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Abstract

This study investigates the influence of key geotechnical parameters—water content, dry density, and plasticity index—
on soil electrical resistivity, with the goal of improving prediction accuracy for substation grounding system design. A
dataset comprising 150 laboratory test results was compiled from soil samples collected at three substations in Thailand,
representing diverse moisture conditions to reflect field variability. Two modeling approaches were applied: multiple
regression (MR) and artificial neural networks (ANN), evaluated using the coefficient of determination (R?) and root mean
square error (RMSE). The MR models achieved relatively strong correlations, with R2 values up to 0.8281; however, their
higher RMSE values indicated limited precision under variable conditions. In contrast, the ANN models, particularly those
incorporating the plasticity index, demonstrated superior performance, achieving lower RMSE values—down to 0.057—
highlighting their ability to capture complex nonlinear relationships. In comparison to prior studies that often relied on
single-variable models or uniform soil datasets, this research adopts a more integrative and generalizable framework. By
incorporating multiple soil parameters into the ANN model and validating against a diverse dataset, the study offers
practical insights for engineering applications. The findings are particularly valuable in tropical regions where soil moisture
variation significantly impacts resistivity and grounding system performance.

Keywords: Artificial Neural Networks (ANN); Geotechnical Properties; Moisture Content and Resistivity; Regression Analysis in
Geotechnical Engineering; Soil Electrical Resistivity; Substation Grounding Systems.

1. Introduction

Soil resistivity is one of the most critical parameters in the design of grounding systems, especially for power
substations. In these facilities, the safe dissipation of fault currents is essential to protect both personnel and electrical
equipment. Numerous studies have investigated this topic, examining not only theoretical principles but also practical
engineering challenges. Grounding systems are designed to limit voltage surges during fault conditions, ensuring safety
and maintaining operational reliability. Among the factors that influence ground grid performance, soil resistivity stands
out due to its direct impact on ground resistance and the associated step and touch voltages.

The IEEE Std. 80 outlines comprehensive guidelines for the design of AC substation grounding systems, even in
regions with high-resistivity soils. Importantly, the standard emphasizes safety over merely achieving low ground
resistance. Instead, it promotes careful management of ground potential rise (GPR) and fault current dissipation without
necessarily altering existing soil properties [1]. Precise measurement of soil resistivity is therefore essential to ensure
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both effective design and regulatory compliance. Several studies have emphasized the importance of selecting sites with
favorable resistivity values. For instance, the Electricity Generating Authority of Thailand (EGAT) recommends that
resistivity values should not exceed 80 ohm-m [2, 3].

However, designing grounding systems in areas with naturally high resistivity presents significant technical and
economic challenges. Traditional mitigation strategies include increasing the length or number of electrodes, applying
soil conditioning agents, and increasing grid density. Although effective in some cases, these solutions can be costly and
are not always practical. As a result, selecting appropriate backfill materials has gained attention as a viable alternative.
Backfilling offers a targeted way to reduce soil resistivity around grounding systems without large-scale soil
modification. Tao et al. [4] explored the effect of low resistivity backfill materials on grounding performance using
simulations and field experiments. Their findings revealed that while localized use of such materials helps reduce step
voltages, extensive coverage may lead to undesirable voltage peaks along the periphery of the grid. This introduces new
safety risks. Consequently, engineers must consider not only the resistivity of the backfill itself but also its spatial
configuration and boundary interaction.

Soil resistivity can vary significantly across a site and over time due to factors such as moisture content, soil type,
porosity, ionic composition, and temperature. Seasonal fluctuations in particular play a major role. These variations
affect the consistency and effectiveness of grounding systems, making accurate and site-specific measurement critical.
Techniques like the Wenner four-pin method remain standard practice for field assessments [2, 5, 6]. Real case studies
reinforce this point. For example, fieldwork in Lagos, Nigeria, found much higher soil resistivity during dry seasons
compared to wet ones, directly affecting grounding reliability [2]. Similar trends have been documented in other regions,
including parts of China and South Africa, underscoring the importance of incorporating seasonal and geographic
variables into grounding system models [6, 7]. In recent decades, researchers have increasingly focused on the
connection between soil electrical resistivity and geotechnical parameters. This interest stems from the key role that
resistivity plays in subsurface exploration and site characterization. Electrical resistivity testing, which is both cost-
effective and non-invasive, offers a valuable means of indirectly assessing soil behavior [8-11].

