]. However, none mentioned the prediction of the behavior of the waste foundry sand concrete in terms 

of compressive strength, splitting tensile strength, and the elastic modulus together in one research paper, giving authors 

the opportunity to comprehensively understand this type of concrete and be able to design for its production and practical 

use. It is understandable to observe from literature that 20% WFS by weight of the fine aggregates (FA) can replace FA 

for structural concrete requirements, while 30% replacement has been achieved as the optimal for non-structural uses. 

However, the application of more reliable and sustainable machine learning models has become necessary for the 

purpose of more sustainable concrete designs, production, and utilization in the field. 

The reviewed literature provides a strong foundation for the present research work. Prior studies have extensively 

explored the environmental motivations for incorporating waste materials like waste foundry sand (WFS) into concrete, 

demonstrating its potential to reduce resource depletion and landfill impacts while promoting sustainable construction. 

Several researchers have applied machine learning (ML) and soft computing techniques to predict individual concrete 

properties, such as compressive strength, tensile strength, flexural strength, and modulus of elasticity, using data-driven 

models. Approaches such as artificial neural networks, gene expression programming, ensemble methods, and hybrid 

algorithms have been employed, showing promising predictive performance and offering useful insights into the impact 

of WFS and other supplementary materials on concrete behavior. However, the existing literature primarily focuses on 

isolated strength parameters or specific curing regimes, and no single study has comprehensively modeled multiple key 

mechanical properties, namely compressive strength, splitting tensile strength, and elastic modulus of WFS concrete in 

a unified framework [23]. This gap limits the full understanding required for robust concrete design and practical field 

application. The current research addresses this gap by integrating these three critical strength parameters into a single 

predictive modeling framework using soft computing techniques. By doing so, it enhances the reliability and 

sustainability of concrete mix designs incorporating WFS and contributes to the broader goal of developing greener and 

more resource-efficient construction practices. 

In this research work, the strengths, such as the compressive strength, the splitting tensile strength, and the elastic 

modulus of the concrete mixed with waste foundry sand (WFS), have been reportedly predicted. This has been done by 

the application of different advanced machine learning techniques such as “Group Methods Data Handling Neural 

Network (GMDH-NN)”, “Support Vector Machine (SVM), “K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and 

“Random Forest (RF)”. 

2. Research Gap and Statement of Novelty 

While numerous studies have investigated the use of waste foundry sand (WFS) as a partial replacement for fine 

aggregate in concrete, most have been limited to predicting individual mechanical properties such as compressive 

strength, flexural strength, or tensile strength, often under specific curing conditions or using a narrow selection of 

machine learning techniques. Additionally, these studies typically focus on a single property per model, which restricts 

the ability to comprehensively evaluate the structural performance of WFS concrete. There remains a lack of integrated, 

data-driven frameworks that simultaneously predict multiple key strength parameters namely compressive strength, 

splitting tensile strength, and elastic modulus—within a unified model, which is crucial for holistic design and 

sustainable application in real-world structures. Furthermore, despite the availability of advanced soft computing 

techniques, their collective application to optimize WFS content in concrete and support green construction practices 

remains underexplored. 

This study presents a novel contribution by developing a robust soft computing framework that simultaneously 

predicts compressive strength, splitting tensile strength, and elastic modulus of concrete incorporating waste foundry 

sand. By employing five diverse machine-learning algorithms within the Weka data-mining environment, the research 

not only models the mechanical behavior of WFS concrete more comprehensively than previous works but also identifies 

the optimal WFS replacement levels for sustainable and structurally reliable concrete. This integrated approach advances 

the current understanding of WFS utilization and provides a practical tool for engineers and researchers aiming to design 

environmentally friendly and high-performance concrete mixes. 

3. Research Methodology 

3.1. Collection of Data and Preliminary Analysis 

Three databases were compiled from the literature [11] for various mixing ratios of waste foundry sand concrete at 

different ages. The database for compressive strength contains 397 records, for elastic modulus 146 records, and for 

split tensile strength 242 records. Each record includes the following input parameters: C — Cement content (kg/m³), 

WFS — Waste foundry sand content (kg/m³), W — Water content (kg/m³), SP — Super-plasticizer content (kg/m³), CA 

— Coarse aggregates content (kg/m³), FA — Fine aggregates content (kg/m³), TA — Total aggregates content (kg/m³), 

and Age — The concrete age at testing (days). The output parameters are CS_WFS — Compressive strength of waste 

foundry sand concrete (MPa), E_WFS — Elastic modulus of waste foundry sand concrete (GPa), and STS_WFS — 

Split tensile strength of waste foundry sand concrete (MPa). In accordance with established data partitioning criteria for 
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machine learning models [24], the collected records were divided into a training set (75%) and a validation set (25%) 

for each of the main concrete properties. The complete dataset is provided in the Appendix I, while Table 1 summarizes 

its statistical characteristics. Finally, Figure 1 presents the Pearson correlation matrix, histograms, and the relationships 

between variables. It can be observed that there is no strong internal consistency between the output parameters and the 

input variables, as shown in Figures 1-a, 1-b, and 1-c. 

Table 1. Statistical analysis of collected databases 

Compressive Strength 

 WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age CS_WFS 

 - - - - - - day MPa 

Training Set 

Max. 1.2 0.6 4.2 0.7 2.3 17.8 365.0 53.8 

Min 0.0 0.4 0.9 0.1 0.0 0.0 1.0 11.4 

Avg 0.3 0.5 3.0 0.3 0.3 2.7 59.1 33.0 

SD 0.3 0.0 0.5 0.1 0.4 5.0 89.8 8.7 

Var 0.9 0.1 0.2 0.3 1.3 1.8 1.5 0.3 

Validation Set 

Max. 1.2 0.6 4.2 0.7 1.5 17.8 365.0 49.4 

Min 0.0 0.4 0.9 0.1 0.0 0.0 7.0 15.6 

Avg 0.3 0.5 3.0 0.3 0.3 2.3 52.9 32.0 

SD 0.3 0.0 0.5 0.1 0.4 4.9 87.4 7.3 

Var 0.9 0.1 0.2 0.3 1.2 2.1 1.7 0.2 

Elastic Modulus 

 WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age E_WFS 

 - - - - - - day GPa 

Training Set 

Max. 1.3 0.6 3.3 0.5 2.3 15.9 365.0 45.7 

Min 0.0 0.4 1.5 0.1 0.0 0.0 3.0 18.4 

Avg 0.3 0.5 2.7 0.3 0.2 3.0 58.5 30.3 

SD 0.3 0.0 0.5 0.1 0.3 5.2 95.6 6.8 

Var 1.0 0.1 0.2 0.3 1.2 1.7 1.6 0.2 

Validation Set 

Max. 1.1 0.6 3.3 0.5 2.3 15.9 365.0 46.7 

Min 0.0 0.4 1.5 0.1 0.0 0.0 7.0 21.2 

Avg 0.3 0.5 2.6 0.3 0.2 2.8 82.4 30.9 

SD 0.3 0.1 0.5 0.1 0.4 4.3 117.5 6.4 

Var 1.0 0.1 0.2 0.3 1.6 1.5 1.4 0.2 

Split Tensile Strength 

 WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age STS_WFS 

 - - - - - - day MPa 

Training Set 

Max. 1.3 0.6 4.2 0.7 1.5 17.8 365.0 4.9 

Min 0.0 0.4 0.9 0.1 0.0 0.0 3.0 1.7 

Avg 0.4 0.5 2.9 0.3 0.3 3.0 47.3 3.1 

SD 0.3 0.0 0.6 0.1 0.4 5.7 73.3 0.7 

Var 0.8 0.1 0.2 0.3 1.1 1.9 1.6 0.2 

Validation Set 

Max. 1.1 0.6 3.2 0.4 2.3 3.7 365.0 4.9 

Min 0.0 0.4 2.4 0.1 0.0 0.0 7.0 2.2 

Avg 0.3 0.5 2.8 0.3 0.3 1.3 72.5 3.7 

SD 0.3 0.0 0.3 0.1 0.5 1.6 116.6 0.8 

Var 0.9 0.1 0.1 0.2 1.5 1.2 1.6 0.2 
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a) Compressive strength 

 

b) Elastic modulus 
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c) Split tensile strength 

Figure 1. Correlation, Distribution and Interpreting chart 

3.2. Sensitivity Analysis 

A sensitivity analysis study on the compressive strength, tensile strength, and elastic modulus of waste foundry sand 

(WFS) cement concrete involves investigating how changes in the proportions of WFS and other concrete components 

(e.g., cement, aggregate, and water) affect these key mechanical properties. It is important to evaluate how varying the 

content of WFS influences the compressive strength (concrete's ability to resist axial load), tensile strength (concrete's 

capacity to resist tension), and flexural strength (concrete's ability to withstand bending stresses).A preliminary 

sensitivity analysis was carried out on the collected database to estimate the impact of each input on the (Y) values. 

“Single variable per time” technique is used to determine the “Sensitivity Index” (SI) for each input using Hoffman & 

Gardener (1983) [25] formula as follows: 

𝑆𝐼 (𝑋𝑛) =  
𝑌(𝑋𝑚𝑎𝑥)−𝑌(𝑋𝑚𝑖𝑛)

𝑌(𝑋𝑚𝑎𝑥)
  (1) 

A sensitivity index of 1.0 indicates complete sensitivity, whereas a sensitivity index below 0.01 suggests that the 

model is insensitive to changes in the parameter [25]. Figure 2 presents the results of sensitivity analyses for CS_WFS, 

E_WFS, and STS_WFS. 

For compressive strength (CS_WFS), the sensitivity analysis shows that the constituents contributed as follows: 

curing age had a 41% influence, the WFS/C ratio 21%, the W/C ratio 2%, the CA/C ratio 21%, the FA/TA ratio 10%, 

the WFS/FA ratio 1%, and the 1000SP/C ratio 4% (see Figure 2-a). Analyzing these results highlights the following 

insights: 

 Curing Age (41%): This has the highest impact, indicating that curing significantly enhances compressive 

strength by ensuring proper cement hydration and improved matrix development. 

 WFS/C (21%) and CA/C (21%): These have equal influence, showing that the proportions of waste foundry 

sand and coarse aggregate relative to cement are critical. Adjusting these ratios likely affects the microstructure 

and load-bearing capacity of the concrete. 

 FA/TA (10%): The fine-to-total aggregate ratio moderately influences strength, emphasizing the importance of 

balanced aggregate proportions for optimized particle packing and reduced voids. 
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 W/C (2%): The low influence suggests that the water-to-cement ratio was within an optimal range in most mixes, 

reducing variability in strength. 

 WFS/FA (1%): This minimal influence implies that WFS acts primarily as an inert filler without significantly 

altering compressive strength. 

 1000SP/C (4%): Superplasticizers have a slight effect, likely due to already optimized workability or mix 

designs. 

Curing age remains the most critical factor, indicating that prolonged curing maximizes the strength potential of 

WFS concrete. The WFS/C and CA/C ratios are pivotal mix design parameters that directly affect mechanical 

performance, emphasizing the need for precise control during batching. FA/TA impacts particle distribution and void 

content, while W/C ratio demonstrates diminishing returns, suggesting hydration effects dominate once W/C ratios are 

optimized. Superplasticizers and WFS/FA play minor roles, with WFS largely functioning as a filler. 

In practice, extended curing durations should be prioritized to fully leverage hydration and strength development. 

Optimizing the WFS/C ratio is essential to balance strength and sustainability, avoiding excessive replacement levels 

that could compromise strength. Aggregate proportions (CA/C and FA/TA) should be carefully managed to minimize 

voids and maximize particle interlock. Maintaining a controlled W/C ratio helps prevent excessive variability in strength. 

Regular testing and optimization of WFS/C and CA/C ratios are recommended, alongside leveraging advanced statistical 

methods to refine sensitivity analyses and improve prediction models. 

For elastic modulus (E_WFS), the sensitivity analysis revealed the following contributions: curing age (30%), 

WFS/C (4%), W/C (15%), CA/C (11%), FA/TA (19%), WFS/FA (8%), and 1000SP/C (13%) (see Figure 2-b). Key 

interpretations include: 

 Curing Age (30%): The dominant factor indicates the critical role of hydration in determining concrete stiffness, 

as extended curing densifies the matrix and strengthens the bond between the cement paste and aggregates. 

 FA/TA (19%): This significantly impacts particle packing and matrix density, influencing stiffness. A higher 

fine aggregate proportion may improve the elastic modulus by reducing voids. 

 W/C (15%): A substantial effect is observed, as lower W/C ratios reduce porosity and enhance matrix density, 

leading to higher stiffness. 

 1000SP/C (13%): Moderately high impact suggests that superplasticizers improve workability, indirectly 

enhancing stiffness by promoting better compaction and fewer defects. 

 CA/C (11%): Coarse aggregate content significantly affects the elastic modulus due to the inherent stiffness and 

gradation of the aggregates. 

 WFS/FA (8%): This moderate influence indicates that replacing fine aggregate with WFS can alter the modulus, 

depending on the gradation, shape, and particle size of WFS. 

 WFS/C (4%): The minimal impact suggests WFS primarily acts as a filler rather than contributing directly to 

stiffness. 

Curing age is vital for achieving the full stiffness potential, while FA/TA and W/C ratios contribute significantly by 

reducing voids and enhancing density. Superplasticizers improve compaction and matrix homogeneity, and coarse 

aggregates primarily govern mechanical stiffness. However, WFS/FA and WFS/C ratios show moderate to minimal 

effects. 

Practically, extended curing should be prioritized to maximize the elastic modulus. Efficient curing techniques, such 

as water curing or curing compounds, should be employed. Aggregate proportions, particularly FA/TA and CA/C, 

should be optimized for balanced workability and stiffness. Controlling the W/C ratio is essential for achieving a denser, 

less porous matrix. Superplasticizers should be used judiciously to improve compaction without increasing water 

content. WFS content requires careful monitoring to avoid adverse effects on stiffness. Continued research is 

recommended to evaluate long-term stiffness and durability, and to explore how WFS gradation might positively 

influence stiffness under specific conditions. 

For splitting tensile strength (STS_WFS), the analysis showed curing age (1%), WFS/C (25%), W/C (26%), CA/C 

(1%), FA/TA (8%), WFS/FA (1%), and 1000SP/C (38%) as the contributing factors (see Figure 2-c). Analysis yields 

these insights: 

 1000SP/C (38%): Superplasticizer content relative to cement has the greatest influence, highlighting the critical 

role of workability and compaction in reducing internal voids and ensuring proper bonding between the matrix 

and aggregates. 

 W/C (26%): A significant influence, indicating that lower W/C ratios reduce porosity and improve bond strength 

between aggregates and cement paste, which is crucial for tensile performance. 
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 WFS/C (25%): Almost as influential as W/C, suggesting that WFS alters the microstructure and tensile strength 

depending on its quality, particle shape, and replacement level. 

 FA/TA (8%): Moderately affects tensile strength, as a higher FA/TA ratio improves particle packing, potentially 

enhancing resistance to cracking under tension. 

 Curing Age (1%): The low influence suggests that early hydration reactions primarily control tensile strength, 

with extended curing having less effect than on compressive strength. 

 CA/C (1%): Minimal impact indicates that coarse aggregate content does not significantly affect tensile behavior. 

 WFS/FA (1%): Negligible influence suggests WFS plays a secondary role when used as part of the fine aggregate 

system. 

Superplasticizers play a prominent role in improving workability and eliminating defects during compaction, which 

directly affects tensile strength. Maintaining a low W/C ratio is crucial for minimizing porosity and ensuring matrix 

integrity under tensile stress. While WFS/C influences tensile strength through changes in the microstructure, excessive 

replacement levels may weaken the matrix if WFS is not pozzolanic or introduces defects. Fine aggregates enhance 

tensile behavior by improving particle interlock and reducing weak zones. 

