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Abstract 

Motorcycle crashes pose a major public health challenge in Thailand, where motorcyclists account for most traffic fatalities. 

This study aims to evaluate and compare the predictive performance of four supervised learning models—Decision Tree (DT), 

K-Nearest Neighbor (KNN), Naïve Bayes (NB), and Random Forest (RF)—for motorcycle crash injury severity using data 

from the Highway Accident Information Management System (2020–2022). After preprocessing, 36 explanatory variables 

covering roadway, environmental, accident causes, crash characteristics, and vehicle involvement were analyzed. To address 

class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) and cost-sensitive learning were applied, and 

models were validated using train–test splits with cross-validation. The Random Forest model achieved the best performance 

with an AUC of 0.726, balanced accuracy of 0.649, and Matthews Correlation Coefficient (MCC) of 0.308, outperforming 

the other algorithms. SHapley Additive exPlanations (SHAP) were used to interpret the RF model, identifying nighttime 

crashes, large truck involvement, and roadway features (e.g., depressed medians and two-lane roads) as key predictors of 

severe outcomes. These insights suggest countermeasures such as improving nighttime safety, dedicating truck lanes, and 

designing safer medians. The novelty of this study lies in integrating model comparison, imbalance-aware metrics, and SHAP 

interpretability to provide actionable, context-specific policy recommendations for motorcycle safety in Thailand.  
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1. Introduction 

Motorcycle crashes remain a critical global road safety issue, with particularly severe implications in Southeast 

Asian countries where motorcycles are the dominant means of travel. In Thailand, motorcycles make up a large share 

of the vehicle fleet and are disproportionately involved in traffic-related injuries and fatalities. According to the World 

Health Organization [1], Thailand has one of the highest road traffic fatality rates in Southeast Asia, and around 75% of 

those affected are users of two- or three-wheel vehicles, predominantly motorcyclists. This pressing public health 

challenge underscores the need for effective, data-driven strategies to reduce the severity of motorcycle crashes. 

The multifaceted nature of elements influencing motorcycle crash severity presents a significant challenge for 

traditional analytical methods. These factors encompass a wide range of variables, including rider characteristics, road 

conditions, environmental factors, and vehicle attributes. The intricate interplay among these variables necessitates 
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sophisticated analytical approaches capable of capturing nonlinear relationships and complex interactions. Recently, the 

accelerated growth of data analytics and machine learning technologies has revolutionized the field of transportation 

safety analysis. These cutting-edge techniques offer powerful tools for processing large volumes of crash data, 

identifying patterns, and generating predictive models. Supervised learning models, in particular, have shown promise 

in analyzing crash data and predicting injury severity outcomes. 

While conventional statistical methods, including multiple regression and logit approaches, have long been the 

cornerstone of crash analysis, they often fall short when dealing with the complex, nonlinear relationships inherent in 

motorcycle crash data. These traditional approaches rely on strict assumptions—such as data normality and 

independence of predictors—that often do not hold in real-world crash data, limiting their effectiveness in capturing 

complex injury risk patterns [2]. In contrast, machine learning techniques offer several advantages in this domain. They 

can handle large volumes of data with numerous variables, capture complex nonlinear relationships, and often provide 

superior predictive performance. Machine learning models are also more adept at dealing with multicollinearity and 

interaction effects among predictor variables, which are common in crash data [3]. Furthermore, some machine learning 

algorithms, including random forests and gradient boosting machines, offer built-in feature importance measures, 

providing an understanding of the varying impact of different elements on crash severity.  

A range of supervised learning algorithms has been utilized in the study of crash data in different contexts. Decision 

Trees (DT), long valued in transportation safety research, have been widely used for their interpretability and ability to 

identify hierarchical relationships in crash risk factors [4]. K-Nearest Neighbors (KNN) has shown effectiveness in 

classifying crash severity based on similarity to historical data points [5]. Naïve Bayes (NB) has demonstrated utility in 

handling categorical data and estimating crash probabilities given various factors [6]. Random Forests (RF) have gained 

popularity for their ability to capture complex interactions between variables and provide insights into factor importance 

while being less prone to overfitting [7-9]. 

In recent years, comparative studies have been carried out in different countries to evaluate machine learning models 

for crash severity prediction. For instance, Wahab & Jiang [10, 11] conducted studies in Ghana comparing machine 

learning algorithms with statistical models, finding that Random Forest consistently outperformed traditional methods. 

Rezapour et al. [12], Rezapour et al. [13], Rezapour et al. [14] examined various algorithms in the United States, 

including logistic regression, decision trees, neural networks, and recurrent networks, highlighting both strengths and 

limitations. Mansoor et al. [15] compared machine learning and statistical models in Pakistan and confirmed the strong 

performance of Random Forest, supported by SHAP analysis for interpretability. Kashifi [16] applied XGBoost with 

SHAP in France to study two-wheeler crash severity, while Santos et al. [17] compared multiple models in Portugal, 

identifying Random Forest and logistic regression as the most effective. 

Despite these advances, comparative evaluations focusing specifically on motorcycle injury severity remain limited 

in low- and middle-income countries. Most prior studies have been conducted in developed countries, where traffic 

conditions, infrastructure, and enforcement differ substantially from Southeast Asian contexts. This leaves an important 

research gap for Thailand, where motorcycles dominate daily mobility and crash fatality rates are disproportionately 

high. Moreover, while machine learning models often achieve higher predictive accuracy, their “black-box” nature limits 

their interpretability and practical policy application [18]. To address these gaps, this study introduces a unified 

framework that compares four supervised learning models—Decision Tree (DT), K-Nearest Neighbor (KNN), Naïve 

Bayes (NB), and Random Forest (RF)—while incorporating class imbalance handling and SHapley Additive 

exPlanations (SHAP) for interpretability. Using recent Thai crash data (2020–2022), this study provides both robust 

model evaluation and transparent explanations of critical factors influencing motorcycle crash severity. This contribution 

not only advances methodological rigor but also delivers actionable insights tailored to the high-risk conditions of 

Thailand and other low- and middle-income countries. 