Several studies have pointed to the strong influence of geotechnical factors on soil resistivity. Among these, moisture
content has been used as a key variable. As water content increases, resistivity typically decreases, likely due to greater
ionic mobility and the formation of more conductive pathways within the soil matrix [12, 13]. This trend appears
especially consistent in sandy soils, which tend to have uniform pore spaces and low water-holding capacity [14]. For
instance, Siddiqui & Osman [15, 16] found strong power-law correlations in clean sands, whereas soils with mixed or
silty textures displayed weaker relationships, possibly due to variability in pore structure. Likewise, Oborie & Akana
[17] observed that silty sands showed diminished sensitivity to moisture at higher saturation levels. In clay-silt mixtures,
Kibria & Hossain [18] reported that resistivity declined markedly up to about 20% moisture content, beyond which it
plateaued. At the drier end, particularly below 15% moisture, resistivity tended to rise sharply, likely due to restricted
charge movement in bound water films. Supporting this, Abu-Hassanein et al. [19] documented a strong negative
correlation in marine clay samples. Overall, the relationship between moisture and resistivity is not linear, often aligning
with power-law or exponential functions. In addition, Kizlo & Kanbergs [5] highlighted the role of dissolved ion
concentration, noting its significant impact on both water and soil resistivity values.

The relationship between electrical resistivity and the plasticity index (P1) varies depending on soil type, though an
overall inverse relationship is frequently observed across studies. In silty sand soils, this correlation tends to be moderate.
For example, Osman et al. [20] reported a strong inverse correlation under laboratory conditions and a moderate one in
the field. Likewise, Siddiqui & Osman [16] identified an exponential relationship, with an R? of 0.15, which notably
improved to 0.56 when modeled using artificial neural networks (ANN). In clayey-silt soils, the correlation was slightly
stronger, likely due to the enhanced ionic conduction associated with finer grain sizes. The trend becomes even more
pronounced, albeit more complex, in marine clays. Abu-Hassanein et al. [19] documented a strong inverse correlation
in such soils, suggesting that plasticity index could serve as a meaningful indicator of resistivity in these environments.
Similarly, Zhang et al. [21] found that when the plasticity index exceeded 10% in marine clays, resistivity values tended
to plateau at around 8 ohm-m, pointing to a potential threshold beyond which further increases in plasticity index have
limited impact. It is also important to consider other influential factors such as salt content and mineralogical
composition, both of which can significantly alter resistivity behavior. In sandy soil, for instance, correlations with
plasticity index are generally weak. This is likely attributable to their coarse texture and low plasticity, which reduces
the soil’s capacity for ionic exchange. Siddiqui & Osman [15, 16] noted that in such conditions, plasticity index alone
offered limited predictive value. Moreover, the presence of salinity further complicates resistivity interpretation. In
summary, the effect of plasticity index on resistivity is more distinct in fine-grained soils, whereas in coarser materials
like sand, the trend is less evident and less reliable for predictive modeling.

Several studies have shown that an increase in clay content typically results in lower electrical resistivity. This effect
is largely attributed to the high surface area and elevated cation exchange capacity (CEC) of clay minerals, both of which
promote ionic conduction within the soil. For instance, Zhang et al. [21] identified a strong inverse exponential
relationship in marine clays, where resistivity declined steeply up to approximately 60% clay content before reaching a
plateau. Similarly, Abu-Hassanein et al. [19] observed a consistent inverse trend, although the statistical fit was only
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moderate, indicating that clay content alone may not sufficiently account for resistivity variability in all cases. Other
particle-size characteristics also appear to play a role. Siddiqui & Osman [15] reported a moderate positive correlation
between the Dio grain size and resistivity in sandy soils, whereas in silty sands, the relationship was notably weaker.
These findings suggest that while finer particles and greater clay content tend to reduce resistivity, coarser-grained soils
typically exhibit higher values due to reduced surface reactivity and water retention. Overall, soil resistivity is governed
by a combination of physical, mineralogical, and chemical factors. As such, relying on a single parameter may not yield
accurate predictions across diverse soil types. This underscores the importance of using multivariable or nonlinear
models that integrate multiple geotechnical properties to better capture the complex behavior of soil resistivity under
varying conditions.

A wide range of studies have investigated how electrical resistivity relates to soil density parameters such as dry unit
weight, bulk density, and total unit weight with findings often varying depending on soil type, moisture levels, and the
specific conditions under which tests are conducted. Under controlled laboratory settings, an inverse relationship is
commonly observed, particularly in connection with dry unit weight. For example, Islam et al. [22, 23] documented
strong negative correlations between dry density and resistivity in compacted soils, suggesting that increased compaction
improves conductivity through reduced air voids. In contrast, results reported by Memon et al. [24] indicated weaker
correlations, where pore water properties played a more dominant role than soil density itself. When it comes to unit
weight, the trends appear less consistent. Kibria & Hossain [18] found inverse correlations in clay-rich soils, whereas
Siddiqui & Osman [16] noted that in sandy soil, the relationship was minimal or negligible. Interestingly, Abu-Hassanein
etal. [19] observed positive site-specific correlations in marine clays, indicating that local mineralogy and environmental
conditions may also shape resistivity behavior. These findings suggest that dry unit weight offers the most reliable
predictive value for resistivity in laboratory scenarios. However, under field conditions where factors such as moisture
variability, salinity, and soil composition come into play a multivariate approach becomes essential for accurate
interpretation.