Curing age, CA/C, and WFS/FA have minimal influence on tensile strength compared to their effects on compressive 

strength and stiffness. The low role of curing suggests that tensile strength is mainly driven by early hydration reactions. 

Practically, it is advisable to optimize superplasticizer dosage to achieve high workability and uniform compaction 

while avoiding excessive amounts that could lead to segregation. Controlling the W/C ratio remains essential for 

minimizing porosity and enhancing tensile strength. Careful balancing of WFS/C is necessary to avoid excessive 

replacement that could weaken the matrix. Maintaining an appropriate FA/TA ratio improves matrix packing and 

reduces weak planes in the concrete. Even though curing age has a limited impact on tensile strength, sufficient early 

curing is still important for proper hydration and strength development. 

Recommendations include focusing on mix designs that emphasize superplasticizers, W/C ratio, and WFS content 

for tensile strength optimization. Further studies should investigate the optimal WFS replacement level and examine the 

influence of particle size and shape. Additionally, advanced modeling techniques, such as regression analysis or machine 

learning, should be employed to improve predictions of splitting tensile strength based on these parameters. 

 
a) With respect to CS_WFS 

 
b) With respect to E_WFS 
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c) With respect to STS_WFS 

Figure 2. Sensitivity analysis 

3.3. Research Program 

Five different ML techniques were used to predict the CS_WFS, E_WFS and STS_WFS of the waste foundry sand 

concrete using the collected database. These techniques are “Group Methods Data Handling Neural Network (GMDH-

NN)”, “Support vector machine (SVM), “K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest 

(RF)”. (GMDH-NN) model was created using GMDH Shell 3.0 software, while (SVM), (KNN), (Tree) and (RF) models 

were created using “Orange Data Mining” software version 3.36. The considered data flow diagram is shown in Figure 

3. The following section discusses the results of each model. The Accuracies of developed models were evaluated by 

comparing SSE, MAE, MSE, RMSE, Error %, Accuracy % and R2 between predicted and calculated shear strength 

parameters values. The definition of each used measurement is presented in Equations 2 to 7. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖 − 𝑦̂|𝑁

𝑖=1   (2) 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦̂)2𝑁

𝑖=1   (3) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸  (4) 

𝐸𝑟𝑟𝑜𝑟 % =
𝑅𝑀𝑆𝐸

𝑦̂
  (5) 

𝐴𝑐𝑐𝑢𝑟𝑐𝑦 % = 1 − 𝐸𝑟𝑟𝑜𝑟 %  (6) 

𝑅2 = 1 − 
∑(𝑦𝑖−𝑦̂)2

∑(𝑦𝑖−𝑦̅)2  (7) 

where: N is Total number of observations or data points, yi is the actual (observed) value of the target variable for the ith 

observation, 𝑦̂: The predicted value of the target variable for the ith observation, generated by the model, 𝑦̅: The mean 

(average) of all actual values in the dataset, and R: coefficient of determination. 

 

Figure 3. The data flow considered in Orange software 
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3.4. Theory of the Machine Learning Framework 

3.4.1. Group Methods Data Handling Neural Network (GMDH-NN) 

The Group Method of Data Handling (GMDH) is a self-organizing computational approach used for modeling 

complex systems [26]. It is based on neural networks and is particularly effective for tasks involving prediction, 

optimization, and system identification. Self-Organizing Architecture: GMDH builds a neural network structure 

iteratively by selecting and combining input features and their transformations as shown in Figure 4. The model evolves 

layer by layer, with each layer comprising polynomial neurons. Polynomial Neurons: GMDH uses polynomial functions 

(e.g., quadratic or linear forms) to approximate the relationships between inputs and outputs [26]. Each neuron generates 

multiple models based on input combinations.  

A selection criterion (e.g., minimum error or Akaike Information Criterion) determines which models advance to 

the next layer. The algorithm evaluates all possible combinations of inputs and retains only the most relevant ones. This 

reduces overfitting and improves interpretability. How GMDH-NN Works: Split data into training and validation sets. 

Inputs may include direct variables or their transformations (e.g., polynomial terms). At each layer, neurons are created 

using all possible pairs of inputs. Polynomial functions approximate relationships between inputs and the target variable. 

Evaluate each neuron based on the validation set. Retain only the top-performing neurons for the next layer. The process 

stops when adding new layers no longer improves performance or leads to overfitting [27]. The best-performing neurons 

across all layers are combined to form the final predictive model. GMDH-NN for Concrete Strength Prediction: Inputs: 

Mix proportions: W/C, WFS/C, CA/C, FA/TA, 1000SP/C, etc. Curing conditions: Curing Age (days). Outputs: 

Compressive strength, tensile strength, or flexural strength. Advantages in Concrete Strength Prediction: Nonlinear 

Relationships: GMDH-NN can capture complex, nonlinear dependencies between input parameters and strength 

properties. Feature Selection: Automatically identifies the most influential factors (e.g., W/C ratio or curing age). 

Scalability: Effective for datasets with many features or limited size. 

 

Figure 4. The theoretical network of the GMDH-NN 

3.4.2. Support vector machine (SVM) 

Support Vector Machines (SVMs) are supervised learning algorithms used for both classification and regression 

tasks. They are particularly effective in high-dimensional spaces and are widely used for non-linear decision-making. 

Hyperplane: SVM aims to find the optimal hyperplane that best separates the data into different categories 

(classification) or predicts the output variable (regression) (see Figure 5). Support Vectors: The data points closest to 

the hyperplane, which define its position and orientation [28]. These are the critical points for the model. Margin: The 

distance between the hyperplane and the nearest data points on either side. SVM maximizes this margin to create a 

robust model. Kernel Trick: For non-linear data, SVM transforms input features into a higher-dimensional space using 

kernels. Common kernels include: Linear Kernel: Works for linearly separable data. Polynomial Kernel: Maps data into 

polynomial feature space. Radial Basis Function (RBF) Kernel: Handles non-linear separations effectively. Sigmoid 

Kernel: Similar to a neural network's activation function. SVM for Regression (SVR): In Support Vector Regression 

(SVR), the goal is to predict continuous values while maintaining a margin of tolerance ϵ around the hyperplane. The 

model tries to fit data points within a tube of width ϵ (controlled by the hyperparameter ϵ). Points outside the tube are 

penalized based on their distance from the margin [28]. SVM for Concrete Strength Prediction Input Features: Mix 

Proportions: W/C, WFS/C, CA/C, FA/TA, 1000SP/C, etc. Curing Age: Number of days. Target Variables: Compressive 

Strength, Tensile Strength, or Flexural Strength. 
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Figure 5. The theoretical network of the SVM 

Considering dataset of labeled instances (xi,yi)) where xi∈Rn and yi∈{−1,1}, the decision boundary becomes a 

hyperplane w⋅x+b=0, where w = weight vector perpendicular to the hyperplane, and b= bias term. The optimization 

problem to maximize the margin is formulated as: 

1

2
||𝑤||2

𝑤,𝑏

𝑚𝑖𝑛
  (8) 

Subject to the constraints: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1   ∀𝑖  (9) 

In the case of non-linearly separable data, SVM applies the kernel functions to project data into a higher-dimensional 

space, where a linear separation is possible. Common kernels include the linear, polynomial, and radial basis function 

(RBF) kernels. The decision function for classification is then: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏𝑛
𝑖=1 )  (10) 

where αi is Lagrange multipliers, and K(x,xi) is chosen kernel function. 

3.4.3. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple, yet powerful supervised learning algorithm (see illustration in Figure 6) 

used for both regression and classification tasks. It makes predictions based on the similarity of input data points to their 

nearest neighbors in the feature space. Non-parametric: KNN does not assume any specific form for the underlying data 

distribution [23]. Lazy Learning: It does not build an explicit model during training; predictions are made on-the-fly. 

Sensitive to Scaling: Input features need to be scaled to ensure fair distance calculations. Figure 6 shows the illustration 

of the K-nearest neighbours. 

 

Figure 6. Illustration of the K-nearest neighbours 

It operates by estimating the distance between the query instance and all other points in the dataset, commonly using 

Euclidean distance for continuous variables: 

𝑑(𝑥, 𝑥 ′) = √∑ (𝑥𝑖 − 𝑥𝑖
′)2𝑛

𝑖=1   (11) 

where x and x′ are two instances in n-dimensional space. 



Civil Engineering Journal         Vol. 11, No. 06, June, 2025 

2596 

 

3.4.4. Tree Decision (Tree) 

A decision tree is a predictive modeling tool used for classification and regression tasks. It uses a tree-like structure 

to make decisions based on input features, splitting data at nodes according to the feature that provides the most 

information gain or minimizes a specific error metric [26, 29]. Below is a detailed overview of decision trees, including 

their structure, key concepts, an example of implementation, and how they can be applied to concrete strength prediction. 

Structure of a Decision Tree includes: Root Node: The starting point where the first decision is made based on a feature 

[27]. Internal Nodes: Represent decision points that split the dataset based on feature values. Branches: Paths that 

connect nodes, representing possible outcomes of a decision. Leaf Nodes: Terminal points of the tree, where predictions 

or classifications are made (see illustration in Figure 7). For example, considering a dataset D with classes C, the tree 

grows by selecting features that maximize the information gain or minimize the impurity. Hence, information gain IG 

for a split on feature X is respected as: 

𝐼𝐺(𝐷. 𝑋) = 𝐻(𝐷) − ∑
|𝐷𝑣|

|𝐷|𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝑋) 𝐻(𝐷𝑣)  (12) 

where H(D) is the entropy or impurity of dataset D, and Dv is the subset of D for each value v of feature X. 

 

Figure 7. The theoretical network of the decision Tree 

3.4.5. Random Forest (RF) 

Using Random Forest (RF) for predicting the strength of waste foundry sand (WFS) cement concrete is a powerful 

approach due to its ability to handle complex, non-linear relationships and interactions between multiple variables. 

Random Forest (RF) is a powerful machine-learning algorithm commonly used for regression and classification tasks 

[20]. It operates by constructing a multitude of decision trees during training and outputs either the average prediction 

(for regression) or the majority vote (for classification) from all the trees [23]. Ensemble Learning: RF combines the 

predictions of multiple decision trees, making it more robust and accurate [26, 29]. Bootstrap Aggregation (Bagging): 

Each tree is trained on a random subset (sampled with replacement) of the dataset. This reduces overfitting by 

diversifying the individual trees. Feature Randomness: At each split in a tree, only a random subset of features is 

considered. This further decorrelates the trees and enhances performance. Non-Linear Relationships: RF can model 

complex, non-linear interactions between variables. Feature Importance: RF provides insights into which features most 

influence the target variable. Robustness: Resistant to overfitting, especially when there are sufficient trees in the forest 

[23]. Interpretability: While not as interpretable as simple models like linear regression, RF provides feature importance 

scores and partial dependence plots (see tree illustration in Figure 8).  

For a training dataset D with n samples, for instance, Random Forest will construct m decision trees T1, T2, …, Tm. 

Thus, each of the trees is trained on a bootstrap sample Di (random sample with replacement) from D, and at each node, 

a random subset of k features is selected to find the best split. For classification, the output is determined by a majority 

vote across all trees 

𝑦̂ = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑚(𝑥))  (13) 
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Figure 8. The theoretical network of the RF 

For regression, the output is the average prediction from all trees: 

𝑦̂ =
1

𝑚
∑ 𝑇𝑖(𝑥)𝑚

𝑖=1   (14) 

4. Results Presentation and Discussion 

4.1. GMDH-NN WFS Cement Concrete Strength Models 

The GMDH-NN model developed for predicting the strength properties of waste foundry sand (WFS) cement 

concrete was trained and tested using a 75/25 split. The model utilized the following hyperparameters: 50 variables 

dropped after ranking, RMSE as the validation criterion, correlation-based variable ranking, a custom neuron function, 

a maximum of 3 layers, an initial layer width of 1000 neurons, a maximum power of a variable of 3, a minimum power 

of -3, a maximum total power in a term of 3, and a maximum of 3 variables per term, as illustrated in Figure 9. 

For the compressive strength model, the GMDH-NN achieved: 

 R² = 0.77, indicating that 77% of the variance in compressive strength is explained by the model. 

 Accuracy = 0.885, suggesting acceptable predictive performance for practical applications, although with room 

for improvement. 

 Error = 0.115, reflecting an average deviation of 11.5% from actual values. 

 RMSE = 3.75, MSE = 14.35, MAE = 2.85, and SSE = 2820.5. 

Implications: The model demonstrates solid performance given the complexity of compressive strength prediction. 

Some underperformance may be due to nonlinearities or interactions not fully captured by the GMDH-NN configuration. 

For the elastic modulus model, the GMDH-NN achieved: 

 R² = 0.825, demonstrating stronger predictive capability than the compressive strength model. 

 Accuracy = 0.915, with Error = 0.09, indicating reliable predictions with only a 9% average deviation from actual 

values. 

 RMSE = 2.8, MSE = 7.65, MAE = 2.25, and SSE = 600.5. 

Implications: The elastic modulus model benefits significantly from the GMDH-NN’s ability to capture correlations 

and interactions among variables. Its precise predictions make it highly suitable for practical applications. 

For the splitting tensile strength model, the GMDH-NN achieved: 

 R² = 0.75, comparable to the compressive strength model but slightly lower than for elastic modulus. 

 Accuracy = 0.885, with Error = 0.115. 

 RMSE = 0.4, MSE = 0.15, MAE = 0.3, and SSE = 17. 

Implications: The splitting tensile strength model provides satisfactory predictions, although the relatively lower R² 

suggests there is room for improvement. While the model captures most of the variance, further feature engineering or 

hyperparameter tuning could enhance accuracy. 
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Strengths of the GMDH-NN Model: 

 Self-Organizing Capability: Dynamically selects relevant input variables and polynomial terms, reducing the 

risk of overfitting. 

 Versatility: Successfully models compressive strength, elastic modulus, and splitting tensile strength with 

consistent accuracy. 

 Nonlinear Feature Handling: Effectively captures complex relationships between mix proportions, curing age, 

and strength properties. 

While the R² values are satisfactory, further improvements could be achieved by: 

 Incorporating additional features, such as curing temperature or specific admixtures. 

 Exploring higher initial layer widths or deeper architectures to capture more complex interactions. 

 Fine-tuning hyperparameters, such as adjusting power ranges or refining neuron functions. 

 Using alternative selection criteria, like cross-validation instead of relying solely on RMSE. 

 Expanding the dataset to enhance the model’s generalizability and robustness. 

 Benchmarking against other machine learning techniques (e.g., Random Forest, SVM) to assess whether GMDH-

NN offers the optimal balance of accuracy and complexity. 

Overall, the GMDH-NN model demonstrates strong predictive performance for compressive strength, elastic 

modulus, and splitting tensile strength of WFS cement concrete. Among the three, the elastic modulus model stands out 

as the best performer (R² = 0.825, Accuracy = 0.915), though all models are suitable for practical applications with 

acceptable error margins. Further refinements in feature engineering, model parameters, and dataset size could lead to 

even greater predictive accuracy. 

Equations 15, 16, and 17 provide the closed-form solutions for the compressive strength, elastic modulus, and 

splitting tensile strength models, respectively. 

