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Abstract 

This study investigates the influence of key geotechnical parameters—water content, dry density, and plasticity index—

on soil electrical resistivity, with the goal of improving prediction accuracy for substation grounding system design. A 

dataset comprising 150 laboratory test results was compiled from soil samples collected at three substations in Thailand, 

representing diverse moisture conditions to reflect field variability. Two modeling approaches were applied: multiple 

regression (MR) and artificial neural networks (ANN), evaluated using the coefficient of determination (R²) and root mean 

square error (RMSE). The MR models achieved relatively strong correlations, with R² values up to 0.8281; however, their 

higher RMSE values indicated limited precision under variable conditions. In contrast, the ANN models, particularly those 

incorporating the plasticity index, demonstrated superior performance, achieving lower RMSE values—down to 0.057—

highlighting their ability to capture complex nonlinear relationships. In comparison to prior studies that often relied on 

single-variable models or uniform soil datasets, this research adopts a more integrative and generalizable framework. By 

incorporating multiple soil parameters into the ANN model and validating against a diverse dataset, the study offers 

practical insights for engineering applications. The findings are particularly valuable in tropical regions where soil moisture 

variation significantly impacts resistivity and grounding system performance. 

Keywords: Artificial Neural Networks (ANN); Geotechnical Properties; Moisture Content and Resistivity; Regression Analysis in 

Geotechnical Engineering; Soil Electrical Resistivity; Substation Grounding Systems. 

 

1. Introduction 

Soil resistivity is one of the most critical parameters in the design of grounding systems, especially for power 

substations. In these facilities, the safe dissipation of fault currents is essential to protect both personnel and electrical 

equipment. Numerous studies have investigated this topic, examining not only theoretical principles but also practical 

engineering challenges. Grounding systems are designed to limit voltage surges during fault conditions, ensuring safety 

and maintaining operational reliability. Among the factors that influence ground grid performance, soil resistivity stands 

out due to its direct impact on ground resistance and the associated step and touch voltages. 

The IEEE Std. 80 outlines comprehensive guidelines for the design of AC substation grounding systems, even in 

regions with high-resistivity soils. Importantly, the standard emphasizes safety over merely achieving low ground 

resistance. Instead, it promotes careful management of ground potential rise (GPR) and fault current dissipation without 

necessarily altering existing soil properties [1]. Precise measurement of soil resistivity is therefore essential to ensure 
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both effective design and regulatory compliance. Several studies have emphasized the importance of selecting sites with 

favorable resistivity values. For instance, the Electricity Generating Authority of Thailand (EGAT) recommends that 

resistivity values should not exceed 80 ohm-m [2, 3]. 

However, designing grounding systems in areas with naturally high resistivity presents significant technical and 

economic challenges. Traditional mitigation strategies include increasing the length or number of electrodes, applying 

soil conditioning agents, and increasing grid density. Although effective in some cases, these solutions can be costly and 

are not always practical. As a result, selecting appropriate backfill materials has gained attention as a viable alternative. 

Backfilling offers a targeted way to reduce soil resistivity around grounding systems without large-scale soil 

modification. Tao et al. [4] explored the effect of low resistivity backfill materials on grounding performance using 

simulations and field experiments. Their findings revealed that while localized use of such materials helps reduce step 

voltages, extensive coverage may lead to undesirable voltage peaks along the periphery of the grid. This introduces new 

safety risks. Consequently, engineers must consider not only the resistivity of the backfill itself but also its spatial 

configuration and boundary interaction. 

Soil resistivity can vary significantly across a site and over time due to factors such as moisture content, soil type, 

porosity, ionic composition, and temperature. Seasonal fluctuations in particular play a major role. These variations 

affect the consistency and effectiveness of grounding systems, making accurate and site-specific measurement critical. 

Techniques like the Wenner four-pin method remain standard practice for field assessments [2, 5, 6]. Real case studies 

reinforce this point. For example, fieldwork in Lagos, Nigeria, found much higher soil resistivity during dry seasons 

compared to wet ones, directly affecting grounding reliability [2]. Similar trends have been documented in other regions, 

including parts of China and South Africa, underscoring the importance of incorporating seasonal and geographic 

variables into grounding system models [6, 7]. In recent decades, researchers have increasingly focused on the 

connection between soil electrical resistivity and geotechnical parameters. This interest stems from the key role that 

resistivity plays in subsurface exploration and site characterization. Electrical resistivity testing, which is both cost-

effective and non-invasive, offers a valuable means of indirectly assessing soil behavior [8-11]. 