The approaches to correlate geotechnical properties with electrical resistivity have limitations in capturing the
nonlinear and heterogeneous behavior of soils. Alternative methodologies, such as regression analysis and artificial
neural networks (ANN), offer promising solutions for developing reliable and adaptable predictive models. Regression
analysis provides a statistical framework for identifying significant relationships, while ANN enable modeling complex,
nonlinear dependencies through self-learning mechanisms. Studies have demonstrated the potential of ANN in
predicting soil properties by leveraging electrical resistivity data as an input, emphasizing their flexibility and accuracy
in handling complex datasets. For example, artificial neural networks have been successfully applied to predict some
geotechnical properties based on electrical resistivity. These models outperform traditional methods in scenarios with
high variability and limited data points, which obscures the interpretability of model parameters. Nevertheless,
integrating ANN-based approaches with neural interpretation diagrams and sensitivity analyses has enhanced our
understanding of the relationships between input variables and outputs [25-27].

In the context of grounding system design for substations, the interplay between soil resistivity and geotechnical
properties becomes even more crucial when dealing with layered soil profiles. Variations in resistivity across layers can
significantly affect the performance of grounding grids, necessitating accurate modeling to account for such
stratifications. For instance, the amount of ground rod may be required to reach lower-resistivity layers beneath high-
resistivity strata, optimizing grid performance. The selection of backfilling materials with favorable resistivity and
geotechnical characteristics further underscores the importance of comprehensive soil analysis.

This study aims to integrate regression analysis and ANN techniques to explore the intricate relationships between
soil resistivity and key geotechnical properties. By leveraging these advanced modeling tools, the research seeks to
develop predictive frameworks that facilitate accurate resistivity assessments and inform the design of efficient
grounding systems. Ultimately, this approach enhances the safety and reliability of electrical infrastructure and
contributes to the broader understanding of soil behavior in engineering applications.

2. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN), often called neural networks, are computational systems inspired by the human
brain's structure and functioning. Unlike conventional digital computers, which follow a deterministic and step-by-step
process, ANN compute differently by mimicking the brain's ability to process and adapt to nonlinear data. These
networks are designed to perform specific tasks by modeling patterns observed in biological neural systems. ANN can
be implemented using electronic components or simulated in software, making them highly versatile [25-27].

This study's architecture of artificial neural networks (ANN) comprises multilayer feedforward networks consisting
of three primary layers: an input layer, one or more hidden layers, and an output layer. Communication between these
layers occurs through interconnected neurons, each transmitting signals weighted by bias values. This weighting reduces
the discrepancy between predicted outputs and actual targets during training, iterated through multiple cycles called
epochs. Each neuron in one layer connects to every neuron in the next, creating an entirely interconnected structure for
complex data processing. The typical structure of multilayer feedforward is shown in Figure 1 that shows typical
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structure of the ANN used in this study. The diagram illustrates the multilayer feedforward architecture comprising an
input layer, one or more hidden layers, and an output layer. The Levenberg-Marquardt algorithm was utilized to optimize
the learning process, enhancing the model's ability to generalize from training data and improve prediction accuracy.
Because the Levenberg-Marquardt algorithm combines gradient descent and the Gauss-Newton method [27], enabling
it to converge rapidly, especially for small to medium-sized networks that accord with this study. The soil resistivity
data exhibited complex, nonlinear relationships with geotechnical properties such as moisture content, plasticity index,
and dry density. The Levenberg-Marquardt algorithm is well-suited for such problems. Moreover, the dataset in this
study was relatively small (30 soil samples). The Levenberg-Marquardt algorithm is known to perform well with smaller
datasets, as it can extract meaningful patterns without overfitting.

wcC

]’dry

Output layer
PI

Input layer Hidden layer

Figure 1. The typical structure of the artificial neural network used for predictive analysis [22]

For Model validation, it is a critical phase following the successful training of an Artificial Neural Network (ANN)
model. This phase ensures that the model can generalize within the constraints of the training data in a robust manner
rather than merely memorizing the input-output relationships present in the training set. The validation process typically
involves assessing the performance of the trained ANN on an independent validation dataset, which is not used during
the model development phase. This approach is widely recognized in the literature for evaluating the model's
generalization capability [25-27].

Several performance metrics are employed to quantify ANN models' robustness and predictive accuracy. Among
these, the coefficient of correlation (r) and the root mean squared error (RMSE) are particularly significant. The
coefficient of correlation measures the strength and direction of the linear relationship between predicted and observed
data, serving as an indicator of goodness-of-fit. A high correlation coefficient suggests a strong agreement between
predictions and actual outcomes.

Smith (1986) [28] provides guidelines for interpreting the coefficient of correlation, which ranges from 0.0 to 1.0.
When the absolute value of the coefficient of correlation (|r|) is greater than 0.8, it indicates a strong correlation between
two sets of variables. Values between 0.2 and 0.8 suggest a moderate correlation, while values less than 0.2 indicate a
weak correlation.