CS_WFS = 1408.58 + "WFS/C"*"1000SP/C"*Age*0.00552301 + "W/C"*Age*23.6066 + "W/C"*Age^2*(-0.000768451) + "W/C"*Age^(-

1)*(-336.072) + "W/C"*Age^(-2)*1683.95 + "W/C"^2*(-11662.1) + "W/C"^2*"CA/C"*3674.33 + "W/C"^2*"CA/C"^(-1)*14945.6 + 

"W/C"^2*"FA/TA"*(-995.659) + "W/C"^2*"FA/TA"^(-1)*32.7605 + "W/C"^2*"WFS/FA"*211.343 + "W/C"^2*"1000SP/C"*(-119.233) + 

"W/C"^2*Age*(-26.739) + "W/C"^3*(-2781.21) + "W/C"^(-1)*"CA/C"*271.437 + "W/C"^(-1)*"CA/C"*"FA/TA"^(-1)*42.5554 + "W/C"^(-

1)*"CA/C"*"1000SP/C"*4.68603 + "W/C"^(-1)*"CA/C"*Age*(-0.433006) + "W/C"^(-1)*"CA/C"*Age^(-1)*5.82337 + "W/C"^(-

1)*"CA/C"^2*(-8.33253) + "W/C"^(-1)*"CA/C"^(-1)*"FA/TA"*(-1545.91) + "W/C"^(-1)*"CA/C"^(-1)*"1000SP/C"*88.3044 + "W/C"^(-

1)*"CA/C"^(-1)*Age*(-0.0695051) + "W/C"^(-1)*"FA/TA"*722.621 + "W/C"^(-1)*"FA/TA"*"1000SP/C"*38.8956 + "W/C"^(-

1)*"FA/TA"*Age*(-0.318163) + "W/C"^(-1)*"FA/TA"^(-1)*(-76.7526) + "W/C"^(-1)*"FA/TA"^(-1)*"WFS/FA"*3.25934 + "W/C"^(-

1)*"FA/TA"^(-1)*"1000SP/C"*3.99224 + "W/C"^(-1)*"FA/TA"^(-1)*Age*(-0.0450544) + "W/C"^(-1)*"WFS/FA"*Age*0.0218961 + 

"W/C"^(-1)*"WFS/FA"^2*(-6.00962) + "W/C"^(-1)*"1000SP/C"*(-130.049) + "W/C"^(-1)*"1000SP/C"*Age*(-0.00135914) + "W/C"^(-

1)*"1000SP/C"*Age^(-1)*(-5.99298) + "W/C"^(-1)*Age*(-5.07361) + "W/C"^(-1)*Age^2*4.94843e-05 + "W/C"^(-2)*(-116.491) + 

"W/C"^(-2)*"1000SP/C"*8.48573 + "W/C"^(-2)*Age*1.41566 + "CA/C"*(-1024.01) + "CA/C"*"FA/TA"*"1000SP/C"*(-27.8227) + 

"CA/C"*"FA/TA"*Age*0.00217005 + "CA/C"*"FA/TA"^(-1)*"1000SP/C"*(-2.48045) + "CA/C"*"FA/TA"^(-1)*Age*0.0196678 + 

"CA/C"*"WFS/FA"*(-52.1479) + "CA/C"*"WFS/FA"*"1000SP/C"*(-0.414378) + "CA/C"*"WFS/FA"*Age*(-0.0347902) + 

"CA/C"*"1000SP/C"*86.188 + "CA/C"*"1000SP/C"*Age^(-1)*4.52011 + "CA/C"*"1000SP/C"^2*(-0.0429631) + "CA/C"*Age*0.796254 + 

"CA/C"*Age^2*4.37538e-05 + "CA/C"*Age^(-2)*(-184.864) + "CA/C"^2*"FA/TA"*(-30.124) + "CA/C"^2*"FA/TA"^(-1)*(-12.9877) + 

"CA/C"^2*"WFS/FA"*9.36123 + "CA/C"^2*"1000SP/C"*(-9.76699) 

(15) 

 

E_WFS = 19.6635 + "W/C"^(-1)*"CA/C"*(-9.48673) + "W/C"^(-1)*"FA/TA"^2*(-198.68) + "W/C"^(-2)*12.8252 + "CA/C"*"1000SP/C"*(-

29.8099) + "CA/C"*"1000SP/C"^2*0.0246579 + "CA/C"^2*26.3164 + "CA/C"^2*"FA/TA"*10.461 + "CA/C"^2*"1000SP/C"*7.43021 + 

"CA/C"^3*(-7.58171) + "CA/C"^(-1)*"FA/TA"*(-489.077) + "CA/C"^(-1)*"FA/TA"*"WFS/FA"*(-77.1434) + "CA/C"^(-

1)*"FA/TA"*"1000SP/C"*116.25 + "CA/C"^(-1)*"FA/TA"^2*1359.21 + "CA/C"^(-1)*"FA/TA"^(-1)*"1000SP/C"*6.77477 

 

(16) 

STS_WFS = 10.9142 + "WFS/C"*"CA/C"^(-2)*3.14175 + "W/C"^(-2)*Age*(-0.00385172) + "W/C"^(-2)*Age^(-1)*(-1.718) + "W/C"^(-

3)*0.0710875 + "CA/C"*(-2.00363) + "CA/C"*"FA/TA"*"WFS/FA"*1.01286 + "CA/C"*"FA/TA"*"1000SP/C"*18.3634 + 

"CA/C"*"FA/TA"*Age*0.0755048 + "CA/C"*"FA/TA"*Age^(-1)*1.49366 + "CA/C"*"FA/TA"^2*1.20013 + "CA/C"*"FA/TA"^(-

1)*"1000SP/C"*(-0.0787705) + "CA/C"*"FA/TA"^(-1)*Age*(-0.00699899) + "CA/C"*"FA/TA"^(-1)*Age^(-1)*(-0.120925) + 

"CA/C"*"FA/TA"^(-2)*0.0137339 + "CA/C"*"WFS/FA"*"1000SP/C"*(-0.157937) + "CA/C"*"WFS/FA"*Age*0.0257611 + 

"CA/C"*"WFS/FA"*Age^(-1)*1.66632 + "CA/C"*"1000SP/C"*(-17.0813) + "CA/C"*"1000SP/C"*Age*3.47694e-05 + 

"CA/C"*"1000SP/C"*Age^(-1)*0.103497 + "CA/C"*"1000SP/C"^2*0.0166741 + "CA/C"*Age*0.0534488 + "CA/C"*Age^2*(-2.23536e-05) 

+ "CA/C"^2*(-0.277902) + "CA/C"^2*"FA/TA"*0.489598 + "CA/C"^2*"1000SP/C"*2.32653 + "CA/C"^2*Age*(-0.00232576) + "CA/C"^(-

1)*"FA/TA"*"1000SP/C"*210.071 + "CA/C"^(-1)*"FA/TA"*Age*0.357452 + "CA/C"^(-1)*"FA/TA"^(-1)*"WFS/FA"*(-0.449399) + 

"CA/C"^(-1)*"FA/TA"^(-1)*"1000SP/C"*0.718041 + "CA/C"^(-1)*"FA/TA"^(-1)*Age*0.0360948 + "CA/C"^(-1)*"FA/TA"^(-1)*Age^(-

1)*(-4.00645) + "CA/C"^(-1)*"WFS/FA"*Age*(-0.185519) + "CA/C"^(-1)*"1000SP/C"*234.101 + "CA/C"^(-1)*"1000SP/C"^2*(-0.504111) 

+ "CA/C"^(-1)*Age*(-0.359478) + "CA/C"^(-1)*Age^2*0.000193364 + "CA/C"^(-2)*(-14.616) + "CA/C"^(-2)*"1000SP/C"*(-404.023) + 

"CA/C"^(-2)*Age*0.598915 + "FA/TA"*"WFS/FA"*Age*(-0.0796514) + "FA/TA"*"1000SP/C"*(-132.347) + 

"FA/TA"*"1000SP/C"^2*0.260353 + "FA/TA"*Age*(-0.478727) + "FA/TA"*Age^(-2)*20.3695 

(17) 
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Figure 9. The considered hyper-parameters of (GMDH-NN) model 

 
a) with respect to CS_WFS 

 
b) with respect to E_WFS 

 
c) with respect to STS_WFS 

Figure 10. Relation between predicted and calculated strength using (GMDH-NN) 
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4.2. KNN WFS Cement Concrete Strength Models 

The kNN model developed for predicting the strength properties of waste foundry sand (WFS) cement concrete was 

configured with the following hyperparameters: one neighbor, Euclidean distance metric, and distance-based weighting, 

as shown in Figure 11. 

For the compressive strength model, the kNN achieved: 

 R² = 0.96, indicating that 96% of the variance in compressive strength is explained by the model. 

 Accuracy = 0.955, demonstrating high reliability, with an average deviation of only 4.5% from the actual values. 

 RMSE = 1.5, MSE = 2.25, MAE = 1.3, and SSE = 425, all suggesting minimal prediction errors. 

Implications: The kNN model effectively captures the nonlinear relationships present in the compressive strength 

data. Utilizing a single neighbor combined with distance-based weighting helps the model avoid overfitting while 

maintaining high precision. 

For the elastic modulus model, the kNN achieved: 

 R² = 0.96, matching the performance of the compressive strength model. 

 Accuracy = 0.95, with an Error of 0.05, indicating excellent predictive capability, though slightly lower than that 

of the compressive strength model. 

 RMSE = 1.5, MSE = 2.15, MAE = 1.2, and SSE = 156.5, confirming low prediction errors. 

Implications: The model accurately captures the factors affecting elastic modulus and delivers near-perfect 

predictions. The Euclidean metric and distance-based weighting scheme effectively preserve precision in elastic 

modulus estimations. 

For the splitting tensile strength model, the kNN achieved: 

 R² = 0.96, consistent with the other models. 

 Accuracy = 0.955, with an Error of 0.045, highlighting the model’s strong reliability. 

 RMSE = 0.15, MSE = 0.0, MAE = 0.1, and SSE = 3, indicating extremely low errors, which is consistent with 

the smaller scale of tensile strength values. 

Implications: The kNN model performs exceptionally well in predicting splitting tensile strength, with negligible 

errors for practical applications. The high R² and minimal SSE suggest that the model successfully captures critical 

interactions influencing tensile strength. 

Strengths of the kNN Model: 

 High Accuracy: R² values of 0.96 across all three strength properties demonstrate excellent predictive capability. 

 Low Errors: Metrics such as RMSE, MSE, MAE, and SSE are all minimal, highlighting the model's precision. 

 Simplicity: The kNN algorithm is easy to implement and requires minimal parameter tuning. 

 Effective Weighting: Distance-based weighting ensures that closer, more relevant data points exert greater 

influence on predictions, effectively capturing complex relationships in the data. 

Considerations for Improvement: 

 Using k = 1 can make the model sensitive to noise or outliers. Increasing k slightly (e.g., to 3 or 5) could improve 

stability without significantly compromising accuracy. 

 For larger datasets, kNN can become computationally expensive due to distance calculations for each prediction. 

Alternative methods like Random Forests may offer better scalability. 

 kNN models may struggle to generalize well to unseen data if the dataset is small. Applying cross-validation or 

expanding the training set can help mitigate this limitation. 

While the GMDH-NN model performed well (R² ranging from 0.75 to 0.825), the kNN model significantly 

outperforms it in terms of R², accuracy, and error metrics. In particular, kNN achieves superior generalization and 

precision, especially for predicting compressive strength and elastic modulus. Compared to Random Forests, kNN 

delivers comparable or even better performance in this study, although Random Forests may be more robust when 

dealing with noisy data or large feature sets. 

Overall, the kNN model demonstrates exceptional performance in predicting the compressive strength, elastic 

modulus, and splitting tensile strength of WFS cement concrete. With high R² values, accuracy exceeding 95%, and 

minimal errors, it serves as a reliable and precise tool for these applications. Further improvements could be achieved 
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by fine-tuning the number of neighbors and exploring alternative distance metrics to enhance the model’s robustness 

and scalability (see Figure 12 for detailed results). 

 

Figure 11. The considered hyper-parameters of (KNN) model 

 
a) With respect to CS_WFS 

 
b) With respect to E_WFS 

 
c) With respect to STS_WFS 

Figure 12. Relation between predicted and calculated strength using (KNN) 
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4.3. SVM WFS Cement Concrete Strength Models 

The Support Vector Machine (SVM) model developed for predicting the strength properties of waste foundry sand 

(WFS) cement concrete was configured with the following hyperparameters: cost (C) of 100.00, regression loss epsilon 

of 0.10, a polynomial kernel, and a numerical tolerance of 1.0000, as shown in Figure 13. 

For the compressive strength model, the SVM achieved: 

 R² = 0.96, indicating that 96% of the variance in compressive strength is explained by the model. 

 Accuracy = 0.93, with an average error of 5% between predicted and actual values. 

 RMSE = 1.55, MSE = 2.5, MAE = 1.35, and SSE = 484.5, suggesting minimal prediction errors. 

Implications: The model effectively captures complex nonlinear relationships affecting compressive strength. The 

high C value prioritizes precision in fitting the training data, though it may reduce generalization capacity. 

For the elastic modulus model, the SVM achieved: 

 R² = 0.955, slightly lower than the compressive strength model but still excellent. 

 Accuracy = 0.93, with an Error of 0.05, indicating robust predictive capability. 

 RMSE = 1.55, MSE = 2.45, MAE = 1.25, and SSE = 188, reflecting low prediction errors. 

Implications: The SVM handles elastic modulus prediction with high reliability, capturing nonlinear relationships 

effectively. The polynomial kernel contributes to strong generalization for elastic modulus dependencies. 

For the splitting tensile strength model, the SVM achieved: 

 R² = 0.935, slightly lower than the other models but still demonstrating strong performance. 

 Accuracy = 0.92, with an Error of 0.05, highlighting consistent and reliable predictions. 

 RMSE = 0.2, MSE = 0.05, MAE = 0.15, and SSE = 5, indicating very small prediction errors, consistent with the 

smaller magnitude of tensile strength values. 

Implications: The model predicts splitting tensile strength with high accuracy, although its performance is slightly 

lower than for compressive strength and elastic modulus. The minimal SSE confirms negligible cumulative error across 

the dataset. 

Strengths of the SVM Model: 

 High Predictive Performance: R² values above 0.93 across all models reflect the SVM's capability to model 

nonlinear relationships accurately. 

 Robustness: Similar RMSE, MAE, and accuracy metrics across different strength properties indicate consistent 

model behavior. 

 Polynomial Kernel Effectiveness: Captures complex interactions between input variables, enhancing prediction 

precision. 

Considerations for Improvement: 

 The high C value (100.00) may increase the risk of overfitting, especially with smaller or noisier datasets. 

Reducing C (e.g., to 10 or 50) might improve generalization without sacrificing much accuracy. 

 Exploring alternative kernels, such as the radial basis function (RBF), could further enhance performance for 

specific strength properties. 

 SVMs with polynomial kernels and high C values can become computationally intensive for large datasets. 

Simplifying the kernel choice or adjusting numerical tolerance could reduce training time. 

 While the model achieves high accuracy (93–95%), slight improvements may be possible through enhanced 

feature engineering or incorporating additional variables (e.g., curing conditions, admixtures). 

In comparison, the SVM model achieves similar R² values to kNN (approximately 0.96) but slightly lower accuracy 

(93–95% vs. 95–96% for kNN). Although SVM offers greater flexibility in handling nonlinear relationships, it is more 

computationally demanding. Nevertheless, SVM significantly outperforms the GMDH-NN model (R² = 0.75–0.825) 

across all metrics, making it a superior choice for precision and reliability. SVM also offers comparable performance to 

Random Forests, with the polynomial kernel potentially better capturing specific nonlinearities in the data, depending 

on the strength property in question. 