Several studies have pointed to the strong influence of geotechnical factors on soil resistivity. Among these, moisture 

content has been used as a key variable. As water content increases, resistivity typically decreases, likely due to greater 

ionic mobility and the formation of more conductive pathways within the soil matrix [12, 13]. This trend appears 

especially consistent in sandy soils, which tend to have uniform pore spaces and low water-holding capacity [14]. For 

instance, Siddiqui & Osman [15, 16] found strong power-law correlations in clean sands, whereas soils with mixed or 

silty textures displayed weaker relationships, possibly due to variability in pore structure. Likewise, Oborie & Akana 

[17] observed that silty sands showed diminished sensitivity to moisture at higher saturation levels. In clay-silt mixtures, 

Kibria & Hossain [18] reported that resistivity declined markedly up to about 20% moisture content, beyond which it 

plateaued. At the drier end, particularly below 15% moisture, resistivity tended to rise sharply, likely due to restricted 

charge movement in bound water films. Supporting this, Abu-Hassanein et al. [19] documented a strong negative 

correlation in marine clay samples. Overall, the relationship between moisture and resistivity is not linear, often aligning 

with power-law or exponential functions. In addition, Kizlo & Kanbergs [5] highlighted the role of dissolved ion 

concentration, noting its significant impact on both water and soil resistivity values. 

The relationship between electrical resistivity and the plasticity index (PI) varies depending on soil type, though an 

overall inverse relationship is frequently observed across studies. In silty sand soils, this correlation tends to be moderate. 

For example, Osman et al. [20] reported a strong inverse correlation under laboratory conditions and a moderate one in 

the field. Likewise, Siddiqui & Osman [16] identified an exponential relationship, with an R² of 0.15, which notably 

improved to 0.56 when modeled using artificial neural networks (ANN). In clayey-silt soils, the correlation was slightly 

stronger, likely due to the enhanced ionic conduction associated with finer grain sizes. The trend becomes even more 

pronounced, albeit more complex, in marine clays. Abu-Hassanein et al. [19] documented a strong inverse correlation 

in such soils, suggesting that plasticity index could serve as a meaningful indicator of resistivity in these environments. 

Similarly, Zhang et al. [21] found that when the plasticity index exceeded 10% in marine clays, resistivity values tended 

to plateau at around 8 ohm-m, pointing to a potential threshold beyond which further increases in plasticity index have 

limited impact. It is also important to consider other influential factors such as salt content and mineralogical 

composition, both of which can significantly alter resistivity behavior. In sandy soil, for instance, correlations with 

plasticity index are generally weak. This is likely attributable to their coarse texture and low plasticity, which reduces 

the soil’s capacity for ionic exchange. Siddiqui & Osman [15, 16] noted that in such conditions, plasticity index alone 

offered limited predictive value. Moreover, the presence of salinity further complicates resistivity interpretation. In 

summary, the effect of plasticity index on resistivity is more distinct in fine-grained soils, whereas in coarser materials 

like sand, the trend is less evident and less reliable for predictive modeling. 

Several studies have shown that an increase in clay content typically results in lower electrical resistivity. This effect 

is largely attributed to the high surface area and elevated cation exchange capacity (CEC) of clay minerals, both of which 

promote ionic conduction within the soil. For instance, Zhang et al. [21] identified a strong inverse exponential 

relationship in marine clays, where resistivity declined steeply up to approximately 60% clay content before reaching a 

plateau. Similarly, Abu-Hassanein et al. [19] observed a consistent inverse trend, although the statistical fit was only 



Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4046 

 

moderate, indicating that clay content alone may not sufficiently account for resistivity variability in all cases. Other 

particle-size characteristics also appear to play a role. Siddiqui & Osman [15] reported a moderate positive correlation 

between the D10 grain size and resistivity in sandy soils, whereas in silty sands, the relationship was notably weaker. 

These findings suggest that while finer particles and greater clay content tend to reduce resistivity, coarser-grained soils 

typically exhibit higher values due to reduced surface reactivity and water retention. Overall, soil resistivity is governed 

by a combination of physical, mineralogical, and chemical factors. As such, relying on a single parameter may not yield 

accurate predictions across diverse soil types. This underscores the importance of using multivariable or nonlinear 

models that integrate multiple geotechnical properties to better capture the complex behavior of soil resistivity under 

varying conditions. 

A wide range of studies have investigated how electrical resistivity relates to soil density parameters such as dry unit 

weight, bulk density, and total unit weight with findings often varying depending on soil type, moisture levels, and the 

specific conditions under which tests are conducted. Under controlled laboratory settings, an inverse relationship is 

commonly observed, particularly in connection with dry unit weight. For example, Islam et al. [22, 23] documented 

strong negative correlations between dry density and resistivity in compacted soils, suggesting that increased compaction 

improves conductivity through reduced air voids. In contrast, results reported by Memon et al. [24] indicated weaker 

correlations, where pore water properties played a more dominant role than soil density itself. When it comes to unit 

weight, the trends appear less consistent. Kibria & Hossain [18] found inverse correlations in clay-rich soils, whereas 

Siddiqui & Osman [16] noted that in sandy soil, the relationship was minimal or negligible. Interestingly, Abu-Hassanein 

et al. [19] observed positive site-specific correlations in marine clays, indicating that local mineralogy and environmental 

conditions may also shape resistivity behavior. These findings suggest that dry unit weight offers the most reliable 

predictive value for resistivity in laboratory scenarios. However, under field conditions where factors such as moisture 

variability, salinity, and soil composition come into play a multivariate approach becomes essential for accurate 

interpretation. 