Hecht-Nielsen (1990) [29] highlights using the Root Mean Squared Error (RMSE) as a critical metric for evaluating
predictive performance. RMSE is calculated using the following Equation 1:

RMSE = |51, — 9% (1)

where N represents the number of data point, p denotes the actual value (target out) and, p denotes the predicted
value (The dataset in this study has been divided into training, validation, and testing subsets for developing an
Artificial Neural Network (ANN). Seventy percent of the dataset was allocated to training, during which the network
identifies patterns and relationships within the data by iteratively adjusting its weights and biases to minimize
prediction error. Fifteen percent of the dataset was assigned for validation and utilized during the training phase to
monitor the model’s performance and mitigate overfitting by assessing its ability to generalize to unseen data. After
the training phase, the remaining 15% was reserved for testing to evaluate the model’s final performance. The test
set provides an objective and unbiased measure of the model’s capacity to handle new, unseen data. Moreover, this
study chose the RMSE as a performance metric for evaluating predictive models because it can quantify the size of
prediction errors and penalizes large errors more significantly than metrics like Mean Absolute Error (MAE) due to
the squaring of residuals [30].
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3. Data Acquisition

This study collected disturbed soil samples from 30 points located at three representative power grid substations.
The soil was taken from the backfill layers near the ground surface (within 2 meters depth). In substation construction,
backfill soil plays a crucial role in both geotechnical stability and electrical grounding performance. In Thailand, its use
is governed by strict regulations to ensure compliance with required specifications [31].

Soil sampling was conducted following standardized procedures to capture representative variability in soil
conditions across diverse geographic areas. The collected samples were then transported to the laboratory, where a series
of geotechnical and electrical tests were carried out to characterize their properties. Although the samples were disturbed,
they were suitable for laboratory-based resistivity testing. To investigate the influence of moisture content on soil
electrical resistivity, each sample was prepared and tested under five distinct moisture levels. This approach was
designed to simulate real-world variations in field moisture conditions and improve the model's generalizability. As a
result, the experimental design yielded a total of 150 data points, providing a robust and diverse dataset for statistical
analysis and model development using multiple regression and artificial neural networks.

3.1. Geotechnical Laboratory Test

The geotechnical laboratory analyses in this study were conducted to comprehensively assess the physical and
mechanical properties of soil samples collected from representative substations. The tests included evaluations of water
content, plasticity index, liquid limit, specific gravity, clay content, and maximum dry density.

Specific gravity testing, performed using a pycnometer, quantified the ratio of soil particle density to water density,
providing critical insights into the soil's mineralogical composition and serving as a basis for calculations in hydrometer
testing. The plasticity index and liquid limit tests were used to characterize the soil's water content behavior. The
plasticity index, defined as the difference between the plastic and liquid limits, provided information on soil consistency
and the proportion of fines passing through a No. 200 sieve. Clay content was determined using a combination of sieve
analysis and hydrometer testing, with classification conducted by the Unified Soil Classification System (USCS). To
replicate the properties of substation, backfill soils, standard Proctor compaction tests were carried out to achieve the
soil's maximum dry density and optimum water content. These tests informed the preparation and reconstitution of soil
samples for electrical resistivity laboratory testing. All procedures were performed in strict accordance with the relevant
ASTM standards [32-37] to ensure methodological rigor and accuracy. Table 1 summarizes the results of these analyses.

Table 1. Summary of geotechnical properties of clayey silt and silty clay soils [31]

. . Soil type
Geotechnical properties ASTM - -
Clayey silt Silty clay

Specific gravity, Gs ASTM D854 2.68t0 2.80 2.70t0 2.77

Plasticity index, P1 (%) ASTM D4318 9.81t016.5 27.1t037.2

Maximum dry unit weight, /cm? 1.77t01.83 1.78t0 1.86
) y . ght, yary (9 ) ASTM D298

Optimum moisture content (%) 13.2t0 15.6 13.2t0 16.4

In the classification framework detailed by Sangprasat et al. [31], the soil samples were systematically categorized
into two distinct types based on their position relative to the A-line: (1) silty clay, which is situated above the A-line,
and (2) clayey silt, which falls below the A-line. The characteristics and properties of these two soil types are outlined
in Table 1.

For the silty clay group, the plasticity index, which reflects the soil's plasticity and ability to retain water, was found
to range between 27.1% and 37.2%. This relatively high plasticity index indicates a significant clay content and a higher
tendency for the soil to undergo deformation under varying moisture conditions. The specific gravity values, which
provide insight into the density of soil particles compared to water, were observed to range from 2.70 to 2.77.
Furthermore, the maximum dry density of the silty clay soils was determined to be between 1.78 g/cm3 to 1.86 g/cm3,
while the optimum water content, representing the moisture level required to achieve maximum compaction, ranged
from 13.2% and 16.4%. These properties collectively suggest that silty clay exhibits a substantial capacity for
compaction and water retention.