Overall, the SVM model demonstrates excellent predictive performance for the compressive strength, elastic 

modulus, and splitting tensile strength of WFS cement concrete. With R² values exceeding 0.93 and consistently high 

accuracy, it serves as a reliable and precise tool for these applications. Fine-tuning the model’s hyperparameters and 

exploring alternative kernels could further optimize its performance (see Figure 14 for detailed results). 
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Figure 13. The considered hyper-parameters of (SVM) model 

 
a) With respect to CS_WFS 

 
b) With respect to E_WFS 

 
c) With respect to STS_WFS 

Figure 14. Relation between predicted and calculated strength using (SVM) 
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4.4. Tree WFS Cement Concrete Strength Models 

The Decision Tree model developed for predicting the strength properties of waste foundry sand (WFS) cement 

concrete was configured with the following hyperparameters: a minimum of 1 instance in each leaf, prohibition of 

splitting subsets smaller than 1, a maximum tree depth of 8, and a stopping criterion requiring that splitting ceases when 

95% of a subset belongs to the same class or range, as illustrated in Figures 15 and 16. 

For the compressive strength model, the Decision Tree achieved: 

 R² = 0.87, indicating that 87% of the variance in compressive strength is explained by the model. 

 Accuracy = 0.91, which is reasonable but lower than that achieved by other models like SVM or kNN. 

 RMSE = 2.95, MSE = 8.75, MAE = 1.95, and SSE = 1524.5, reflecting moderate prediction errors. 

Implications: The model shows some difficulty fully capturing the complex nonlinear relationships governing 

compressive strength. While the limited tree depth of 8 helps avoid overfitting, it also constrains the model’s capacity 

for precision. 

For the elastic modulus model, the Decision Tree achieved: 

 R² = 0.96, demonstrating excellent predictive performance. 

 Accuracy = 0.95, with an Error of 0.05, indicating reliable predictions consistent with high-performing models 

like kNN and SVM. 

 RMSE = 1.55, MSE = 2.35, MAE = 1.25, and SSE = 164, confirming low prediction errors. 

Implications: The model handles elastic modulus predictions very effectively. The stopping criteria and controlled 

tree depth help maintain a good balance between model complexity and predictive accuracy for this property. 

For the splitting tensile strength model, the Decision Tree achieved: 

 R² = 0.845, slightly lower than for the compressive strength model but still acceptable. 

 Accuracy = 0.915, with an Error of 0.085, indicating moderate reliability. 

 RMSE = 0.3, MSE = 0.05, MAE = 0.15, and SSE = 14.5, reflecting minimal prediction errors, consistent with 

the smaller magnitude of tensile strength values. 

Implications: The model performs well for splitting tensile strength, though further hyperparameter tuning may 

enhance its performance. 

Strengths of the Decision Tree Model: 

 Interpretability: Decision Trees are inherently transparent, allowing clear identification of how input variables 

influence predictions. 

 Strong Performance for Elastic Modulus: The model performs exceptionally well for elastic modulus, 

achieving R² = 0.96 with minimal errors. 

 Controlled Complexity: The imposed limits on tree depth and subset splitting help prevent overfitting while 

maintaining reasonable accuracy. 

Limitations and Considerations: 

 Weaker Performance for Compressive and Tensile Strength: While the R² values for compressive (0.87) and 

tensile strength (0.845) are reasonable, they fall short of the performance achieved by SVM and kNN. Increasing 

the maximum tree depth (e.g., to 10) or relaxing the stopping criterion (e.g., majority at 90%) could potentially 

improve predictions. 

 High Sensitivity to Hyperparameters: The model’s performance heavily depends on parameters like tree depth 

and leaf size. Techniques such as cross-validation and grid search can be valuable for optimization. 

 Risk of Overfitting with Small Leaves: Setting the minimum leaf size to 1 instance increases the risk of fitting 

noise, especially in smaller datasets. Raising this to 2–5 instances may enhance generalization. 

Compared to kNN (R² = 0.96), the Decision Tree underperforms in predicting compressive and tensile strength but 

matches kNN’s performance for elastic modulus. SVM consistently outperforms the Decision Tree across all properties, 

offering higher R² values, greater accuracy, and lower RMSE. Random Forests typically surpass single decision trees 

by aggregating multiple trees, which reduces variance and increases robustness. If computational resources allow, 

transitioning to Random Forests would be a superior option. 
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Overall, the Decision Tree model performs well for elastic modulus predictions (R² = 0.96) and reasonably for 

compressive strength (R² = 0.87) and splitting tensile strength (R² = 0.845). However, it lags behind advanced models 

like SVM and kNN in terms of predictive accuracy and power. Fine-tuning hyperparameters or moving toward ensemble 

methods like Random Forests could significantly improve performance (see Figure 17 for detailed results). 

 

Figure 15. The considered hyper-parameters of (Tree) model 

 

a) With respect to CS_WFS 

 

b) With respect to E_WFS 

 

c) With respect to STS_WFS 

Figure 16. The layout of the developed (Tree) model 

 

a) With respect to CS_WFS 
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b) With respect to E_WFS 

 

c) With respect to STS_WFS 

Figure 17. Relation between predicted and calculated strength using (Tree) 

4.5. RF WFS Cement Concrete Strength Models 

The Random Forest (RF) model developed for predicting the strength properties of waste foundry sand (WFS) 

cement concrete was configured with the following hyperparameters: eight trees, two attributes considered at each 

split, a maximum tree depth of eight, and a minimum subset size of two for splitting, as shown in Figures 18 and 

19. 

For the compressive strength model, the RF achieved: 

 R² = 0.94, indicating that 94% of the variance in compressive strength is explained by the model. 

 Accuracy = 0.94, with an Error of 0.06, reflecting high reliability and low prediction errors. 

 RMSE = 2.0, MSE = 8.05, MAE = 1.55, and SSE = 945, suggesting precise predictions with minimal deviations. 

Implications: The RF model effectively balances bias and variance, capturing the nonlinear relationships 

influencing compressive strength. Increasing the number of trees could potentially enhance performance further. 

For the elastic modulus model, the RF achieved: 

 R² = 0.935, demonstrating strong predictive capability and explaining 93.5% of the variance. 

 Accuracy = 0.94, with an Error of 0.06, indicating consistently reliable predictions. 

 RMSE = 1.85, MSE = 2.5, MAE = 1.35, and SSE = 216.5, confirming low prediction errors, slightly lower than 

those for compressive strength. 

Implications: The RF model captures elastic modulus behavior well and performs comparably to SVM and kNN. 

Limiting tree depth helps prevent overfitting while maintaining strong accuracy. 

For the splitting tensile strength model, the RF achieved: 
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 R² = 0.92, indicating slightly lower predictive performance compared to compressive strength and elastic 

modulus. 

 Accuracy = 0.94, with an Error of 0.06, showing reliable predictions with minimal error. 

 RMSE = 0.05, MAE = 0.15, and SSE = 6, reflecting very low prediction errors consistent with the smaller range 

of tensile strength values. 

Implications: The RF model performs well for splitting tensile strength but slightly less effectively than for the 

other two properties. 

Strengths of the RF Model: 

 High Predictive Performance: R² values ranging from 0.92 to 0.94 demonstrate RF’s strong ability to model 

complex, nonlinear relationships in concrete strength properties. 

 Low Errors: Consistently low RMSE, MAE, and SSE values confirm the model’s reliability and precision. 

 Good Generalization: Limiting tree depth and the number of attributes per split improves generalization without 

sacrificing accuracy. 

 Variance Reduction: Combining multiple decision trees reduces prediction variance, enhancing model stability. 

Considerations for Improvement: 

 Using only eight trees may limit ensemble diversity and predictive power. Increasing the number of trees to 50–

100 could further stabilize and improve predictions. 

 While a tree depth of eight balances bias and variance, experimenting with deeper trees (e.g., depth = 10) might 

improve performance for splitting tensile strength. 

 Conducting feature importance analysis could identify key variables, allowing for more targeted and efficient 

modeling. 

 RF models with larger ensembles and deeper trees can increase training time, requiring sufficient computational 

resources. 

In comparison, RF achieves comparable R² values (0.92–0.94) but often exhibits lower errors and better robustness 

due to ensemble averaging. Although SVM slightly outperforms RF for elastic modulus prediction (R² = 0.955), the two 

models perform similarly for compressive and tensile strength. RF consistently surpasses standalone decision trees by 

reducing variance and enhancing generalization. It significantly outperforms the GMDH-NN model (R² = 0.75–0.825), 

making it a stronger choice for modeling concrete strength properties. 

Overall, the RF model demonstrates excellent performance in predicting the compressive strength, elastic 

modulus, and splitting tensile strength of WFS cement concrete. With R² values exceeding 0.92 and consistently 

low error metrics across all properties, it stands as a robust and reliable tool for this application. Nonetheless, 

increasing the number of trees and fine-tuning the tree depth could further enhance its predictive capabilities (see 

Figure 20 for detailed results). 

 

Figure 18. The considered hyper-parameters of (RF) model 
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a) With respect to CS_WFS 

 

b) With respect to E_WFS 

 

c) With respect to STS_WFS 

Figure 19. Pythagorean Forest diagram for the developed (RF) models 
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a) With respect to CS_WFS 

 
b) With respect to E_WFS 

 
c) With respect to STS_WFS 

Figure 20. Relation between predicted and calculated strength using (RF) 

Overall, the predictive models developed for WFS cement concrete—such as Random Forest (RF), Support Vector 

Machine (SVM), and k-Nearest Neighbors (kNN)—demonstrate significant potential for driving the industrial adoption 

of sustainable, green concrete. Quantitative comparisons revealed that kNN, SVM, and RF consistently outperformed 

other models across all strength parameters. For instance, during the validation phase for compressive strength 

prediction, kNN and SVM achieved RMSE values of 1.6 MPa and R² values of 0.95, significantly surpassing the 

performance of the GMDH-NN and Decision Tree models. Similarly, for elastic modulus and splitting tensile strength, 

these top-performing models recorded lower MAE and RMSE values, with R² values reaching up to 0.97 in validation 

datasets. These statistical metrics provide a robust foundation for concluding the superior performance of kNN, SVM, 

and RF in predicting the mechanical behavior of concrete containing waste foundry sand. The use of multiple 

quantitative indicators enhances the reliability of model evaluations and reinforces the study’s findings. 

These predictive models play a crucial role in optimizing material compositions, improving performance, and 

minimizing environmental impacts. Below is an analysis of their industrial applications: 

 High Accuracy in Predicting Critical Properties: The models reliably predict key properties such as 

compressive strength, elastic modulus, and splitting tensile strength, enabling precise material optimization. 

 Tailoring Material Composition: They help adjust WFS content, cement ratios, and additives to meet specific 

structural and environmental requirements. Identifying optimal WFS proportions reduces dependence on costly 

virgin materials like cement and fine aggregates. 
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 Sustainability and Cost Savings: Sustainable utilization of WFS decreases waste disposal costs for foundries 

and promotes the circular economy by integrating industrial by-products into construction materials. Optimizing 

WFS content also lowers cement consumption, reducing CO₂  emissions from cement production and aiding 

compliance with green building standards like LEED or BREEAM. 

 Integration into Industrial Processes: The models can be embedded into production systems to predict concrete 

properties using real-time input data, ensuring consistent quality and detecting suboptimal mix designs before 

production. 

 Standardization and Benchmarking: Reliable predictions provide benchmarks for incorporating WFS concrete 

into construction standards and codes, promoting wider industry acceptance. 

 Enhanced Manufacturing Efficiency: Predictive modeling supports the production of precast elements—such 

as blocks, panels, and tiles—with consistent strength and durability. It streamlines production by minimizing 

trial-and-error in mix design and is applicable to road pavements, bridges, and industrial flooring where 

sustainable materials are increasingly prioritized. 

 Structural Reliability: Accurate predictions of mechanical properties help ensure compliance with structural 

requirements. Early identification of unsuitable mix designs reduces the risk of structural failures and enables 

simulations of different production scales, helping manufacturers evaluate feasibility before scaling operations. 

 Operational Efficiency and Cost Reduction: Automating mix design and testing shortens production timelines 

and reduces effort. Optimized material usage and reduced waste contribute to lower manufacturing costs, 

supporting green construction practices and enabling producers to offer innovative, eco-friendly products aligned 

with global sustainability goals. 

Despite these benefits, certain challenges remain. The composition of WFS varies significantly depending on its 

source, affecting consistency. Moreover, adopting alternative materials like WFS may face resistance due to a lack of 

standardized guidelines and industry familiarity. The adoption of predictive models for WFS cement concrete represents 

a significant advancement toward sustainable industrial practices. These models provide a solid foundation for 

optimizing material use, ensuring product quality, and achieving environmental targets. Industries leveraging these tools 

can produce eco-friendly, high-performance concrete while effectively managing waste and reducing their carbon 

footprint. A summary of the models is presented in Table 2, and a Taylor chart comparing the models is shown in Figure 

21. 

Table 2. Performance measurements of developed models 

Compressive Strength 

Model Dataset SSE MAE MSE RMSE Error Accuracy R2 

- - - MPa MPa MPa % % - 

GMDH-NN 
Training 4214 2.8 14.0 3.7 0.11 0.89 0.81 

Validation 1427 2.9 14.7 3.8 0.12 0.88 0.73 

KNN 
Training 610 1.2 2.0 1.4 0.04 0.96 0.97 

Validation 240 1.4 2.5 1.6 0.05 0.95 0.95 

SVM 
Training 718 1.3 2.4 1.5 0.05 0.95 0.97 

Validation 251 1.4 2.6 1.6 0.05 0.91 0.95 

Tree 
Training 1999 1.8 6.7 2.6 0.08 0.92 0.92 

Validation 1050 2.1 10.8 3.3 0.10 0.90 0.82 

RF 
Training 1593 1.6 5.3 2.3 0.07 0.93 0.93 

Validation 297 1.5 10.8 1.7 0.05 0.95 0.95 

Elastic Modulus 

Model Dataset SSE MAE MSE RMSE Error Accuracy R2 

- - - GPa GPa GPa % % - 

GMDH-NN 
Training 965 2.4 8.8 3.0 0.10 0.90 0.81 

Validation 236 2.1 6.5 2.6 0.08 0.92 0.84 

KNN 
Training 235 1.2 2.1 1.5 0.05 0.95 0.96 

Validation 78 1.2 2.2 1.5 0.05 0.95 0.96 

SVM 
Training 298 1.3 2.7 1.6 0.05 0.95 0.95 

Validation 78 1.2 2.2 1.5 0.05 0.91 0.96 

Tree 
Training 239 1.2 2.2 1.5 0.05 0.95 0.96 

Validation 89 1.3 2.5 1.6 0.05 0.95 0.96 

RF 
Training 275 1.2 2.5 1.6 0.05 0.95 0.95 

Validation 158 1.5 2.5 2.1 0.07 0.93 0.92 
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Split Tensile Strength 

Model Dataset SSE MAE MSE RMSE Error Accuracy R2 

- - - MPa MPa MPa % %  

GMDH-NN 
Training 23 0.3 0.1 0.4 0.11 0.89 0.75 

Validation 11 0.3 0.2 0.4 0.12 0.88 0.75 

KNN 
Training 5 0.1 0.0 0.2 0.05 0.95 0.95 

Validation 1 0.1 0.0 0.1 0.04 0.96 0.97 

SVM 
Training 9 0.2 0.1 0.2 0.07 0.93 0.90 

Validation 1 0.1 0.0 0.2 0.04 0.91 0.97 

Tree 
Training 27 0.2 0.1 0.4 0.12 0.88 0.74 

Validation 2 0.1 0.0 0.2 0.05 0.95 0.95 

RF 
Training 10 0.2 0.1 0.2 0.07 0.93 0.89 

Validation 2 0.1 0.0 0.2 0.05 0.95 0.95 

 

  

Training Validation 

a) With respect to CS_WFS 

  

Training Validation 

b) With respect to E_WFS 
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Training Validation 

c) With respect to STS_WFS 

Figure 21. Comparing the accuracies of the developed models using Taylor charts 

The results presented in this study indicate that the applied machine learning models exhibit strong predictive 

performance across all three key mechanical properties—compressive strength, elastic modulus, and splitting tensile 

strength—when compared to models reported in existing literature. For instance, in the case of compressive strength 

prediction, the KNN and SVM models achieved R² values of 0.97 and 0.95, respectively, in both training and validation 

datasets, surpassing those reported by Behnood & Golafshani (2021) [13] and ALYousef et al. (2023) [18], whose 

models typically achieved R² values above 0.90 but focused only on individual parameters. Similarly, the present study’s 

prediction of elastic modulus with models like KNN and Tree also yielded high R² values of up to 0.96 in validation, 

which are on par or better than those of prior works such as Iqbal et al. (2021) [14], who did not simultaneously predict 

multiple properties. For splitting tensile strength, KNN and SVM models again outperformed previously published 

models, with validation R² values reaching as high as 0.97 and accuracy above 95%. In terms of materials for concrete 

sustainability, this research strengthens the case for using waste foundry sand (WFS) as a viable partial replacement for 

fine aggregates by integrating multiple strength predictions into one framework. Unlike past studies that focused on a 

single property or lacked generalizability due to narrow modeling scope, the current models allow for more 

comprehensive material design and performance evaluation. The ability to reliably predict compressive, tensile, and 

elastic properties enables engineers to make informed decisions regarding WFS content in structural and non-structural 

applications, aligning with sustainable design goals. From a design perspective, this integrated modeling approach offers 

practical advantages over literature-reported single-objective models by allowing holistic optimization of concrete 

mixtures incorporating WFS. The accurate performance of all five ML models across multiple strength properties not 

only promotes confidence in WFS usage but also facilitates its practical implementation in green concrete applications, 

contributing directly to environmental and structural sustainability. 