The approaches to correlate geotechnical properties with electrical resistivity have limitations in capturing the 

nonlinear and heterogeneous behavior of soils. Alternative methodologies, such as regression analysis and artificial 

neural networks (ANN), offer promising solutions for developing reliable and adaptable predictive models. Regression 

analysis provides a statistical framework for identifying significant relationships, while ANN enable modeling complex, 

nonlinear dependencies through self-learning mechanisms. Studies have demonstrated the potential of ANN in 

predicting soil properties by leveraging electrical resistivity data as an input, emphasizing their flexibility and accuracy 

in handling complex datasets. For example, artificial neural networks have been successfully applied to predict some 

geotechnical properties based on electrical resistivity. These models outperform traditional methods in scenarios with 

high variability and limited data points, which obscures the interpretability of model parameters. Nevertheless, 

integrating ANN-based approaches with neural interpretation diagrams and sensitivity analyses has enhanced our 

understanding of the relationships between input variables and outputs [25–27]. 

In the context of grounding system design for substations, the interplay between soil resistivity and geotechnical 

properties becomes even more crucial when dealing with layered soil profiles. Variations in resistivity across layers can 

significantly affect the performance of grounding grids, necessitating accurate modeling to account for such 

stratifications. For instance, the amount of ground rod may be required to reach lower-resistivity layers beneath high-

resistivity strata, optimizing grid performance. The selection of backfilling materials with favorable resistivity and 

geotechnical characteristics further underscores the importance of comprehensive soil analysis. 

This study aims to integrate regression analysis and ANN techniques to explore the intricate relationships between 

soil resistivity and key geotechnical properties. By leveraging these advanced modeling tools, the research seeks to 

develop predictive frameworks that facilitate accurate resistivity assessments and inform the design of efficient 

grounding systems. Ultimately, this approach enhances the safety and reliability of electrical infrastructure and 

contributes to the broader understanding of soil behavior in engineering applications.  

2. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN), often called neural networks, are computational systems inspired by the human 

brain's structure and functioning. Unlike conventional digital computers, which follow a deterministic and step-by-step 

process, ANN compute differently by mimicking the brain's ability to process and adapt to nonlinear data. These 

networks are designed to perform specific tasks by modeling patterns observed in biological neural systems. ANN can 

be implemented using electronic components or simulated in software, making them highly versatile [25–27]. 

This study's architecture of artificial neural networks (ANN) comprises multilayer feedforward networks consisting 

of three primary layers: an input layer, one or more hidden layers, and an output layer. Communication between these 

layers occurs through interconnected neurons, each transmitting signals weighted by bias values. This weighting reduces 

the discrepancy between predicted outputs and actual targets during training, iterated through multiple cycles called 

epochs. Each neuron in one layer connects to every neuron in the next, creating an entirely interconnected structure for 

complex data processing. The typical structure of multilayer feedforward is shown in Figure 1 that shows typical 
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structure of the ANN used in this study. The diagram illustrates the multilayer feedforward architecture comprising an 

input layer, one or more hidden layers, and an output layer. The Levenberg-Marquardt algorithm was utilized to optimize 

the learning process, enhancing the model's ability to generalize from training data and improve prediction accuracy. 

Because the Levenberg-Marquardt algorithm combines gradient descent and the Gauss-Newton method [27], enabling 

it to converge rapidly, especially for small to medium-sized networks that accord with this study. The soil resistivity 

data exhibited complex, nonlinear relationships with geotechnical properties such as moisture content, plasticity index, 

and dry density. The Levenberg-Marquardt algorithm is well-suited for such problems. Moreover, the dataset in this 

study was relatively small (30 soil samples). The Levenberg-Marquardt algorithm is known to perform well with smaller 

datasets, as it can extract meaningful patterns without overfitting. 

 

Figure 1. The typical structure of the artificial neural network used for predictive analysis [22] 

For Model validation, it is a critical phase following the successful training of an Artificial Neural Network (ANN) 

model. This phase ensures that the model can generalize within the constraints of the training data in a robust manner 

rather than merely memorizing the input-output relationships present in the training set. The validation process typically 

involves assessing the performance of the trained ANN on an independent validation dataset, which is not used during 

the model development phase. This approach is widely recognized in the literature for evaluating the model's 

generalization capability [25–27].  

Several performance metrics are employed to quantify ANN models' robustness and predictive accuracy. Among 

these, the coefficient of correlation (𝑟) and the root mean squared error (RMSE) are particularly significant. The 

coefficient of correlation measures the strength and direction of the linear relationship between predicted and observed 

data, serving as an indicator of goodness-of-fit. A high correlation coefficient suggests a strong agreement between 

predictions and actual outcomes. 

Smith (1986) [28] provides guidelines for interpreting the coefficient of correlation, which ranges from 0.0 to 1.0. 

When the absolute value of the coefficient of correlation (|r|) is greater than 0.8, it indicates a strong correlation between 

two sets of variables. Values between 0.2 and 0.8 suggest a moderate correlation, while values less than 0.2 indicate a 

weak correlation. 