On the other hand, the clayey silt group demonstrated a lower plasticity index compared to silty clay, with values
ranging from 9.8% to 16.5%. This lower range indicates a reduced clay content and, consequently, less pronounced
plasticity and water retention behavior. Despite this difference in plasticity, the specific gravity of clayey silt was found
to be similar to that of silty clay, with values ranging from 2.68 to 2.80. Similarly, the maximum dry density values for
clayey silt, which ranged between 1.77 g/cm?3 and 1.83 g/cm3, showed only a slight variation compared to the silty clay
group. The optimum water content for clayey silt was observed to range from 13.2% to 15.6%, which closely aligns
with the values reported for silty clay.

3.2. Electrical Resistivity Laboratory Test

Smith [28] and Wenner [39] highlighted the importance of electrical resistivity as a key soil property influenced by
material composition and pore water ionic concentration. Using a four-electrode configuration, they measured resistivity
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on core samples encased in PVC cylinders (7.5 cm in diameter and 11 c¢cm in length) with copper disks as current
electrodes and copper needles as potential electrodes. The method showed consistent resistivity values across varying
electrode depths, indicating minimal disturbance is sufficient for accurate measurements, particularly in clay soils.
Additionally, the approach is adaptable to various sample geometries, making it versatile for geotechnical applications.

Specific gravity testing, conducted using a pycnometer, quantified the ratio of soil particle density to water density.
This provided critical insight into the soil’s mineralogical composition and served as a basis for calculations in
hydrometer testing. The plasticity index and liquid limit tests were used to characterize the soil's water content behavior.
The plasticity index, defined as the difference between the plastic and liquid limits, provided information on soil
consistency and the proportion of fines passing through a No. 200 sieve. Clay content was determined through a
combination of sieve analysis and hydrometer testing, with classification conducted by the Unified Soil Classification
System (USCS). To replicate the properties of substation’s backfilled soils, standard Proctor compaction tests were
carried out to determine the soil’s maximum dry density and optimum water content. These tests informed the
preparation and reconstitution of soil samples for electrical resistivity measurements.

According to Zhou et al. [40], in line with IEEE guidelines, soil resistivity exhibits a three-stage response to
temperature variations: (1) a gradual decrease in resistivity above 0°C, (2) a sudden change at 0°C, and (3) a significant
increase below 0°C. For sandy loam soil with 15.2% moisture content, resistivity decreases approximately exponentially
as temperature rises above 0°C [3]. Similar findings were reported by Abu-Hassanein et al. [19], reinforcing the inverse
relationship between electrical resistivity and temperature. In addition, Kizlo & Kanbergs [5] observed that the resistivity
of rocks increases markedly during the freezing of pore moisture, underscoring the influence of phase changes on
electrical properties.

In this study, cylindrical soil samples measuring 6.4 cm in diameter and 12 cm in length were used, with electrical
resistivity measured using the Wenner array configuration [36]. The IRIS SYSCAL R2 instrument, powered by a 1.5V
battery [38], was used to evaluate resistivity. To ensure accuracy in current measurements, brass disc electrodes were
placed at both ends of each soil sample to function as current electrodes. Additionally, two brass electrodes were inserted
at fixed positions within the sample, spaced 4 cm apart, to serve as potential electrodes. The electrical resistivity of the
soil was then calculated using Equation 2.

v 2
p=-0 2)
where p is the resistivity in ohm-meters, V represents the potential difference, I is the applied current, r is the sample
radius, and a is the distance between the potential electrodes.

Sample preparation was carefully controlled to ensure consistency. The soil was first dried and then mixed with
distilled water before being sealed in a bag for 24 hours to allow uniform water distribution. The moistened soil was
subsequently compacted into cylindrical molds using a 5.5-pound hammer to achieve 95% of the maximum dry density
and 85% of the optimum water content, as determined by the standard Proctor test.

The experimental procedure followed a structured timeline, with resistivity measurements taken on Days 0, 7, 14,
and 28, as outlined in the flowchart in Figure 2. Throughout the 28-day testing period, temperature and humidity were
strictly regulated to maintain conditions of 25+2 °C and 50%-55% relative humidity. Prior to each measurement, the
samples were weighed, and their water content was monitored by reweighing the samples at the end of the experiment.
This controlled preparation and measurement process ensured reliable results and accurate monitoring of moisture
changes, providing robust data for analyzing the electrical resistivity of the soil samples.