5. Conclusions 

In this research paper, advanced machine learning models have been presented for the soft computing of the optimal 

waste foundry sand (WFS) content in concrete, focusing on strength properties to support sustainable green structures. 

Machine learning techniques such as Group Method of Data Handling Neural Network (GMDH-NN), Support 

Vector Machine (SVM), k-Nearest Neighbors (kNN), Decision Tree (Tree), and Random Forest (RF) were applied 

to a database comprising 397 records for compressive strength, 146 records for elastic modulus, and 242 records for 

split tensile strength. 

Each record includes the following input parameters: C — Cement content (kg/m³), WFS — Waste foundry sand 

content (kg/m³), W — Water content (kg/m³), SP — Super-plasticizer content (kg/m³), CA — Coarse aggregates content 

(kg/m³), FA — Fine aggregates content (kg/m³), TA — Total aggregates content (kg/m³), and Age — The concrete age 

at testing (days). The output parameters are CS_WFS — Compressive strength of WFS concrete (MPa), E_WFS — 

Elastic modulus of WFS concrete (GPa), and STS_WFS — Split tensile strength of WFS concrete (MPa). 

A 75/25 partitioning pattern for training and testing the database was employed following established guidelines. 

Finally, a sensitivity analysis was conducted. At the conclusion of the model evaluations, the following findings were 

established: 
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 There was internal consistency between the input and output parameters for all three strength properties, as 

confirmed by the preliminary Pearson analysis. 

 kNN, SVM, and RF demonstrated superior performance and consistently outperformed the other models across 

all three strength properties of WFS cement concrete. Consequently, these models were selected as the primary 

tools for predicting compressive strength, elastic modulus, and splitting tensile strength in WFS cement concrete. 

 Sensitivity analyses revealed that Age, WFS/C, and CA/C are the most influential factors for compressive 

strength; Age, FA/TA, and W/C are most impactful for elastic modulus; and 1000SP/C, WFS/C, and W/C are 

the key factors influencing the splitting tensile strength of WFS cement concrete. 

 Overall, these machine learning models provide a solid foundation for optimizing material usage, ensuring 

quality, and achieving environmental sustainability goals. Industries that adopt these tools can produce eco-

friendly, high-performance concrete while simultaneously addressing waste management challenges and 

reducing their carbon footprint. 

5.1. Research Limitations 

Despite the encouraging results and valuable insights provided by this study, several limitations should be 

acknowledged to contextualize the scope and applicability of the findings. The most significant constraint is the 

relatively small dataset size for each strength category, which may limit the generalizability of the models to broader or 

more diverse concrete compositions. Additionally, the dataset reflects controlled laboratory conditions with limited 

environmental variability, which does not fully account for real-world factors such as fluctuating temperatures, varied 

mixing practices, and diverse curing environments commonly encountered in field applications. The absence of external 

validation using independent datasets also restricts the evaluation of the models’ robustness beyond the collected data. 

Furthermore, while a train/test split of 75/25 was used to ensure a fair evaluation, the lack of k-fold cross-validation may 

limit the assessment of model performance across different data subsets. These limitations suggest that while the models 

show strong predictive potential, further work involving larger, more diverse datasets and real-world field validation is 

needed to strengthen their practical reliability and generalizability in sustainable concrete production. 

5.2. Research Practical Application 

The outcomes of this research offer significant practical relevance for the construction industry, particularly in 

advancing sustainable concrete production. By accurately predicting the compressive strength, elastic modulus, and 

splitting tensile strength of concrete incorporating waste foundry sand (WFS) through advanced machine learning 

models, this study provides a data-driven approach for optimizing material proportions and enhancing concrete 

performance. The models can assist engineers and material scientists in designing eco-friendly concrete mixes that 

reduce reliance on natural fine aggregates and promote the reuse of industrial byproducts. Construction firms can 

integrate these predictive tools into quality control systems to ensure consistency and performance while minimizing 

material wastage. Additionally, the application of such models supports regulatory compliance in green building 

standards and aids in achieving sustainability targets by lowering the environmental impact of concrete production 

through reduced landfill disposal and improved resource efficiency. 
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Appendix I: The Utilized Dataset 

Table A-1. Compressive strength 

WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age CS_WFS 

Training set 

0.31 0.47 2.47 0.33 0.25 0 28 36.74 

0.44 0.5 3.3 0.21 0.43 15.86 56 35.36 

0.09 0.43 2.99 0.36 0.05 0 7 26.26 

0.29 0.5 2.99 0.26 0.25 1.51 7 25.34 

0 0.45 2.43 0.44 0 0 28 45.81 

0.72 0.47 2.91 0.26 0.67 0 28 34.81 

0.65 0.47 2.6 0.27 0.67 0 28 40.36 

0.22 0.5 2.99 0.28 0.18 1.51 7 25.59 

0.46 0.44 2.86 0.27 0.43 0 180 34.48 

0.18 0.5 3.38 0.33 0.11 0 28 29.51 

0.22 0.43 2.8 0.31 0.18 0 28 38.50 

0.25 0.52 4.2 0.34 0.11 6 28 21.92 

0.18 0.4 2.53 0.28 0.18 3.67 7 31.78 

0.18 0.5 3.38 0.33 0.11 0 7 23.46 

0.42 0.45 0.93 0.69 0.25 0 28 36.68 

0.18 0.43 2.99 0.35 0.11 0 7 29.98 

0 0.5 3.13 0.33 0 0 14 19.21 

0.77 0.44 2.86 0.21 1 0 90 28.10 

0.15 0.43 2.8 0.32 0.11 0 7 29.92 

0.4 0.4 2.5 0.2 0.66 0 7 27.42 

0.52 0.52 2.93 0.26 0.43 0 7 24.04 

0.14 0.5 2.99 0.3 0.11 1.51 7 24.03 

0.12 0.42 2.53 0.3 0.11 3.67 90 47.31 

1.2 0.5 4 0.13 1.5 0 90 27.47 

0.68 0.47 2.75 0.26 0.67 0 28 38.37 

1.2 0.5 4 0.13 1.5 0 7 15.29 

0.77 0.47 3.09 0.26 0.67 0 28 31.14 

1.2 0.5 4 0.13 1.5 0 1 11.44 

0.44 0.5 3.3 0.21 0.43 15.86 7 22.74 

0.54 0.5 3.38 0.27 0.43 0 90 39.24 

0.29 0.47 2.98 0.26 0.25 0 28 29.45 

0.9 0.42 3.51 0.38 0 0 28 28.64 

0 0.5 4 0.33 0 0 90 48.89 

0.07 0.43 2.8 0.33 0.05 0 28 33.63 

0.37 0.43 2.7 0.22 0.43 0 28 31.52 

0.06 0.42 2.53 0.31 0.05 3.67 7 29.00 

0.86 0.53 3.6 0.16 1 5 365 51.51 

0 0.4 2.5 0.29 0 0 28 36.91 

0.18 0.42 2.53 0.28 0.18 3.67 365 53.74 

0.61 0.44 2.86 0.24 0.67 0 90 32.18 

0 0.44 2.86 0.35 0 0 28 31.74 

0 0.5 3.3 0.3 0 12.1 90 32.24 

0 0.47 2.47 0.38 0 0 28 33.28 

0.17 0.5 3.6 0.29 0.11 5 28 31.14 

1.05 0.45 3 0.12 2.33 0 28 44.94 

0.46 0.44 2.86 0.27 0.43 0 7 20.55 

0.77 0.44 2.86 0.21 1 0 180 27.93 

0.4 0.45 1.9 0.51 0.25 0 7 23.12 

0.4 0.4 2.5 0.2 0.66 0 14 31.44 

0.23 0.5 3.13 0.28 0.23 0 7 18.22 

0.61 0.44 2.86 0.24 0.67 0 7 19.75 

0.77 0.44 2.86 0.21 1 0 7 16.76 

0.6 0.5 4 0.23 0.3 0 1 15.96 
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0.38 0.53 2.88 0.17 0.43 17.8 56 39.44 

0.15 0.5 3.3 0.27 0.11 15.86 365 35.19 

0.58 0.45 2.43 0.31 0.43 0 7 29.05 

0.18 0.4 2.53 0.28 0.18 3.67 90 47.66 

0 0.44 2.86 0.35 0 0 7 22.25 

0.08 0.5 3.13 0.31 0.08 0 7 16.61 

0.86 0.53 3.6 0.16 1 5 28 37.08 

0.22 0.5 2.99 0.28 0.18 1.51 28 37.29 

0.45 0.45 3 0.21 0.43 0 28 47.30 

0.38 0.5 3.13 0.25 0.38 0 7 16.27 

0.15 0.5 3.13 0.3 0.15 0 7 17.10 

0.63 0.45 0.93 0.69 0.43 0 7 23.03 

0.39 0.42 3.16 0.33 0.25 0 14 29.83 

0.13 0.51 2.88 0.22 0.11 17.8 56 44.45 

0.6 0.5 4 0.23 0.3 0 90 36.38 

0.38 0.53 2.88 0.17 0.43 17.8 90 40.28 

0.6 0.5 4 0.23 0.3 0 7 19.87 

0 0.45 3 0.25 0 0 28 45.44 

0.22 0.5 2.99 0.28 0.18 1.51 90 41.82 

0.36 0.43 2.99 0.32 0.25 0 28 36.70 

0 0.42 2.53 0.33 0 3.67 28 39.23 

0 0.5 2.99 0.33 0 1.51 28 29.79 

0.77 0.45 2.43 0.26 1 0 28 39.77 

0.12 0.43 2.7 0.28 0.11 0 28 31.17 

0.35 0.52 2.93 0.3 0.25 0 7 25.02 

0.66 0.47 2.67 0.27 0.67 0 28 39.78 

0.85 0.42 3.72 0.38 0 0 28 24.25 

0.12 0.42 2.53 0.3 0.11 3.67 7 30.54 

0.15 0.5 3.13 0.3 0.15 0 21 23.51 

0.36 0.5 3.38 0.3 0.25 0 7 24.69 

0 0.42 3.16 0.38 0 0 28 33.43 

0 0.5 3.38 0.35 0 0 28 28.01 

0 0.42 2.53 0.33 0 3.67 365 45.97 

0 0.44 2.86 0.35 0 0 90 37.42 

0.52 0.5 3.6 0.23 0.43 5 28 37.89 

0 0.4 2.5 0.29 0 0 14 31.22 

0.12 0.42 2.53 0.3 0.11 3.67 365 52.48 

0 0.55 3 0.33 0 0 28 34.90 

0.61 0.44 2.86 0.24 0.67 0 28 29.28 

0.38 0.53 2.88 0.17 0.43 17.8 7 31.37 

0.36 0.5 3.38 0.3 0.25 0 90 37.76 

0.18 0.42 2.53 0.28 0.18 3.67 90 47.72 

0.12 0.42 2.53 0.3 0.11 3.67 28 44.63 

0 0.5 2.99 0.33 0 1.51 365 37.08 

0 0.43 2.8 0.34 0 0 28 31.30 

0.03 0.52 4.2 0.35 0.01 6 28 30.49 

0.25 0.4 2.53 0.26 0.25 3.67 28 44.58 

0.72 0.5 3.38 0.24 0.67 0 28 30.05 

0.25 0.42 2.53 0.26 0.25 3.67 365 53.02 

0.09 0.52 4.2 0.29 0.05 6 7 15.30 

0.22 0.47 2.98 0.26 0.25 0 28 30.96 

0.18 0.42 2.53 0.28 0.18 3.67 7 31.65 

0.15 0.44 2.86 0.33 0.11 0 180 36.56 

0.46 0.44 2.86 0.27 0.43 0 28 30.69 

0.14 0.5 2.99 0.3 0.11 1.51 28 36.01 

0 0.52 4.2 0.38 0 6 28 29.01 

0.61 0.44 2.86 0.24 0.67 0 90 32.18 

0.29 0.47 2.98 0.3 0.11 0 28 34.73 

0.46 0.44 2.86 0.27 0.43 0 90 34.36 
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0.58 0.45 2.43 0.31 0.43 0 28 45.19 

0.29 0.5 2.99 0.26 0.25 1.51 7 25.34 

0 0.46 2.88 0.24 0 17.8 28 43.35 

0.35 0.52 2.93 0.3 0.25 0 28 34.17 

0.75 0.45 3 0.17 1 0 28 46.07 

0.15 0.47 2.98 0.28 0.18 0 28 32.16 

0.12 0.4 2.53 0.3 0.11 3.67 90 47.19 

0.25 0.42 2.53 0.26 0.25 3.67 28 44.52 

0.77 0.44 2.86 0.21 1 0 180 27.93 

0.07 0.5 2.99 0.31 0.05 1.51 7 22.51 

0 0.5 3.13 0.33 0 0 21 21.94 

0.51 0.52 4.2 0.3 0.25 6 7 23.18 

0 0.45 3 0.25 0 0 7 34.58 

0.25 0.52 2.88 0.2 0.25 17.8 90 43.02 

0 0.45 0.93 0.69 0 0 7 21.12 

0.51 0.54 2.88 0.1 1 17.8 7 29.31 

0 0.46 2.88 0.24 0 17.8 56 45.12 

0.36 0.5 3.38 0.3 0.25 0 56 35.23 

0.45 0.55 3 0.23 0.43 0 7 30.70 

0.72 0.5 3.38 0.24 0.67 0 7 24.48 

0.07 0.43 2.8 0.33 0.05 0 7 26.80 

0.6 0.4 2.5 0.14 1.46 0 7 33.57 

0.08 0.5 3.13 0.31 0.08 0 28 25.67 

0.12 0.4 2.53 0.3 0.11 3.67 7 30.76 

0.18 0.43 2.99 0.35 0.11 0 28 37.01 

0 0.45 0.93 0.69 0 0 28 26.45 

0.07 0.5 2.99 0.31 0.05 1.51 365 40.56 

0.52 0.5 3.6 0.23 0.43 5 90 46.41 

0.77 0.44 2.86 0.21 1 0 90 28.10 

0.61 0.44 2.86 0.24 0.67 0 180 31.36 

0.63 0.45 0.93 0.69 0.43 0 28 27.39 

0.54 0.5 3.38 0.27 0.43 0 7 25.45 

0.15 0.5 3.3 0.27 0.11 15.86 28 28.43 

0.31 0.5 3.13 0.26 0.31 0 7 18.24 

0.06 0.4 2.53 0.31 0.05 3.67 90 45.79 

0.54 0.5 3.38 0.27 0.43 0 56 36.26 

0 0.4 2.53 0.33 0 3.67 28 39.14 

0 0.5 3.3 0.3 0 12.1 7 20.60 

0.29 0.43 2.8 0.3 0.25 0 7 30.48 

0.38 0.5 3.13 0.25 0.38 0 21 21.46 

0 0.5 3.6 0.32 0 5 365 44.16 

0.06 0.4 2.53 0.31 0.05 3.67 28 42.53 

0 0.5 2.99 0.33 0 1.51 7 19.93 

0.15 0.5 3.13 0.3 0.15 0 28 26.22 

0 0.44 2.86 0.35 0 0 28 31.74 

0.25 0.52 2.88 0.2 0.25 17.8 28 39.33 

0.38 0.53 2.88 0.17 0.43 17.8 28 35.92 

0.31 0.5 3.13 0.26 0.31 0 21 23.94 

0 0.5 3.38 0.35 0 0 7 21.75 

0.14 0.5 2.99 0.3 0.11 1.51 90 40.98 

0.38 0.45 2.43 0.35 0.25 0 28 50.46 

0.25 0.52 2.88 0.2 0.25 17.8 7 34.23 

0.21 0.45 0.93 0.69 0.11 0 7 28.16 

0.36 0.43 2.99 0.32 0.25 0 7 29.99 

0.9 0.42 3.51 0.38 0 0 14 25.94 

0.2 0.45 1.9 0.51 0.11 0 28 29.71 

0.72 0.5 3.38 0.24 0.67 0 56 34.86 

0.77 0.45 2.43 0.26 1 0 7 26.04 

0 0.4 2.53 0.33 0 3.67 90 42.96 
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0.17 0.5 3.6 0.29 0.11 5 365 43.25 