Hecht-Nielsen (1990) [29] highlights using the Root Mean Squared Error (RMSE) as a critical metric for evaluating 

predictive performance. RMSE is calculated using the following Equation 1: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1   (1) 

where 𝑁 represents the number of data point, 𝜌 denotes the actual value (target out) and, 𝜌 denotes the predicted 

value (The dataset in this study has been divided into training, validation, and testing subsets for developing an 

Artificial Neural Network (ANN). Seventy percent of the dataset was allocated to training, during which the network 

identifies patterns and relationships within the data by iteratively adjusting its weights and biases to minimize 

prediction error. Fifteen percent of the dataset was assigned for validation and utilized during the training phase to 

monitor the model’s performance and mitigate overfitting by assessing its ability to generalize to unseen data. After 

the training phase, the remaining 15% was reserved for testing to evaluate the model’s final performance. The test 

set provides an objective and unbiased measure of the model’s capacity to handle new, unseen data. Moreover, this 

study chose the RMSE as a performance metric for evaluating predictive models because it can quantify the size of 

prediction errors and penalizes large errors more significantly than metrics like Mean Absolute Error (MAE) due to 

the squaring of residuals [30]. 
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3. Data Acquisition 

This study collected disturbed soil samples from 30 points located at three representative power grid substations. 
The soil was taken from the backfill layers near the ground surface (within 2 meters depth). In substation construction, 
backfill soil plays a crucial role in both geotechnical stability and electrical grounding performance. In Thailand, its use 
is governed by strict regulations to ensure compliance with required specifications [31]. 

Soil sampling was conducted following standardized procedures to capture representative variability in soil 
conditions across diverse geographic areas. The collected samples were then transported to the laboratory, where a series 
of geotechnical and electrical tests were carried out to characterize their properties. Although the samples were disturbed, 
they were suitable for laboratory-based resistivity testing. To investigate the influence of moisture content on soil 
electrical resistivity, each sample was prepared and tested under five distinct moisture levels. This approach was 
designed to simulate real-world variations in field moisture conditions and improve the model's generalizability. As a 
result, the experimental design yielded a total of 150 data points, providing a robust and diverse dataset for statistical 
analysis and model development using multiple regression and artificial neural networks. 

3.1. Geotechnical Laboratory Test 

The geotechnical laboratory analyses in this study were conducted to comprehensively assess the physical and 
mechanical properties of soil samples collected from representative substations. The tests included evaluations of water 
content, plasticity index, liquid limit, specific gravity, clay content, and maximum dry density. 

Specific gravity testing, performed using a pycnometer, quantified the ratio of soil particle density to water density, 
providing critical insights into the soil's mineralogical composition and serving as a basis for calculations in hydrometer 
testing. The plasticity index and liquid limit tests were used to characterize the soil's water content behavior. The 
plasticity index, defined as the difference between the plastic and liquid limits, provided information on soil consistency 
and the proportion of fines passing through a No. 200 sieve. Clay content was determined using a combination of sieve 
analysis and hydrometer testing, with classification conducted by the Unified Soil Classification System (USCS). To 
replicate the properties of substation, backfill soils, standard Proctor compaction tests were carried out to achieve the 
soil's maximum dry density and optimum water content. These tests informed the preparation and reconstitution of soil 
samples for electrical resistivity laboratory testing. All procedures were performed in strict accordance with the relevant 
ASTM standards [32–37] to ensure methodological rigor and accuracy. Table 1 summarizes the results of these analyses. 

Table 1. Summary of geotechnical properties of clayey silt and silty clay soils [31] 

Geotechnical properties ASTM 
Soil type 

Clayey silt Silty clay 

Specific gravity, Gs ASTM D854 2.68 to 2.80 2.70 to 2.77 

Plasticity index, PI (%) ASTM D4318 9.8 to 16.5 27.1 to 37.2 

Maximum dry unit weight, γdry (g/cm3) 
ASTM D298 

1.77 to 1.83 1.78 to 1.86 

Optimum moisture content (%) 13.2 to 15.6 13.2 to 16.4 

In the classification framework detailed by Sangprasat et al. [31], the soil samples were systematically categorized 
into two distinct types based on their position relative to the A-line: (1) silty clay, which is situated above the A-line, 
and (2) clayey silt, which falls below the A-line. The characteristics and properties of these two soil types are outlined 
in Table 1.  

For the silty clay group, the plasticity index, which reflects the soil's plasticity and ability to retain water, was found 
to range between 27.1% and 37.2%. This relatively high plasticity index indicates a significant clay content and a higher 
tendency for the soil to undergo deformation under varying moisture conditions. The specific gravity values, which 
provide insight into the density of soil particles compared to water, were observed to range from 2.70 to 2.77. 
Furthermore, the maximum dry density of the silty clay soils was determined to be between 1.78 g/cm³ to 1.86 g/cm³, 
while the optimum water content, representing the moisture level required to achieve maximum compaction, ranged 
from 13.2% and 16.4%. These properties collectively suggest that silty clay exhibits a substantial capacity for 
compaction and water retention.  

On the other hand, the clayey silt group demonstrated a lower plasticity index compared to silty clay, with values 
ranging from 9.8% to 16.5%. This lower range indicates a reduced clay content and, consequently, less pronounced 
plasticity and water retention behavior. Despite this difference in plasticity, the specific gravity of clayey silt was found 
to be similar to that of silty clay, with values ranging from 2.68 to 2.80. Similarly, the maximum dry density values for 
clayey silt, which ranged between 1.77 g/cm³ and 1.83 g/cm³, showed only a slight variation compared to the silty clay 
group. The optimum water content for clayey silt was observed to range from 13.2% to 15.6%, which closely aligns 
with the values reported for silty clay. 