Preparing soil sample

}

Measuring resistivity and
weight for water content [+
calculation

|

Leaving samples for loss of
water in soil sample

28 No
days

Yes

Data

Figure 2. The flowchart of electrical resistivity laboratory measurement

4049



Civil Engineering Journal Vol. 11, No. 10, October, 2025

4. Results and Discussion
4.1. Correlation Between Resistivity and Each Geotechnical Property by Regression Analysis

Sangprasat et al. [31] highlighted the significant impact of water content on soil resistivity, demonstrating an inverse
relationship in which resistivity increases as moisture decreases, particularly within specific soil types. While the overall
power correlation was weak, strong correlations were observed within individual soils. This trend aligns with prior
research showing that higher water content reduces resistivity due to increased ion mobility and the formation of
conductive paths [21, 41-43]. Conversely, at low moisture levels, resistivity rises sharply, especially below 15%
moisture content, due to limited charge mobility [44]. Studies also reveal that resistivity becomes relatively stable above
22% moisture content, indicating saturation. Factors such as grain size, soil compactness, and heterogeneity influence
this relationship, leading to variability across soil types. Nonlinear models further confirm the strong moisture—resistivity
correlation within distinct soil types. Additionally, the type of water in the soil, as noted by Kizlo & Kanbergs [5], affects
resistivity, with bound water contributing less to conduction than free water.

The relationship between resistivity and dry density based on a power correlation yielded weak overall correlations
when all soil samples were considered, indicating a limited connection [31]. However, trends differed among individual
soil types. These results suggest that power correlation is insufficient to conclusively establish a relationship between
resistivity and dry density, primarily due to the overriding influence of moisture content. The variability in observed
trends highlights moisture's dominant role in affecting soil resistivity.

Furthermore, Sangprasat et al. [31] investigated the relationship between soil resistivity and plasticity index,
primarily using power correlation. The results showed that resistivity generally increases as the plasticity index
decreases, though exceptions were observed, such as in clayey silt compacted at 95%, where the correlation was weaker.
This trend aligns with findings from Siddiqui et al. [16] and Abu-Hassanein et al. [19], who reported a significant inverse
relationship between electrical resistivity and plasticity index. Higher clay content, characterized by a greater proportion
of fine particles, typically leads to lower resistivity due to improved ion conduction pathways. Other studies have also
confirmed the significant influence of soil composition, particularly clay content, on resistivity.

The correlation between soil resistivity and specific gravity is relatively weak, as specific gravity primarily reflects
the mineralogical composition of the soil rather than directly predicting resistivity. In this study, the soil samples
contained mineral components such as Kaolinite (2.60-2.68), lllite (2.642—2.688), Quartz (2.65), and Goethite (3.3-4.3)
[45]. Sarip & Madun [46] investigated the influence of clay minerals (Kaolinite, Illite, and Montmorillonite) on electrical
resistivity and chargeability for groundwater interpretation. Their findings indicate that although Montmorillonite
exhibited the highest specific gravity, soil samples dominated by Kaolinite demonstrated the highest resistivity values.

This suggests that clay minerals, particularly Kaolinite and Illite, contribute to lower soil resistivity due to their
higher porosity and chargeability compared to non-clay minerals. While specific gravity does not establish a direct
relationship with soil resistivity, it serves as a valuable indicator of mineralogical composition, which indirectly
influences resistivity behavior. Consequently, the mineralogical characteristics of the soil play a more significant role
in determining resistivity than specific gravity alone.

4.2. Multiple Regression Model

Sangprasat et al. [31] employed a nonlinear regression approach and found that moisture content plays a dominant
role in influencing soil resistivity. This strong influence poses challenges in precisely quantifying the relationship
between these variables. To overcome this limitation, several multiple regression models were constructed using
different combinations of geotechnical parameters, as outlined in Table 2:

Table 1. Multiple regression equations for predicting soil resistivity from geotechnical parameters

Parameters
Model Equations
Input Output

The coefficient of
determination

wc
MR-1 p p = 482.2808(WC10347) (7 237478) 0.8281

Ydry

wc

MR-2 p p = 4856.2384(WC~10756)(P[~076963) 0.7742
PI
wc

MR-3 Yary p p = 15360.31(W (10658, 11034) (p[~10171) 0.8102

PI

4050



Civil Engineering Journal Vol. 11, No. 10, October, 2025

where p is the resistivity in ohm-meters, y,,.,, represents dry density g/cm?, WC is water content in % and Pl is plasticity
index in %.