0.75 0.45 3 0.17 1 0 7 37.13 

0.69 0.51 3.6 0.19 0.67 5 90 44.48 

0.06 0.52 4.2 0.32 0.03 6 28 27.26 

0.19 0.45 2.43 0.4 0.11 0 7 32.16 

0 0.5 3.6 0.32 0 5 90 43.75 

0.17 0.52 2.93 0.33 0.11 0 28 33.74 

0 0.42 3.16 0.38 0 0 14 29.98 

0 0.5 4 0.33 0 0 1 19.25 

0.95 0.42 3.33 0.38 0 0 14 28.98 

0.75 0.55 3 0.17 1 0 28 33.11 

0.48 0.53 3.18 0.23 0.43 0 28 48.14 

1.04 0.56 3.6 0.13 1.5 5 90 33.23 

0.15 0.5 3.3 0.27 0.11 15.86 56 33.34 

0.07 0.5 2.99 0.31 0.05 1.51 90 38.58 

0.77 0.44 2.86 0.21 1 0 7 16.76 

0.29 0.5 2.99 0.26 0.25 1.51 90 41.10 

0.29 0.5 2.99 0.26 0.25 1.51 28 36.08 

0.18 0.5 3.38 0.33 0.11 0 90 36.21 

0.56 0.53 3.18 0.22 0.54 0 28 48.56 

0.06 0.42 2.53 0.31 0.05 3.67 28 42.42 

0.07 0.5 2.99 0.31 0.05 1.51 7 22.51 

0.45 0.45 3 0.21 0.43 0 7 37.36 

0.52 0.52 2.93 0.26 0.43 0 28 32.66 

0 0.43 2.57 0.41 0 0 7 22.28 

0.15 0.5 3.3 0.27 0.11 15.86 90 33.90 

0.36 0.5 3.38 0.3 0.25 0 28 30.48 

0.15 0.55 3 0.3 0.11 0 28 36.16 

0.4 0.53 3.18 0.25 0.33 0 28 46.80 

0.76 0.52 4.2 0.26 0.43 6 7 19.07 

0.29 0.5 3.3 0.24 0.25 15.86 56 34.07 

0 0.5 2.99 0.33 0 1.51 90 34.88 

0.76 0.52 4.2 0.26 0.43 6 28 29.34 

0 0.5 2.99 0.33 0 1.51 28 29.79 

0.22 0.5 2.99 0.28 0.18 1.51 365 44.84 

0 0.4 2.53 0.33 0 3.67 7 27.59 

0 0.46 2.88 0.24 0 17.8 90 45.31 

0.77 0.44 2.86 0.21 1 0 28 25.12 

1.05 0.55 3 0.1 2.33 0 28 35.70 

0.06 0.42 2.53 0.31 0.05 3.67 90 45.68 

0.35 0.5 3.6 0.26 0.25 5 90 40.04 

0 0.5 3.38 0.35 0 0 90 33.47 

0.6 0.4 2.5 0.14 1.46 0 14 35.85 

0.13 0.51 2.88 0.22 0.11 17.8 90 44.46 

0.06 0.52 4.2 0.32 0.03 6 7 19.05 

0.22 0.5 2.99 0.28 0.18 1.51 7 25.59 

0 0.5 3.13 0.33 0 0 7 16.20 

0.38 0.5 3.13 0.25 0.38 0 14 18.95 

0.4 0.4 2.5 0.2 0.66 0 28 38.60 

0.31 0.44 2.86 0.3 0.25 0 28 32.12 

0.64 0.53 3.18 0.2 0.67 0 28 48.05 

0.15 0.44 2.86 0.33 0.11 0 90 37.18 

0.27 0.43 2.99 0.34 0.18 0 28 39.25 

0.25 0.4 2.53 0.26 0.25 3.67 90 46.81 

0 0.53 3.18 0.33 0 0 28 36.23 

0.15 0.44 2.86 0.33 0.11 0 28 32.62 

0 0.45 1.9 0.51 0 0 7 22.28 

0.31 0.44 2.86 0.3 0.25 0 7 22.89 

0.25 0.4 2.53 0.26 0.25 3.67 7 31.73 



Civil Engineering Journal         Vol. 11, No. 06, June, 2025 

2620 

 

0.14 0.5 2.99 0.3 0.11 1.51 365 43.48 

0.2 0.4 2.5 0.24 0.25 0 14 31.41 

0.23 0.5 3.13 0.28 0.23 0 14 21.47 

0.18 0.4 2.53 0.28 0.18 3.67 28 45.64 

0.29 0.5 2.99 0.26 0.25 1.51 90 41.10 

0.14 0.5 2.99 0.3 0.11 1.51 7 24.03 

0.45 0.55 3 0.23 0.43 0 28 37.93 

0 0.42 2.53 0.33 0 3.67 90 43.30 

0.31 0.5 3.13 0.26 0.31 0 14 21.24 

0.31 0.44 2.86 0.3 0.25 0 180 36.03 

0.06 0.4 2.53 0.31 0.05 3.67 7 29.37 

0.22 0.5 2.99 0.28 0.18 1.51 365 44.84 

0.62 0.43 2.7 0.16 1 0 28 29.39 

1.05 0.55 3 0.1 2.33 0 7 29.26 

0.95 0.42 3.33 0.38 0 0 28 32.31 

0 0.5 3.13 0.33 0 0 28 24.35 

0.31 0.44 2.86 0.3 0.25 0 7 22.89 

0.46 0.44 2.86 0.27 0.43 0 180 34.48 

0.61 0.44 2.86 0.24 0.67 0 7 19.75 

0 0.43 2.8 0.34 0 0 7 24.08 

0.31 0.44 2.86 0.3 0.25 0 90 36.26 

0.16 0.53 3.18 0.3 0.11 0 28 40.22 

0.78 0.42 3.16 0.27 0.67 0 7 28.94 

0.95 0.42 3.33 0.38 0 0 7 27.22 

0.31 0.44 2.86 0.3 0.25 0 28 32.12 

0.18 0.5 3.38 0.33 0.11 0 56 34.10 

0.2 0.4 2.5 0.24 0.25 0 28 38.59 

0.15 0.5 3.13 0.3 0.15 0 14 20.46 

0.15 0.44 2.86 0.33 0.11 0 90 37.18 

1.04 0.56 3.6 0.13 1.5 5 365 36.20 

0.07 0.5 2.99 0.31 0.05 1.51 28 33.84 

0.06 0.42 2.53 0.31 0.05 3.67 365 49.66 

0.15 0.43 2.8 0.32 0.11 0 28 36.46 

0 0.4 2.5 0.29 0 0 7 27.83 

0.29 0.5 3.3 0.24 0.25 15.86 90 34.67 

0.69 0.52 2.93 0.22 0.67 0 7 23.70 

0 0.5 2.99 0.33 0 1.51 365 37.08 

0.32 0.53 3.18 0.27 0.25 0 28 44.68 

0.29 0.5 3.3 0.24 0.25 15.86 28 28.92 

0.24 0.53 3.18 0.28 0.18 0 28 42.41 

0 0.5 3.3 0.3 0 12.1 28 26.90 

1.2 0.5 4 0.13 1.5 0 28 26.66 

0.6 0.5 4 0.23 0.3 0 28 31.36 

0 0.5 3.38 0.35 0 0 56 32.18 

0.44 0.5 3.3 0.21 0.43 15.86 90 36.45 

0.17 0.5 3.6 0.29 0.11 5 90 37.48 

0.22 0.47 2.98 0.28 0.18 0 28 31.30 

0.69 0.51 3.6 0.19 0.67 5 365 50.30 

0.15 0.5 3.3 0.27 0.11 15.86 7 21.82 

0.09 0.52 4.2 0.29 0.05 6 28 22.49 

0.22 0.5 2.99 0.28 0.18 1.51 28 37.29 

0.51 0.54 2.88 0.1 1 17.8 90 37.27 

0.18 0.42 2.53 0.28 0.18 3.67 28 45.77 

0.52 0.5 3.6 0.23 0.43 5 365 53.81 

0.46 0.44 2.86 0.27 0.43 0 28 30.69 

0.15 0.45 3 0.24 0.11 0 28 48.80 
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0.07 0.5 2.99 0.31 0.05 1.51 28 33.84 

0 0.5 3.3 0.3 0 12.1 365 33.70 

0.31 0.44 2.86 0.3 0.25 0 180 36.03 

0.29 0.5 3.3 0.24 0.25 15.86 365 36.10 

0.9 0.42 3.51 0.38 0 0 7 24.51 

0.68 0.47 2.75 0.26 0.67 0 28 38.37 

0.31 0.44 2.86 0.3 0.25 0 90 36.26 

0.12 0.4 2.53 0.3 0.11 3.67 28 44.56 

0.21 0.45 0.93 0.69 0.11 0 28 32.14 

0.29 0.5 3.3 0.24 0.25 15.86 7 21.89 

0 0.52 2.93 0.37 0 0 28 30.89 

0 0.44 2.86 0.35 0 0 180 37.17 

0 0.52 4.2 0.38 0 6 7 15.43 

1.05 0.45 3 0.12 2.33 0 7 36.97 

Validation set 

0.15 0.44 2.86 0.33 0.11 0 7 23.33 

0.85 0.42 3.72 0.38 0 0 7 21.82 

0 0.44 2.86 0.35 0 0 7 22.25 

0.15 0.44 2.86 0.33 0.11 0 28 32.62 

0.44 0.5 3.3 0.21 0.43 15.86 28 29.82 

0.77 0.47 2.47 0.24 1 0 28 36.39 

0 0.46 2.88 0.24 0 17.8 7 40.86 

0.13 0.51 2.88 0.22 0.11 17.8 7 36.77 

0.59 0.45 1.9 0.51 0.43 0 28 21.78 

0.25 0.42 2.53 0.26 0.25 3.67 7 31.28 

0.19 0.45 2.43 0.4 0.11 0 28 49.36 

0 0.45 2.43 0.44 0 0 7 30.98 

0.86 0.53 3.6 0.16 1 5 90 45.11 

0.54 0.5 3.38 0.27 0.43 0 28 31.23 

0.46 0.44 2.86 0.27 0.43 0 7 20.55 

0.15 0.45 3 0.24 0.11 0 7 36.94 

0.72 0.5 3.38 0.24 0.67 0 90 37.40 

0.35 0.5 3.6 0.26 0.25 5 365 47.17 

0.08 0.5 3.13 0.31 0.08 0 21 22.98 

0 0.52 2.93 0.37 0 0 7 22.70 

1.2 0.5 3.99 0.13 1.5 0 28 27.02 

0.25 0.52 2.88 0.2 0.25 17.8 56 42.88 

0 0.5 4 0.33 0 0 7 24.55 

0 0.5 3.3 0.3 0 12.1 56 31.44 

0.14 0.5 2.99 0.3 0.11 1.51 90 40.98 

0.38 0.5 3.13 0.25 0.38 0 28 23.81 

0.08 0.53 3.18 0.32 0.05 0 28 38.46 

0.25 0.52 4.2 0.34 0.11 6 7 15.64 

1.17 0.42 3.16 0.2 1.5 0 28 27.09 

0.31 0.5 3.13 0.26 0.31 0 28 26.33 

0.6 0.4 2.5 0.14 1.46 0 28 40.06 

0.13 0.51 2.88 0.22 0.11 17.8 28 41.32 

0.85 0.42 3.72 0.38 0 0 14 22.69 

0.69 0.52 2.93 0.22 0.67 0 28 32.17 

0.39 0.42 3.16 0.33 0.25 0 7 27.69 

0.14 0.5 2.99 0.3 0.11 1.51 365 43.48 

0 0.47 2.98 0.33 0 0 28 32.28 

0.29 0.5 2.99 0.26 0.25 1.51 365 44.15 

0.15 0.55 3 0.3 0.11 0 7 28.12 

0.2 0.45 1.9 0.51 0.11 0 7 25.35 
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0 0.5 2.99 0.33 0 1.51 7 19.93 

0.03 0.52 4.2 0.35 0.01 6 7 19.47 

0.61 0.44 2.86 0.24 0.67 0 28 29.28 

0.61 0.44 2.86 0.24 0.67 0 180 31.36 

0 0.45 1.9 0.51 0 0 28 28.52 

0.29 0.5 2.99 0.26 0.25 1.51 28 36.08 

0.15 0.44 2.86 0.33 0.11 0 180 36.56 

0 0.44 2.86 0.35 0 0 180 37.17 

0 0.5 2.99 0.33 0 1.51 90 34.88 

0.14 0.5 2.99 0.3 0.11 1.51 28 36.01 

0.51 0.54 2.88 0.1 1 17.8 56 35.24 

0 0.5 3.99 0.33 0 0 28 40.63 

0.78 0.42 3.16 0.27 0.67 0 28 35.73 

0.59 0.45 1.9 0.51 0.43 0 7 22.38 

0.15 0.47 2.98 0.3 0.11 0 28 33.15 

0.27 0.43 2.99 0.34 0.18 0 7 32.69 

0.07 0.5 2.99 0.31 0.05 1.51 365 40.56 

0.07 0.5 2.99 0.31 0.05 1.51 90 38.58 

0.61 0.47 2.47 0.27 0.67 0 28 39.08 

0.46 0.44 2.86 0.27 0.43 0 90 34.36 

0 0.44 2.86 0.35 0 0 90 37.42 

0.35 0.5 3.6 0.26 0.25 5 28 32.67 

0.78 0.42 3.16 0.27 0.67 0 14 31.56 

0.75 0.55 3 0.17 1 0 7 25.99 

0.17 0.52 2.93 0.33 0.11 0 7 23.97 

0.29 0.43 2.8 0.3 0.25 0 28 37.81 

0 0.42 2.53 0.33 0 3.67 7 27.24 

0.22 0.43 2.8 0.31 0.18 0 7 31.93 

0.15 0.47 2.47 0.36 0.11 0 28 35.13 

0.4 0.45 1.9 0.51 0.25 0 28 23.54 

0.39 0.42 3.16 0.33 0.25 0 28 33.20 

0.44 0.5 3.3 0.21 0.43 15.86 365 37.55 

0 0.43 2.57 0.41 0 0 28 32.32 

0 0.55 3 0.33 0 0 7 26.76 

0.22 0.5 2.99 0.28 0.18 1.51 90 41.82 

0 0.43 2.7 0.31 0 0 28 28.29 

0.51 0.52 4.2 0.3 0.25 6 28 28.22 

0.2 0.4 2.5 0.24 0.25 0 7 27.25 

0.23 0.5 3.13 0.28 0.23 0 21 24.40 

0.46 0.47 2.47 0.3 0.43 0 28 37.42 

0.25 0.42 2.53 0.26 0.25 3.67 90 46.79 

0.42 0.45 0.93 0.69 0.25 0 7 33.96 

0 0.42 3.16 0.38 0 0 7 27.87 

0.08 0.5 3.13 0.31 0.08 0 14 19.94 

0.77 0.44 2.86 0.21 1 0 28 25.12 

1.04 0.56 3.6 0.13 1.5 5 28 29.77 

0.09 0.43 2.99 0.36 0.05 0 28 33.94 

1.17 0.42 3.16 0.2 1.5 0 7 23.96 

0.29 0.5 2.99 0.26 0.25 1.51 365 44.15 

0.51 0.54 2.88 0.1 1 17.8 28 31.94 

0 0.5 4 0.33 0 0 28 40.52 

0.38 0.45 2.43 0.35 0.25 0 7 32.74 

1.17 0.42 3.16 0.2 1.5 0 14 25.09 

0.69 0.51 3.6 0.19 0.67 5 28 36.48 

0.23 0.5 3.13 0.28 0.23 0 28 26.99 

0 0.5 3.6 0.32 0 5 28 36.12 

0.15 0.44 2.86 0.33 0.11 0 7 23.33 
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Table A-2. Elastic modulus 

WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age E_WFS 

Training set 

0.83 0.48 2.97 0.34 0.54 0.00 28 33.30 

0.21 0.40 2.13 0.45 0.11 0.00 7 37.98 

0.21 0.40 1.92 0.50 0.10 0.00 14 41.03 

0.64 0.40 2.13 0.35 0.43 0.00 7 41.08 

0.59 0.48 2.97 0.37 0.33 0.00 7 25.00 

0.85 0.40 1.71 0.40 0.50 0.00 14 30.74 

0.25 0.40 2.53 0.26 0.25 3.67 90 33.30 

0.00 0.42 2.53 0.33 0.00 3.67 90 30.60 

0.00 0.40 2.53 0.33 0.00 3.67 90 31.70 

0.38 0.50 3.13 0.25 0.38 0.00 28 23.43 

0.18 0.42 2.53 0.28 0.18 3.67 365 34.10 

0.29 0.50 3.30 0.24 0.25 15.86 28 27.60 

0.00 0.40 2.13 0.50 0.00 0.00 14 40.44 

0.38 0.50 3.13 0.25 0.38 0.00 90 24.60 

0.64 0.40 2.13 0.35 0.43 0.00 14 44.48 

0.18 0.40 2.53 0.28 0.18 3.67 28 31.80 

0.59 0.48 2.97 0.37 0.33 0.00 3 20.20 

0.15 0.50 3.30 0.27 0.11 15.86 90 29.20 

0.83 0.48 2.97 0.34 0.54 0.00 3 20.90 

0.18 0.42 2.53 0.28 0.18 3.67 28 31.34 

0.22 0.50 2.99 0.28 0.18 1.51 90 25.80 

1.28 0.40 1.49 0.35 0.86 0.00 28 32.15 

1.28 0.40 1.49 0.35 0.86 0.00 7 22.81 

0.21 0.40 2.13 0.45 0.11 0.00 14 42.02 

0.00 0.40 2.13 0.50 0.00 0.00 28 42.81 

0.44 0.50 3.30 0.21 0.43 15.86 56 30.30 

0.45 0.45 3.00 0.21 0.43 0.00 28 35.00 

0.45 0.55 3.00 0.23 0.43 0.00 28 30.50 

0.14 0.50 2.99 0.30 0.11 1.51 7 21.30 

0.22 0.50 2.99 0.28 0.18 1.51 7 21.90 

0.12 0.40 2.53 0.30 0.11 3.67 90 32.90 

0.06 0.40 2.53 0.31 0.05 3.67 28 30.40 

0.15 0.50 3.30 0.27 0.11 15.86 7 23.60 

0.00 0.40 2.13 0.50 0.00 0.00 28 42.81 

0.15 0.50 3.30 0.27 0.11 15.86 56 28.40 

0.15 0.50 3.30 0.27 0.11 15.86 28 26.75 

0.00 0.50 3.13 0.33 0.00 0.00 7 20.41 

0.00 0.50 3.30 0.30 0.00 12.10 28 25.10 

0.00 0.55 3.00 0.33 0.00 0.00 28 30.00 

0.43 0.40 2.13 0.40 0.25 0.00 28 45.67 

0.64 0.40 1.49 0.50 0.30 0.00 7 38.13 

0.18 0.42 2.53 0.28 0.18 3.67 90 32.19 

0.00 0.48 2.97 0.44 0.00 0.00 28 31.70 

0.07 0.50 2.99 0.31 0.05 1.51 90 24.90 

0.83 0.48 2.97 0.34 0.54 0.00 3 18.40 

0.00 0.40 2.13 0.50 0.00 0.00 7 35.04 

0.44 0.50 3.30 0.21 0.43 15.86 90 31.20 

0.07 0.50 2.99 0.31 0.05 1.51 365 26.40 
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0.00 0.50 2.99 0.33 0.00 1.51 365 25.80 

0.29 0.50 3.30 0.24 0.25 15.86 56 29.30 

0.00 0.42 2.53 0.33 0.00 3.67 365 32.30 

0.43 0.40 1.71 0.50 0.20 0.00 14 41.87 

0.21 0.40 2.13 0.45 0.11 0.00 28 44.33 

0.00 0.50 3.13 0.33 0.00 0.00 28 23.60 

0.12 0.42 2.53 0.30 0.11 3.67 28 30.77 

0.44 0.50 3.30 0.21 0.43 15.86 28 28.40 

0.00 0.50 2.99 0.33 0.00 1.51 7 20.50 

0.00 0.48 2.97 0.44 0.00 0.00 7 24.30 

0.00 0.42 2.53 0.33 0.00 3.67 7 25.70 

0.31 0.50 3.13 0.26 0.31 0.00 7 22.21 

0.31 0.50 3.13 0.26 0.31 0.00 28 25.40 

0.00 0.40 2.13 0.50 0.00 0.00 14 40.44 

0.44 0.50 3.30 0.21 0.43 15.86 7 24.20 

0.43 0.40 1.92 0.45 0.22 0.00 28 43.11 

0.15 0.50 3.13 0.30 0.15 0.00 28 24.78 

0.08 0.50 3.13 0.31 0.08 0.00 28 24.24 

0.00 0.40 2.13 0.50 0.00 0.00 14 40.39 

0.00 0.50 3.13 0.33 0.00 0.00 90 24.83 

0.43 0.40 1.92 0.45 0.22 0.00 14 40.07 

0.43 0.40 2.13 0.40 0.25 0.00 14 43.05 

0.29 0.50 3.30 0.24 0.25 15.86 7 23.80 

0.59 0.48 2.97 0.37 0.33 0.00 28 33.40 

1.05 0.45 3.00 0.12 2.33 0.00 28 34.50 

0.59 0.48 2.97 0.37 0.33 0.00 3 23.90 

0.83 0.48 2.97 0.34 0.54 0.00 7 23.40 

0.59 0.48 2.97 0.37 0.33 0.00 7 24.50 

0.00 0.40 2.13 0.50 0.00 0.00 7 35.12 

0.22 0.50 2.99 0.28 0.18 1.51 28 25.20 

0.00 0.48 2.97 0.44 0.00 0.00 3 22.50 

0.00 0.40 2.53 0.33 0.00 3.67 28 29.90 

0.38 0.50 3.13 0.25 0.38 0.00 7 20.40 

0.83 0.48 2.97 0.34 0.54 0.00 7 27.60 

0.23 0.50 3.13 0.28 0.23 0.00 90 25.59 

0.00 0.50 3.30 0.30 0.00 12.10 365 27.70 

0.12 0.42 2.53 0.30 0.11 3.67 90 31.79 

0.00 0.42 2.53 0.33 0.00 3.67 28 29.90 

0.83 0.48 2.97 0.34 0.54 0.00 28 32.60 

0.12 0.42 2.53 0.30 0.11 3.67 365 33.71 

0.15 0.50 3.13 0.30 0.15 0.00 90 25.19 

0.08 0.50 3.13 0.31 0.08 0.00 7 20.81 

0.29 0.50 3.30 0.24 0.25 15.86 365 30.60 

0.44 0.50 3.30 0.21 0.43 15.86 365 31.80 

0.59 0.48 2.97 0.37 0.33 0.00 28 31.70 

0.25 0.42 2.53 0.26 0.25 3.67 7 27.20 

0.18 0.42 2.53 0.28 0.18 3.67 7 27.70 

0.21 0.40 1.92 0.50 0.10 0.00 28 43.10 

0.00 0.50 3.30 0.30 0.00 12.10 56 26.40 

0.00 0.45 3.00 0.25 0.00 0.00 28 34.50 
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0.29 0.50 2.99 0.26 0.25 1.51 90 25.70 

0.07 0.50 2.99 0.31 0.05 1.51 7 21.10 

0.29 0.50 2.99 0.26 0.25 1.51 365 25.70 

0.15 0.45 3.00 0.24 0.11 0.00 28 37.00 

0.25 0.42 2.53 0.26 0.25 3.67 90 31.98 

0.29 0.50 2.99 0.26 0.25 1.51 7 21.50 

0.75 0.45 3.00 0.17 1.00 0.00 28 35.50 

0.00 0.40 2.13 0.50 0.00 0.00 7 35.12 

0.06 0.40 2.53 0.31 0.05 3.67 90 32.50 

0.64 0.40 1.49 0.50 0.30 0.00 28 45.12 

1.28 0.40 1.49 0.35 0.86 0.00 14 26.30 

0.75 0.55 3.00 0.17 1.00 0.00 28 29.50 

Validation set 

0.06 0.42 2.53 0.31 0.05 3.67 28 30.40 

0.00 0.50 2.99 0.33 0.00 1.51 28 23.80 

0.12 0.42 2.53 0.30 0.11 3.67 7 27.10 

0.23 0.50 3.13 0.28 0.23 0.00 28 25.19 

0.00 0.50 3.30 0.30 0.00 12.10 90 27.10 

0.15 0.50 3.30 0.27 0.11 15.86 365 29.50 

0.25 0.42 2.53 0.26 0.25 3.67 28 31.07 

0.22 0.50 2.99 0.28 0.18 1.51 365 27.50 

0.15 0.50 3.13 0.30 0.15 0.00 7 21.22 

0.15 0.55 3.00 0.30 0.11 0.00 28 30.00 

0.06 0.42 2.53 0.31 0.05 3.67 7 26.60 

0.43 0.40 1.92 0.45 0.22 0.00 7 34.89 

0.25 0.42 2.53 0.26 0.25 3.67 365 33.60 

0.06 0.42 2.53 0.31 0.05 3.67 90 31.00 

0.64 0.40 1.49 0.50 0.30 0.00 14 42.32 

0.21 0.40 1.92 0.50 0.10 0.00 7 37.00 

0.29 0.50 3.30 0.24 0.25 15.86 90 30.00 

0.43 0.40 1.71 0.50 0.20 0.00 28 44.09 

0.85 0.40 1.71 0.40 0.50 0.00 7 27.19 

0.14 0.50 2.99 0.30 0.11 1.51 90 25.40 

0.06 0.42 2.53 0.31 0.05 3.67 365 32.90 

0.08 0.50 3.13 0.31 0.08 0.00 90 25.01 

0.00 0.50 2.99 0.33 0.00 1.51 90 24.60 

0.31 0.50 3.13 0.26 0.31 0.00 90 25.73 

0.00 0.40 2.13 0.50 0.00 0.00 28 42.81 

0.85 0.40 1.71 0.40 0.50 0.00 28 36.22 

0.23 0.50 3.13 0.28 0.23 0.00 7 21.80 

0.43 0.40 1.71 0.50 0.20 0.00 7 37.44 

1.05 0.55 3.00 0.10 2.33 0.00 28 30.50 

0.14 0.50 2.99 0.30 0.11 1.51 365 27.20 

0.12 0.40 2.53 0.30 0.11 3.67 28 31.40 

0.43 0.40 2.13 0.40 0.25 0.00 7 39.90 

0.64 0.40 2.13 0.35 0.43 0.00 28 46.65 

0.00 0.50 3.30 0.30 0.00 12.10 7 22.00 

0.18 0.40 2.53 0.28 0.18 3.67 90 33.60 

0.25 0.40 2.53 0.26 0.25 3.67 28 31.20 
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Table A-3. Split tensile strength 

WFS/C W/C CA/C FA/TA WFS/FA 1000SP/C Age STS_WFS 

Training set 

0.17 0.50 3.60 0.29 0.11 5.00 28 1.84 

0.35 0.50 3.60 0.26 0.25 5.00 28 1.98 

0.52 0.50 3.60 0.23 0.43 5.00 28 2.58 

0.86 0.53 3.60 0.16 1.00 5.00 28 2.38 

1.04 0.56 3.60 0.13 1.50 5.00 28 1.72 

0.00 0.50 3.60 0.32 0.00 5.00 90 2.66 

0.17 0.50 3.60 0.29 0.11 5.00 90 2.35 

0.52 0.50 3.60 0.23 0.43 5.00 90 3.33 

0.69 0.51 3.60 0.19 0.67 5.00 90 3.26 

0.86 0.53 3.60 0.16 1.00 5.00 90 3.19 

1.04 0.56 3.60 0.13 1.50 5.00 90 2.16 

0.17 0.50 3.60 0.29 0.11 5.00 365 2.66 

0.35 0.50 3.60 0.26 0.25 5.00 365 2.86 

0.52 0.50 3.60 0.23 0.43 5.00 365 3.50 

0.69 0.51 3.60 0.19 0.67 5.00 365 3.42 

1.04 0.56 3.60 0.13 1.50 5.00 365 2.52 

0.13 0.51 2.88 0.22 0.11 17.80 7 4.10 

0.38 0.53 2.88 0.17 0.43 17.80 7 3.40 

0.00 0.46 2.88 0.24 0.00 17.80 28 4.60 

0.13 0.51 2.88 0.22 0.11 17.80 28 4.20 

0.51 0.54 2.88 0.10 1.00 17.80 28 3.70 

0.13 0.51 2.88 0.22 0.11 17.80 56 4.40 

0.25 0.52 2.88 0.20 0.25 17.80 56 4.10 

0.38 0.53 2.88 0.17 0.43 17.80 56 3.90 

0.51 0.54 2.88 0.10 1.00 17.80 56 3.83 

0.00 0.46 2.88 0.24 0.00 17.80 90 4.85 

0.13 0.51 2.88 0.22 0.11 17.80 90 4.50 

0.25 0.52 2.88 0.20 0.25 17.80 90 4.15 

0.00 0.50 3.30 0.30 0.00 12.10 7 1.89 

0.15 0.50 3.30 0.27 0.11 15.86 7 1.96 

0.29 0.50 3.30 0.24 0.25 15.86 7 2.05 

0.44 0.50 3.30 0.21 0.43 15.86 7 2.08 

0.15 0.50 3.30 0.27 0.11 15.86 28 2.85 

0.29 0.50 3.30 0.24 0.25 15.86 28 2.90 

0.44 0.50 3.30 0.21 0.43 15.86 28 3.00 

0.00 0.50 3.30 0.30 0.00 12.10 56 2.93 

0.44 0.50 3.30 0.21 0.43 15.86 56 3.24 

0.00 0.50 3.30 0.30 0.00 12.10 90 2.99 

0.15 0.50 3.30 0.27 0.11 15.86 90 3.13 

0.29 0.50 3.30 0.24 0.25 15.86 90 3.21 

0.00 0.50 3.30 0.30 0.00 12.10 365 3.10 

0.29 0.50 3.30 0.24 0.25 15.86 365 3.32 

0.00 0.40 2.53 0.33 0.00 3.67 7 2.77 

0.06 0.40 2.53 0.31 0.05 3.67 7 3.09 

0.00 0.40 2.53 0.33 0.00 3.67 28 4.23 

0.25 0.40 2.53 0.26 0.25 3.67 28 4.51 

0.00 0.40 2.53 0.33 0.00 3.67 90 4.32 
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0.06 0.40 2.53 0.31 0.05 3.67 90 4.45 