3.2. Electrical Resistivity Laboratory Test 

Smith [28] and Wenner [39] highlighted the importance of electrical resistivity as a key soil property influenced by 

material composition and pore water ionic concentration. Using a four-electrode configuration, they measured resistivity 
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on core samples encased in PVC cylinders (7.5 cm in diameter and 11 cm in length) with copper disks as current 

electrodes and copper needles as potential electrodes. The method showed consistent resistivity values across varying 

electrode depths, indicating minimal disturbance is sufficient for accurate measurements, particularly in clay soils. 

Additionally, the approach is adaptable to various sample geometries, making it versatile for geotechnical applications. 

Specific gravity testing, conducted using a pycnometer, quantified the ratio of soil particle density to water density. 

This provided critical insight into the soil’s mineralogical composition and served as a basis for calculations in 

hydrometer testing. The plasticity index and liquid limit tests were used to characterize the soil's water content behavior. 

The plasticity index, defined as the difference between the plastic and liquid limits, provided information on soil 

consistency and the proportion of fines passing through a No. 200 sieve. Clay content was determined through a 

combination of sieve analysis and hydrometer testing, with classification conducted by the Unified Soil Classification 

System (USCS). To replicate the properties of substation’s backfilled soils, standard Proctor compaction tests were 

carried out to determine the soil’s maximum dry density and optimum water content. These tests informed the 

preparation and reconstitution of soil samples for electrical resistivity measurements. 

According to Zhou et al. [40], in line with IEEE guidelines, soil resistivity exhibits a three-stage response to 

temperature variations: (1) a gradual decrease in resistivity above 0°C, (2) a sudden change at 0°C, and (3) a significant 

increase below 0°C. For sandy loam soil with 15.2% moisture content, resistivity decreases approximately exponentially 

as temperature rises above 0°C [3]. Similar findings were reported by Abu-Hassanein et al. [19], reinforcing the inverse 

relationship between electrical resistivity and temperature. In addition, Kizlo & Kanbergs [5] observed that the resistivity 

of rocks increases markedly during the freezing of pore moisture, underscoring the influence of phase changes on 

electrical properties. 

In this study, cylindrical soil samples measuring 6.4 cm in diameter and 12 cm in length were used, with electrical 

resistivity measured using the Wenner array configuration [36]. The IRIS SYSCAL R2 instrument, powered by a 1.5V 

battery [38], was used to evaluate resistivity. To ensure accuracy in current measurements, brass disc electrodes were 

placed at both ends of each soil sample to function as current electrodes. Additionally, two brass electrodes were inserted 

at fixed positions within the sample, spaced 4 cm apart, to serve as potential electrodes. The electrical resistivity of the 

soil was then calculated using Equation 2. 

𝜌 =
𝑉𝜋𝑟2

𝐼𝑎
  (2) 

where 𝜌 is the resistivity in ohm-meters, 𝑉 represents the potential difference, 𝐼 is the applied current, 𝑟 is the sample 

radius, and 𝑎 is the distance between the potential electrodes. 

Sample preparation was carefully controlled to ensure consistency. The soil was first dried and then mixed with 

distilled water before being sealed in a bag for 24 hours to allow uniform water distribution. The moistened soil was 

subsequently compacted into cylindrical molds using a 5.5-pound hammer to achieve 95% of the maximum dry density 

and 85% of the optimum water content, as determined by the standard Proctor test. 

The experimental procedure followed a structured timeline, with resistivity measurements taken on Days 0, 7, 14, 

and 28, as outlined in the flowchart in Figure 2. Throughout the 28-day testing period, temperature and humidity were 

strictly regulated to maintain conditions of 25±2 °C and 50%–55% relative humidity. Prior to each measurement, the 

samples were weighed, and their water content was monitored by reweighing the samples at the end of the experiment. 

This controlled preparation and measurement process ensured reliable results and accurate monitoring of moisture 

changes, providing robust data for analyzing the electrical resistivity of the soil samples. 

 

Figure 2. The flowchart of electrical resistivity laboratory measurement 
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4. Results and Discussion 

4.1. Correlation Between Resistivity and Each Geotechnical Property by Regression Analysis 

Sangprasat et al. [31] highlighted the significant impact of water content on soil resistivity, demonstrating an inverse 

relationship in which resistivity increases as moisture decreases, particularly within specific soil types. While the overall 

power correlation was weak, strong correlations were observed within individual soils. This trend aligns with prior 

research showing that higher water content reduces resistivity due to increased ion mobility and the formation of 

conductive paths [21, 41–43]. Conversely, at low moisture levels, resistivity rises sharply, especially below 15% 

moisture content, due to limited charge mobility [44]. Studies also reveal that resistivity becomes relatively stable above 

22% moisture content, indicating saturation. Factors such as grain size, soil compactness, and heterogeneity influence 

this relationship, leading to variability across soil types. Nonlinear models further confirm the strong moisture–resistivity 

correlation within distinct soil types. Additionally, the type of water in the soil, as noted by Kizlo & Kanbergs [5], affects 

resistivity, with bound water contributing less to conduction than free water. 