Model MR-1, which included water content and dry density as inputs, produced a coefficient of determination (R?)
0f 0.8281 and an RMSE of 445.0 Q-m. The regression analysis showed that water content had a statistically significant
effect (P <0.001), whereas dry density did not (P = 0.676). Model MR-2, comprising water content and plasticity index,
achieved better predictive performance, with R? = 0.7742 and RMSE = 426.0 Q-m. Both parameters were found to be
statistically significant (P < 0.001), suggesting a strong relationship with resistivity. Model MR-3 combined all three
variables, water content, dry density, and plasticity index, and resulted in R* = 0.8102 and RMSE = 430.0 Q-m. While
water content and plasticity index continued to show significant influence (P < 0.001), dry density again did not
contribute meaningfully to the model (P = 0.741). Figures 3-a, 4-a, and 5-a present the comparison between measured
and predicted resistivity values for each model. These results underscore the importance of incorporating multiple
geotechnical properties, particularly moisture-related factors, when developing predictive models for soil electrical
resistivity.
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(artificial neural network) models using water content and dry density
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From an engineering perspective, these findings offer practical insights for geotechnical site evaluation and the
design of electrical grounding systems. The pronounced influence of water content and plasticity index on soil resistivity
underscores the need to account for seasonal moisture fluctuations and soil classification when estimating resistivity in
the field. Soils with higher plasticity, for instance, tend to retain moisture for extended periods, which can lead to lower
resistivity and, consequently, impact the long-term performance of grounding systems.

In contrast, dry density consistently demonstrated a limited contribution across all models, suggesting that its role in
resistivity prediction is less significant compared to parameters linked to pore water and clay content. This observation
indicates that electrical conduction in soils is more closely tied to physicochemical characteristics than to compaction
alone. Therefore, relying on dry density or any single-parameter approach may not be sufficient, particularly in moisture-
sensitive or fine-grained soils. These results highlight the importance of selecting input variables that capture both the
hydrological and mineralogical behavior of soils to improve the accuracy of resistivity modeling.

4.3. Artificial Neural Networks

An Acrtificial Neural Network (ANN) model was developed to predict soil electrical resistivity using three
geotechnical input parameters: water content, dry density, and plasticity index. The feedforward neural network
was constructed with one hidden layer and trained using the Bayesian Regularization backpropagation algorithm
(trainbr in MATLAB). Prior to training, all input and output data were normalized to the [0,1] range to enhance
numerical stability and learning efficiency. To identify the optimal network architecture, a parametric study was
conducted by varying the number of neurons in the hidden layer from 1 to 10. For each configuration, the network
was trained, and its performance was evaluated based on the root mean squared error (RMSE) and coefficient of
determination (R?) on the test dataset. The data were split into training (70%), validation (15%), and testing (15%)
subsets.

To explore the effectiveness of artificial neural networks (ANNS) in predicting soil electrical resistivity, we tested
three model configurations using different combinations of geotechnical inputs. Their performances, summarized in
Table 3, were evaluated based on the coefficient of determination (R?) and the root mean square error (RMSE). In the
first setup (ANN-1), we used water content and dry density as inputs. The model produced an R2 of 0.6809 and an RMSE
of 0.093. While this suggests a moderate level of prediction accuracy, it also indicates that these two parameters alone
do not sufficiently capture the complexity of resistivity behavior, especially in fine-grained or clay-rich soils where
moisture retention and mineral composition have stronger influence. The ANN-2 model, tested with water content and
plasticity index, showed a notable improvement, achieving an R2 of 0.8588 and an RMSE of 0.064. The results highlight
the critical role of the plasticity index, which reflects the presence and characteristics of clay minerals and their
contribution to electrical conduction under moist conditions. The third model, ANN-3, combined all three parameters—
water content, dry density, and plasticity index. This configuration slightly outperformed ANN-2, reaching an R2 of
0.8608 and an RMSE of 0.057. Although the gain in R? was marginal, the reduced RMSE indicates a more reliable
prediction. Interestingly, dry density still had a minor yet measurable contribution when added to the model, even though
its standalone influence appeared limited.
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Table 2. Predictive Performance of Artificial Neural Network Models Using Geotechnical Parameters

Parameters ..
Model Tze coeffl(:le_nt of RMSE
Input Output etermination
wc
ANN-1 p 0.6809 0.093
ydry
wc
ANN-2 p 0.8588 0.064
PI
wc
ANN-3 Yary P 0.8608 0.057
PI

where p is the resistivity in ohm-meters, y,,, represents dry density g/cms3, WC is water content in % and Pl is plasticity
index in %.

To interpret the influence of each input variable on the model output, the Garson algorithm was employed to estimate
the relative importance of each input parameter based on the absolute contribution of the connection weights from input
to hidden and hidden to output layers. The analysis revealed that water content had the highest relative importance,
contributing 80.25%, followed by plasticity index with 15.59%, and dry density with only 4.16%. These results are
consistent with the known physical behavior of soil resistivity, which is predominantly influenced by moisture content.

4.4. Comparative Analysis

To evaluate the predictive performance of multiple regression (MR) and artificial neural network (ANN) models,
three configurations for each approach were tested using different combinations of geotechnical parameters. The results,
summarized in Tables 2 and 3 and illustrated in Figures 3 to 5, reveal both strengths and limitations of each modeling
technique.