0.00 0.50 3.13 0.33 0.00 0.00 7 1.80 

0.23 0.50 3.13 0.28 0.23 0.00 7 2.10 

0.31 0.50 3.13 0.26 0.31 0.00 7 2.20 

0.38 0.50 3.13 0.25 0.38 0.00 7 1.80 

0.31 0.50 3.13 0.26 0.31 0.00 28 2.80 

0.38 0.50 3.13 0.25 0.38 0.00 28 2.10 

0.00 0.44 2.86 0.35 0.00 0.00 7 2.77 

0.31 0.44 2.86 0.30 0.25 0.00 7 2.60 

0.61 0.44 2.86 0.24 0.67 0.00 7 2.31 

0.77 0.44 2.86 0.21 1.00 0.00 7 2.21 

0.00 0.44 2.86 0.35 0.00 0.00 28 2.81 

0.15 0.44 2.86 0.33 0.11 0.00 28 2.76 

0.31 0.44 2.86 0.30 0.25 0.00 28 2.67 

0.46 0.44 2.86 0.27 0.43 0.00 28 2.60 

0.77 0.44 2.86 0.21 1.00 0.00 28 2.32 

0.00 0.44 2.86 0.35 0.00 0.00 90 2.81 

0.31 0.44 2.86 0.30 0.25 0.00 90 2.68 

0.77 0.44 2.86 0.21 1.00 0.00 90 2.33 

0.00 0.44 2.86 0.35 0.00 0.00 180 2.73 

0.15 0.44 2.86 0.33 0.11 0.00 180 2.66 

0.31 0.44 2.86 0.30 0.25 0.00 180 2.66 

0.46 0.44 2.86 0.27 0.43 0.00 180 2.59 

0.61 0.44 2.86 0.24 0.67 0.00 180 2.46 

0.77 0.44 2.86 0.21 1.00 0.00 180 2.44 

0.00 0.47 2.47 0.38 0.00 0.00 28 2.75 

0.31 0.47 2.47 0.33 0.25 0.00 28 2.98 

0.61 0.47 2.47 0.27 0.67 0.00 28 3.40 

0.77 0.47 2.47 0.24 1.00 0.00 28 3.12 

0.68 0.47 2.75 0.26 0.67 0.00 28 3.04 

0.77 0.47 3.09 0.26 0.67 0.00 28 2.91 

0.65 0.47 2.60 0.27 0.67 0.00 28 3.61 

0.66 0.47 2.67 0.27 0.67 0.00 28 3.67 

0.00 0.52 4.20 0.38 0.00 6.00 28 3.30 

0.25 0.52 4.20 0.34 0.11 6.00 28 1.87 

0.51 0.52 4.20 0.30 0.25 6.00 28 2.85 

0.03 0.52 4.20 0.35 0.01 6.00 28 2.08 

0.06 0.52 4.20 0.32 0.03 6.00 28 2.64 

0.00 0.40 2.13 0.50 0.00 0.00 7 3.13 

0.21 0.40 1.92 0.50 0.10 0.00 7 3.15 

0.43 0.40 1.71 0.50 0.20 0.00 7 3.23 

0.21 0.40 2.13 0.45 0.11 0.00 7 3.26 

0.43 0.40 2.13 0.40 0.25 0.00 7 3.44 

0.64 0.40 2.13 0.35 0.43 0.00 7 3.63 

0.00 0.40 2.13 0.50 0.00 0.00 7 3.13 

0.85 0.40 1.71 0.40 0.50 0.00 7 2.18 

1.28 0.40 1.49 0.35 0.86 0.00 7 1.69 

0.00 0.40 2.13 0.50 0.00 0.00 14 3.59 

0.21 0.40 1.92 0.50 0.10 0.00 14 3.69 

0.64 0.40 1.49 0.50 0.30 0.00 14 3.92 
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0.21 0.40 2.13 0.45 0.11 0.00 14 3.78 

0.64 0.40 2.13 0.35 0.43 0.00 14 4.23 

0.00 0.40 2.13 0.50 0.00 0.00 14 3.59 

0.85 0.40 1.71 0.40 0.50 0.00 14 2.66 

1.28 0.40 1.49 0.35 0.86 0.00 14 2.25 

0.00 0.40 2.13 0.50 0.00 0.00 28 4.03 

0.21 0.40 1.92 0.50 0.10 0.00 28 4.15 

0.00 0.40 2.13 0.50 0.00 0.00 28 4.03 

0.21 0.40 2.13 0.45 0.11 0.00 28 4.26 

0.43 0.40 2.13 0.40 0.25 0.00 28 4.43 

0.43 0.40 1.92 0.45 0.22 0.00 28 3.95 

0.85 0.40 1.71 0.40 0.50 0.00 28 3.26 

1.28 0.40 1.49 0.35 0.86 0.00 28 2.93 

0.00 0.48 2.97 0.44 0.00 0.00 3 2.70 

0.59 0.48 2.97 0.37 0.33 0.00 3 1.80 

0.83 0.48 2.97 0.34 0.54 0.00 3 2.10 

0.59 0.48 2.97 0.37 0.33 0.00 3 2.30 

0.83 0.48 2.97 0.34 0.54 0.00 3 2.10 

0.59 0.48 2.97 0.37 0.33 0.00 7 3.20 

0.59 0.48 2.97 0.37 0.33 0.00 7 3.50 

0.83 0.48 2.97 0.34 0.54 0.00 7 2.50 

0.59 0.48 2.97 0.37 0.33 0.00 28 3.60 

0.59 0.48 2.97 0.37 0.33 0.00 28 4.00 

0.00 0.40 2.50 0.29 0.00 0.00 28 4.30 

0.60 0.40 2.50 0.14 1.46 0.00 28 3.15 

0.00 0.55 2.16 0.44 0.00 0.00 7 3.13 

0.17 0.55 2.16 0.42 0.11 0.00 7 2.93 

0.35 0.55 2.16 0.40 0.24 0.00 7 3.00 

0.71 0.55 2.16 0.33 0.67 0.00 7 3.21 

0.90 0.55 2.16 0.29 1.00 0.00 7 3.33 

0.00 0.55 2.16 0.44 0.00 0.00 28 3.51 

0.17 0.55 2.16 0.42 0.11 0.00 28 3.73 

0.35 0.55 2.16 0.40 0.24 0.00 28 3.59 

0.71 0.55 2.16 0.33 0.67 0.00 28 3.99 

0.18 0.50 3.38 0.33 0.11 0.00 7 1.92 

0.36 0.50 3.38 0.30 0.25 0.00 7 2.01 

0.72 0.50 3.38 0.24 0.67 0.00 7 2.02 

0.18 0.50 3.38 0.33 0.11 0.00 28 2.45 

0.36 0.50 3.38 0.30 0.25 0.00 28 2.54 

0.72 0.50 3.38 0.24 0.67 0.00 28 2.52 

0.00 0.50 3.38 0.35 0.00 0.00 56 2.92 

0.18 0.50 3.38 0.33 0.11 0.00 56 3.04 

0.36 0.50 3.38 0.30 0.25 0.00 56 3.18 

0.54 0.50 3.38 0.27 0.43 0.00 56 3.31 

0.72 0.50 3.38 0.24 0.67 0.00 56 3.09 

0.00 0.50 3.38 0.35 0.00 0.00 90 3.59 

0.54 0.50 3.38 0.27 0.43 0.00 90 4.07 

0.72 0.50 3.38 0.24 0.67 0.00 90 3.87 

0.00 0.43 2.57 0.41 0.00 0.00 7 2.20 

0.18 0.43 2.99 0.35 0.11 0.00 7 2.58 
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0.27 0.43 2.99 0.34 0.18 0.00 7 2.53 

0.36 0.43 2.99 0.32 0.25 0.00 7 2.16 

0.15 0.43 2.80 0.32 0.11 0.00 7 2.72 

0.29 0.43 2.80 0.30 0.25 0.00 7 2.12 

0.00 0.43 2.57 0.41 0.00 0.00 28 3.30 

0.18 0.43 2.99 0.35 0.11 0.00 28 3.87 

0.27 0.43 2.99 0.34 0.18 0.00 28 3.77 

0.36 0.43 2.99 0.32 0.25 0.00 28 2.93 

0.00 0.43 2.80 0.34 0.00 0.00 28 3.21 

0.29 0.43 2.80 0.30 0.25 0.00 28 3.25 

0.39 0.42 3.16 0.33 0.25 0.00 7 2.20 

0.78 0.42 3.16 0.27 0.67 0.00 7 3.26 

1.17 0.42 3.16 0.20 1.50 0.00 7 2.62 

0.95 0.42 3.33 0.38 0.00 0.00 7 2.83 

0.90 0.42 3.51 0.38 0.00 0.00 7 2.24 

0.85 0.42 3.72 0.38 0.00 0.00 7 2.16 

0.00 0.42 3.16 0.38 0.00 0.00 14 2.98 

0.39 0.42 3.16 0.33 0.25 0.00 14 3.15 

1.17 0.42 3.16 0.20 1.50 0.00 14 3.36 

0.95 0.42 3.33 0.38 0.00 0.00 14 3.53 

0.90 0.42 3.51 0.38 0.00 0.00 14 2.62 

0.00 0.42 3.16 0.38 0.00 0.00 28 3.67 

0.39 0.42 3.16 0.33 0.25 0.00 28 3.78 

0.78 0.42 3.16 0.27 0.67 0.00 28 4.16 

0.90 0.42 3.51 0.38 0.00 0.00 28 3.01 

0.85 0.42 3.72 0.38 0.00 0.00 28 2.83 

0.00 0.45 0.93 0.69 0.00 0.00 28 3.27 

0.42 0.45 0.93 0.69 0.25 0.00 28 3.32 

0.63 0.45 0.93 0.69 0.43 0.00 28 3.14 

0.00 0.45 1.90 0.51 0.00 0.00 28 3.31 

0.20 0.45 1.90 0.51 0.11 0.00 28 3.24 

0.40 0.45 1.90 0.51 0.25 0.00 28 3.20 

0.59 0.45 1.90 0.51 0.43 0.00 28 3.15 

0.00 0.53 3.18 0.33 0.00 0.00 28 3.08 

0.08 0.53 3.18 0.32 0.05 0.00 28 3.24 

Validation set 

0.24 0.53 3.18 0.28 0.18 0.00 28 3.51 

0.32 0.53 3.18 0.27 0.25 0.00 28 3.63 

0.40 0.53 3.18 0.25 0.33 0.00 28 3.73 

0.48 0.53 3.18 0.23 0.43 0.00 28 3.79 

0.56 0.53 3.18 0.22 0.54 0.00 28 3.91 

0.64 0.53 3.18 0.20 0.67 0.00 28 2.86 

0.17 0.52 2.93 0.33 0.11 0.00 7 2.44 

0.35 0.52 2.93 0.30 0.25 0.00 7 2.82 

0.52 0.52 2.93 0.26 0.43 0.00 7 2.41 

0.69 0.52 2.93 0.22 0.67 0.00 7 2.40 

0.00 0.52 2.93 0.37 0.00 0.00 28 3.50 

0.17 0.52 2.93 0.33 0.11 0.00 28 3.85 

0.35 0.52 2.93 0.30 0.25 0.00 28 4.24 

0.52 0.52 2.93 0.26 0.43 0.00 28 3.65 
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0.69 0.52 2.93 0.22 0.67 0.00 28 3.60 

0.15 0.55 3.00 0.30 0.11 0.00 28 2.35 

0.45 0.55 3.00 0.23 0.43 0.00 28 2.50 

0.75 0.55 3.00 0.17 1.00 0.00 28 2.40 

1.05 0.55 3.00 0.10 2.33 0.00 28 2.60 

0.00 0.45 3.00 0.25 0.00 0.00 28 2.85 

0.45 0.45 3.00 0.21 0.43 0.00 28 2.90 

0.75 0.45 3.00 0.17 1.00 0.00 28 2.90 

1.05 0.45 3.00 0.12 2.33 0.00 28 2.90 

0.00 0.50 2.99 0.33 0.00 1.51 7 2.15 

0.14 0.50 2.99 0.30 0.11 1.51 7 2.38 

0.00 0.42 2.53 0.33 0.00 3.67 7 2.77 

0.06 0.42 2.53 0.31 0.05 3.67 7 3.10 

0.12 0.42 2.53 0.30 0.11 3.67 7 3.20 

0.18 0.42 2.53 0.28 0.18 3.67 7 3.28 

0.25 0.42 2.53 0.26 0.25 3.67 7 3.10 

0.00 0.50 2.99 0.33 0.00 1.51 28 4.23 

0.07 0.50 2.99 0.31 0.05 1.51 28 4.58 

0.14 0.50 2.99 0.30 0.11 1.51 28 4.76 

0.22 0.50 2.99 0.28 0.18 1.51 28 4.77 

0.00 0.42 2.53 0.33 0.00 3.67 28 4.23 

0.06 0.42 2.53 0.31 0.05 3.67 28 4.38 

0.12 0.42 2.53 0.30 0.11 3.67 28 4.58 

0.18 0.42 2.53 0.28 0.18 3.67 28 4.67 

0.25 0.42 2.53 0.26 0.25 3.67 28 4.50 

0.07 0.50 2.99 0.31 0.05 1.51 90 4.59 

0.29 0.50 2.99 0.26 0.25 1.51 90 4.72 

0.00 0.42 2.53 0.33 0.00 3.67 90 4.31 

0.06 0.42 2.53 0.31 0.05 3.67 90 4.45 

0.18 0.42 2.53 0.28 0.18 3.67 90 4.80 

0.00 0.50 2.99 0.33 0.00 1.51 365 3.96 

0.07 0.50 2.99 0.31 0.05 1.51 365 4.10 

0.22 0.50 2.99 0.28 0.18 1.51 365 4.36 

0.29 0.50 2.99 0.26 0.25 1.51 365 4.29 

0.00 0.42 2.53 0.33 0.00 3.67 365 4.38 

0.06 0.42 2.53 0.31 0.05 3.67 365 4.60 

0.12 0.42 2.53 0.30 0.11 3.67 365 4.78 

0.25 0.42 2.53 0.26 0.25 3.67 365 4.90 

0.00 0.45 2.43 0.44 0.00 0.00 7 3.21 

0.19 0.45 2.43 0.40 0.11 0.00 7 3.35 

0.38 0.45 2.43 0.35 0.25 0.00 7 3.48 

0.58 0.45 2.43 0.31 0.43 0.00 7 3.11 

0.77 0.45 2.43 0.26 1.00 0.00 7 2.83 

0.00 0.45 2.43 0.44 0.00 0.00 28 4.53 

0.19 0.45 2.43 0.40 0.11 0.00 28 4.67 

0.58 0.45 2.43 0.31 0.43 0.00 28 4.39 

 