The relationship between resistivity and dry density based on a power correlation yielded weak overall correlations 

when all soil samples were considered, indicating a limited connection [31]. However, trends differed among individual 

soil types. These results suggest that power correlation is insufficient to conclusively establish a relationship between 

resistivity and dry density, primarily due to the overriding influence of moisture content. The variability in observed 

trends highlights moisture's dominant role in affecting soil resistivity. 

Furthermore, Sangprasat et al. [31] investigated the relationship between soil resistivity and plasticity index, 

primarily using power correlation. The results showed that resistivity generally increases as the plasticity index 

decreases, though exceptions were observed, such as in clayey silt compacted at 95%, where the correlation was weaker. 

This trend aligns with findings from Siddiqui et al. [16] and Abu-Hassanein et al. [19], who reported a significant inverse 

relationship between electrical resistivity and plasticity index. Higher clay content, characterized by a greater proportion 

of fine particles, typically leads to lower resistivity due to improved ion conduction pathways. Other studies have also 

confirmed the significant influence of soil composition, particularly clay content, on resistivity. 

The correlation between soil resistivity and specific gravity is relatively weak, as specific gravity primarily reflects 

the mineralogical composition of the soil rather than directly predicting resistivity. In this study, the soil samples 

contained mineral components such as Kaolinite (2.60–2.68), Illite (2.642–2.688), Quartz (2.65), and Goethite (3.3–4.3) 

[45]. Sarip & Madun [46] investigated the influence of clay minerals (Kaolinite, Illite, and Montmorillonite) on electrical 

resistivity and chargeability for groundwater interpretation. Their findings indicate that although Montmorillonite 

exhibited the highest specific gravity, soil samples dominated by Kaolinite demonstrated the highest resistivity values. 

This suggests that clay minerals, particularly Kaolinite and Illite, contribute to lower soil resistivity due to their 

higher porosity and chargeability compared to non-clay minerals. While specific gravity does not establish a direct 

relationship with soil resistivity, it serves as a valuable indicator of mineralogical composition, which indirectly 

influences resistivity behavior. Consequently, the mineralogical characteristics of the soil play a more significant role 

in determining resistivity than specific gravity alone. 

4.2. Multiple Regression Model 

Sangprasat et al. [31] employed a nonlinear regression approach and found that moisture content plays a dominant 

role in influencing soil resistivity. This strong influence poses challenges in precisely quantifying the relationship 

between these variables. To overcome this limitation, several multiple regression models were constructed using 

different combinations of geotechnical parameters, as outlined in Table 2: 

Table 1. Multiple regression equations for predicting soil resistivity from geotechnical parameters 

Model 
Parameters 

Equations 
The coefficient of 

determination Input Output 

MR-1 
𝑊𝐶 

𝜌 𝜌 = 482.2808(𝑊𝐶−1.0347)(𝛾𝑑𝑟𝑦
−0.37478) 0.8281 

𝛾𝑑𝑟𝑦 

MR-2 
𝑊𝐶 

𝜌 𝜌 = 4856.2384(𝑊𝐶−1.0756)(𝑃𝐼−0.76963) 0.7742 
𝑃𝐼 

MR-3 

𝑊𝐶 

𝜌 𝜌 = 15360.31(𝑊𝐶−1.0658)(𝛾𝑑𝑟𝑦
−1.1034)(𝑃𝐼−1.0171) 0.8102 𝛾𝑑𝑟𝑦 

𝑃𝐼 
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where ρ is the resistivity in ohm-meters, 𝛾𝑑𝑟𝑦 represents dry density g/cm³, WC is water content in % and PI is plasticity 

index in %. 

Model MR-1, which included water content and dry density as inputs, produced a coefficient of determination (R²) 

of 0.8281 and an RMSE of 445.0 Ω·m. The regression analysis showed that water content had a statistically significant 

effect (P < 0.001), whereas dry density did not (P = 0.676). Model MR-2, comprising water content and plasticity index, 

achieved better predictive performance, with R² = 0.7742 and RMSE = 426.0 Ω·m. Both parameters were found to be 

statistically significant (P < 0.001), suggesting a strong relationship with resistivity. Model MR-3 combined all three 

variables, water content, dry density, and plasticity index, and resulted in R² = 0.8102 and RMSE = 430.0 Ω·m. While 

water content and plasticity index continued to show significant influence (P < 0.001), dry density again did not 

contribute meaningfully to the model (P = 0.741). Figures 3-a, 4-a, and 5-a present the comparison between measured 

and predicted resistivity values for each model. These results underscore the importance of incorporating multiple 

geotechnical properties, particularly moisture-related factors, when developing predictive models for soil electrical 

resistivity. 