Among the MR models, MR-1 achieved the highest coefficient of determination (R? = 0.8281), indicating a strong
fit to the data. However, its root mean square error (RMSE = 445.0 Q-m) was relatively high, suggesting that despite
the good fit, the model may still produce large absolute errors, particularly for soils with high resistivity values. In
contrast, ANN-1, which used the same input parameters, produced a lower R2 of 0.6809 but achieved a much lower
normalized RMSE of 0.093. This implies that while ANN-1 explained less of the overall variance, it provided more
consistent predictions with smaller average errors. In practical terms, this could make ANN-1 more reliable when
precision is prioritized over statistical fit. A more notable advantage of ANN models emerged when plasticity index was
included. ANN-2 and ANN-3 achieved R2 values of 0.8588 and 0.8608, respectively, with the lowest RMSEs of 0.064
and 0.057. These results indicate that ANN models not only captured complex, nonlinear patterns more effectively but
also reduced prediction errors. Meanwhile, the corresponding MR models (MR-2 and MR-3) yielded lower R2 values
(0.7742 and 0.8102) and higher RMSEs (426.0 and 430.0 Q-m), reflecting weaker performance.

RMSE plays a critical role in assessing model accuracy, as it directly quantifies the average magnitude of prediction
errors. While R2 measures how well a model explains data variability, RMSE is more relevant in applications where
minimizing absolute error is essential. For instance, in grounding system design or soil monitoring, lower RMSE
translates to more dependable estimates and better engineering outcomes. To further interpret the contribution of each
variable in the ANN models, the Garson algorithm was applied. The analysis showed that water content had the greatest
relative importance (80.25%), followed by plasticity index (15.59%), and dry density (4.16%). These findings are
consistent with both regression results and prior studies [31, 47, 48], reinforcing the conclusion that moisture-related
factors—especially water content—dominate the behavior of soil resistivity.

In summary, while MR-1 provided the highest R? in a two-variable setting, the ANN models—particularly ANN-2
and ANN-3—demonstrated better overall performance when both R2 and RMSE were considered. The inclusion of
plasticity index significantly enhanced predictive accuracy, and the ANN framework proved more effective at capturing
nonlinear relationships. These results support the use of ANN-based models for reliable and accurate prediction of soil
electrical resistivity. While the ANN models performed well in estimating soil resistivity, it’s important to acknowledge
a key limitation: the dataset used in this study contained only 150 samples. In the context of machine learning, especially
for nonlinear problems like soil behavior, small datasets can sometimes hinder the model’s ability to generalize and
increase the risk of overfitting.

Interestingly, prior research suggests that small datasets aren’t necessarily a barrier to effective ANN modeling.
Pasini [49], for instance, noted that with proper design, such as careful selection of network architecture, robust
preprocessing, and the use of regularization, ANNSs can still deliver solid performance even with limited data. A simple
feedforward network with one hidden layer, when well-tuned, can achieve strong nonlinear regression results.

This observation is echoed by Baginska & Srokosz [50], who found that ANN models in engineering contexts—
where collecting large numbers of field measurements can be difficult, still performed accurately with fewer than 150
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samples. However, they emphasized the need for strong validation strategies, such as cross-validation, to ensure the
model’s reliability.

Similarly, Izonin et al. [51] pointed out that researchers working with small datasets should be especially cautious
about model complexity. They recommended minimizing the number of hidden neurons or using techniques like dropout
to prevent overfitting and help the model generalize better.

Overall, while a dataset of 150 samples is within the acceptable range for ANN modeling, it does call for careful
interpretation of results, particularly when extending conclusions to other soil types or regions. Future work could
explore expanding the dataset or adopting transfer learning methods to further improve model robustness and
applicability.

5. Conclusion

This study examined the predictive performance of multiple regression (MR) and artificial neural network (ANN)
models in estimating soil electrical resistivity using water content, dry density, and plasticity index as input variables.
A total of 150 laboratory data points, gathered from three substations under varying moisture conditions, served as the
dataset for model development. While MR models produced relatively high coefficients of determination (up to R? =
0.8281), their higher root mean square error (RMSE) values indicated less precise predictions. In contrast, ANN
models—especially those incorporating the plasticity index—achieved both higher R2 values (up to 0.8608) and lower
RMSEs (down to 0.057), suggesting superior performance in capturing nonlinear patterns in soil resistivity.

The study also addressed a major limitation found in prior literature, where models were often built using either
oversimplified input parameters or data from homogeneous soil types. By incorporating a more diverse set of inputs and
validating across multiple soil types, the models presented here offer improved generalizability. The Garson algorithm
highlighted the dominant influence of water content (80.25%) over plasticity index and dry density, in line with prior
findings but providing clearer quantitative insight.

The results highlight the practical advantages of ANN-based models for applications in tropical and subtropical
environments where soil moisture varies significantly. Although the sample size was modest, careful parameter selection
and moisture variation contributed to strong generalization. Future research could benefit from incorporating additional
soil characteristics—such as mineralogy, salinity, or cation exchange capacity—and validating the models on larger,
more heterogeneous datasets to further improve predictive capability for geotechnical and electrical infrastructure
design.
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