  

(a) MR-01 (b) ANN-01 

Figure 3. Comparison of predicted vs. actual resistivity values for (a) MR-01 (multiple regression) and (b) ANN-01 

(artificial neural network) models using water content and dry density 

  

(a) MR-02 (b) ANN-02 

Figure 4. Comparison of predicted vs. actual resistivity values for (a) MR-02 (multiple regression) and (b) ANN-02 

(artificial neural network) models using water content and plasticity index 
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(a) MR-03 (b) ANN-03 

Figure 5. Comparison of predicted vs. actual resistivity values for (a) MR-03 (multiple regression) and (b) ANN-03 

(artificial neural network) models using water content, dry density, and plasticity index 

From an engineering perspective, these findings offer practical insights for geotechnical site evaluation and the 

design of electrical grounding systems. The pronounced influence of water content and plasticity index on soil resistivity 

underscores the need to account for seasonal moisture fluctuations and soil classification when estimating resistivity in 

the field. Soils with higher plasticity, for instance, tend to retain moisture for extended periods, which can lead to lower 

resistivity and, consequently, impact the long-term performance of grounding systems. 

In contrast, dry density consistently demonstrated a limited contribution across all models, suggesting that its role in 

resistivity prediction is less significant compared to parameters linked to pore water and clay content. This observation 

indicates that electrical conduction in soils is more closely tied to physicochemical characteristics than to compaction 

alone. Therefore, relying on dry density or any single-parameter approach may not be sufficient, particularly in moisture-

sensitive or fine-grained soils. These results highlight the importance of selecting input variables that capture both the 

hydrological and mineralogical behavior of soils to improve the accuracy of resistivity modeling. 

4.3. Artificial Neural Networks 

An Artificial Neural Network (ANN) model was developed to predict soil electrical resistivity using three 

geotechnical input parameters: water content, dry density, and plasticity index. The feedforward neural network 

was constructed with one hidden layer and trained using the Bayesian Regularization backpropagation algorithm 

(trainbr in MATLAB). Prior to training, all input and output data were normalized to the [0,1] range to enhance 

numerical stability and learning efficiency. To identify the optimal network architecture, a parametric study was 

conducted by varying the number of neurons in the hidden layer from 1 to 10. For each configuration, the network 

was trained, and its performance was evaluated based on the root mean squared error (RMSE) and coefficient of 

determination (R²) on the test dataset. The data were split into training (70%), validation (15%), and testing (15%) 

subsets. 

To explore the effectiveness of artificial neural networks (ANNs) in predicting soil electrical resistivity, we tested 

three model configurations using different combinations of geotechnical inputs. Their performances, summarized in 

Table 3, were evaluated based on the coefficient of determination (R²) and the root mean square error (RMSE). In the 

first setup (ANN-1), we used water content and dry density as inputs. The model produced an R² of 0.6809 and an RMSE 

of 0.093. While this suggests a moderate level of prediction accuracy, it also indicates that these two parameters alone 

do not sufficiently capture the complexity of resistivity behavior, especially in fine-grained or clay-rich soils where 

moisture retention and mineral composition have stronger influence. The ANN-2 model, tested with water content and 

plasticity index, showed a notable improvement, achieving an R² of 0.8588 and an RMSE of 0.064. The results highlight 

the critical role of the plasticity index, which reflects the presence and characteristics of clay minerals and their 

contribution to electrical conduction under moist conditions. The third model, ANN-3, combined all three parameters—

water content, dry density, and plasticity index. This configuration slightly outperformed ANN-2, reaching an R² of 

0.8608 and an RMSE of 0.057. Although the gain in R² was marginal, the reduced RMSE indicates a more reliable 

prediction. Interestingly, dry density still had a minor yet measurable contribution when added to the model, even though 

its standalone influence appeared limited. 
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Table 2. Predictive Performance of Artificial Neural Network Models Using Geotechnical Parameters 

Model 
Parameters The coefficient of 

determination 
𝑹𝑴𝑺𝑬 

Input Output 

ANN-1 
𝑊𝐶 

𝜌 0.6809 0.093 
𝛾𝑑𝑟𝑦 

ANN-2 
𝑊𝐶 

𝜌 0.8588 0.064 
𝑃𝐼 

ANN-3 

𝑊𝐶 

𝜌 0.8608 0.057 𝛾𝑑𝑟𝑦 

𝑃𝐼 

where 𝜌 is the resistivity in ohm-meters, 𝛾𝑑𝑟𝑦 represents dry density g/cm³, 𝑊𝐶 is water content in % and PI is plasticity 

index in %. 

To interpret the influence of each input variable on the model output, the Garson algorithm was employed to estimate 

the relative importance of each input parameter based on the absolute contribution of the connection weights from input 

to hidden and hidden to output layers. The analysis revealed that water content had the highest relative importance, 

contributing 80.25%, followed by plasticity index with 15.59%, and dry density with only 4.16%. These results are 

consistent with the known physical behavior of soil resistivity, which is predominantly influenced by moisture content. 

4.4. Comparative Analysis 

To evaluate the predictive performance of multiple regression (MR) and artificial neural network (ANN) models, 

three configurations for each approach were tested using different combinations of geotechnical parameters. The results, 

summarized in Tables 2 and 3 and illustrated in Figures 3 to 5, reveal both strengths and limitations of each modeling 

technique. 

Among the MR models, MR-1 achieved the highest coefficient of determination (R² = 0.8281), indicating a strong 

fit to the data. However, its root mean square error (RMSE = 445.0 Ω·m) was relatively high, suggesting that despite 

the good fit, the model may still produce large absolute errors, particularly for soils with high resistivity values. In 

contrast, ANN-1, which used the same input parameters, produced a lower R² of 0.6809 but achieved a much lower 

normalized RMSE of 0.093. This implies that while ANN-1 explained less of the overall variance, it provided more 

consistent predictions with smaller average errors. In practical terms, this could make ANN-1 more reliable when 

precision is prioritized over statistical fit. A more notable advantage of ANN models emerged when plasticity index was 

included. ANN-2 and ANN-3 achieved R² values of 0.8588 and 0.8608, respectively, with the lowest RMSEs of 0.064 

and 0.057. These results indicate that ANN models not only captured complex, nonlinear patterns more effectively but 

also reduced prediction errors. Meanwhile, the corresponding MR models (MR-2 and MR-3) yielded lower R² values 

(0.7742 and 0.8102) and higher RMSEs (426.0 and 430.0 Ω·m), reflecting weaker performance. 

RMSE plays a critical role in assessing model accuracy, as it directly quantifies the average magnitude of prediction 

errors. While R² measures how well a model explains data variability, RMSE is more relevant in applications where 

minimizing absolute error is essential. For instance, in grounding system design or soil monitoring, lower RMSE 

translates to more dependable estimates and better engineering outcomes. To further interpret the contribution of each 

variable in the ANN models, the Garson algorithm was applied. The analysis showed that water content had the greatest 

relative importance (80.25%), followed by plasticity index (15.59%), and dry density (4.16%). These findings are 

consistent with both regression results and prior studies [31, 47, 48], reinforcing the conclusion that moisture-related 

factors—especially water content—dominate the behavior of soil resistivity. 

In summary, while MR-1 provided the highest R² in a two-variable setting, the ANN models—particularly ANN-2 

and ANN-3—demonstrated better overall performance when both R² and RMSE were considered. The inclusion of 

plasticity index significantly enhanced predictive accuracy, and the ANN framework proved more effective at capturing 

nonlinear relationships. These results support the use of ANN-based models for reliable and accurate prediction of soil 

electrical resistivity. While the ANN models performed well in estimating soil resistivity, it’s important to acknowledge 

a key limitation: the dataset used in this study contained only 150 samples. In the context of machine learning, especially 

for nonlinear problems like soil behavior, small datasets can sometimes hinder the model’s ability to generalize and 

increase the risk of overfitting. 

Interestingly, prior research suggests that small datasets aren’t necessarily a barrier to effective ANN modeling. 

Pasini [49], for instance, noted that with proper design, such as careful selection of network architecture, robust 

preprocessing, and the use of regularization, ANNs can still deliver solid performance even with limited data. A simple 

feedforward network with one hidden layer, when well-tuned, can achieve strong nonlinear regression results. 

This observation is echoed by Bagińska & Srokosz [50], who found that ANN models in engineering contexts—

where collecting large numbers of field measurements can be difficult, still performed accurately with fewer than 150 
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samples. However, they emphasized the need for strong validation strategies, such as cross-validation, to ensure the 

model’s reliability. 

Similarly, Izonin et al. [51] pointed out that researchers working with small datasets should be especially cautious 

about model complexity. They recommended minimizing the number of hidden neurons or using techniques like dropout 

to prevent overfitting and help the model generalize better. 

Overall, while a dataset of 150 samples is within the acceptable range for ANN modeling, it does call for careful 

interpretation of results, particularly when extending conclusions to other soil types or regions. Future work could 

explore expanding the dataset or adopting transfer learning methods to further improve model robustness and 

applicability. 

5. Conclusion 

This study examined the predictive performance of multiple regression (MR) and artificial neural network (ANN) 

models in estimating soil electrical resistivity using water content, dry density, and plasticity index as input variables. 

A total of 150 laboratory data points, gathered from three substations under varying moisture conditions, served as the 

dataset for model development. While MR models produced relatively high coefficients of determination (up to R² = 

0.8281), their higher root mean square error (RMSE) values indicated less precise predictions. In contrast, ANN 

models—especially those incorporating the plasticity index—achieved both higher R² values (up to 0.8608) and lower 

RMSEs (down to 0.057), suggesting superior performance in capturing nonlinear patterns in soil resistivity. 

The study also addressed a major limitation found in prior literature, where models were often built using either 

oversimplified input parameters or data from homogeneous soil types. By incorporating a more diverse set of inputs and 

validating across multiple soil types, the models presented here offer improved generalizability. The Garson algorithm 

highlighted the dominant influence of water content (80.25%) over plasticity index and dry density, in line with prior 

findings but providing clearer quantitative insight. 

The results highlight the practical advantages of ANN-based models for applications in tropical and subtropical 

environments where soil moisture varies significantly. Although the sample size was modest, careful parameter selection 

and moisture variation contributed to strong generalization. Future research could benefit from incorporating additional 

soil characteristics—such as mineralogy, salinity, or cation exchange capacity—and validating the models on larger, 

more heterogeneous datasets to further improve predictive capability for geotechnical and electrical infrastructure 

design. 
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