The subsequent sections of this manuscript are organized as follows: Section 2 presents a concise overview of the 

literature review, while Section 3 describes the data utilized. Section 4 outlines the methodological framework, followed 

by the results and discussion of model outcomes in Section 5. Section 6 provides the conclusion together with policy-

oriented recommendations, and Section 7 presents the limitations of this study and directions for future research. 

2. Literature Review 

In recent years, numerous studies have applied machine learning techniques to predict motorcycle crash severity. 

Table 1 summarizes key findings from 2019 to 2024, highlighting methodological evolution, geographic focus, and 

recurring model performance trends. As shown in Table 1, scholarly investigations predominantly draw on data from 

developed countries, underscoring the need for expanded exploration in developing contexts like Thailand, where 

motorcycle accidents impose significant economic and social burdens. 
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Table 1. Overview of research on motorcycle crashes injury severity within the past five years 

Authors (Year) Country Models used Best Results 

Santos et al. [17] Portugal 
Decision Tree (DT), Logistic Regression (LR), Random Forests (RF), Gradient Boosting (GB), 

XGBoost, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) 

Random Forests (RF) and 

Logistic Regression (LR) 

Kashifi [16] France 
eXtreme Gradient Boosting (XGBoost) algorithm for crash severity. 

SHapley Additive exPlanations (SHAP) analysis for feature ranking and interaction exploration. 
 

Mansoor et al. [15] Pakistan 
Multinomial logit model (MNL), Random Forest (RF), Naive Bayes, Gradient-boosted trees 

methods 
Random Forest (RF) 

Rezapour et al. [12] US 
Random Forest (RF), Support Vector Machines (SVM), Multivariate Adaptive Regression Splines 

(MARS), and logistic regression (LR) 
Random Forest (RF) 

Rezapour et al. [13] US 
Deep belief networks (DBN), Recurrent neural networks (RNN), Multilayer neural networks 

(MLNN), and Single-layer neural networks 

Recurrent neural networks 

(RNN) 

Rezapour et al. [14] US Binary logistic regression and classification tree (CT) Binary logistic regression 

Rezapour & Ksaibati [19] US 
Support Vector Machines (SVM), Decision Tree (DT), Naïve Bayes (NB), Long short-term memory 

(LSTM), and Deep neural networks (DNN) 

Long short-term memory 

(LSTM) 

Wahab & Jiang [10] Ghana 
Multi-layer perceptron (MLP), Rule induction (PART) and Classification and Regression trees 

(Simple Cart) 
Simple Cart model 

Wahab & Jiang [11] Ghana 
Machine learning algorithms: J48, Random Forest, Instance-Based learning; Statistical model: 

Multinomial logit model (MNLM), Binary logit models, Binary probit model, Ordered logit model. 
Random Forest (RF) 

In Ghana, Wahab & Jiang [11] conducted a comprehensive study by comparing machine learning algorithms (J48, 

Random Forest, Instance-Based learning) with statistical models (Multinomial logit model, Binary logit models, Binary 

probit model, Ordered logit model). Their results showed that machine learning algorithms were more effective than 

conventional methods in assessing crash impact, with the Random Forest (RF) algorithm demonstrating the best 

agreement with experimental data. They identified location, time, and collision type as critical determinants of crash 

severity. A follow-up study by Wahab & Jiang [10] compared Multi-layer perceptron (MLP), Rule induction (PART), 

and Classification and Regression trees (Simple Cart) models. The Simple Cart model outperformed PART and MLP 

with 73.81% accuracy, identifying factors such as location, settlement type, time, collision type, and crash partner as 

significant predictors of crash severity. 

In the United States, Rezapour & Ksaibati [19] compared numerous machine-learning algorithms, such as Naïve 

Bayes (NB), Support Vector Machines (SVM), Long short-term memory (LSTM), Decision Tree (DT), and Deep neural 

networks (DNN). Interestingly, they found that deeper models did not necessarily enhance performance, with a simple 

LSTM model outperforming more complex alternatives. In the same year, Rezapour et al. [14] compared Binary logistic 

regression and Classification tree (CT) for injury severity prediction in the United States. They found that Binary logistic 

regression performed slightly better than Classification tree, although both models identified similar predictors and 

showed comparable performance in crash prediction. Furthermore, Rezapour et al. [13] explored deep learning 

techniques, evaluating Deep belief networks (DBN), Multilayer neural networks (MLNN), Recurrent neural networks 

(RNN), and Single-layer neural networks. Their findings indicated that RNN outperformed other neural network models 

in crash severity prediction, highlighting the potential of deep learning techniques within this area. 

In another study, Rezapour et al. [12] carried out a side-by-side assessment of Random Forest (RF), Support Vector 

Machines (SVM), Multivariate Adaptive Regression Splines (MARS), and logistic regression for injury severity 

prediction. Using k-fold cross-validation to assess misclassification rates, they found that the Random Forest algorithm 

surpassed other methods. Key factors influencing crash severity included speed, traffic volume, and rider's age. 

Similarly, Mansoor et al. [15] compared Multinomial logit models (MNL), Random Forest (RF), Naïve Bayes (NB), 

and Gradient-boosted trees in Pakistan. The Random Forest algorithm was more effective than others with 86.7% 

accuracy. They used the SHAP method to identify consistent determinants across both statistical methods and machine 

learning approaches, highlighting the statistical models’ limitations due to unobserved factors. 

In France, Kashifi [16] applied the XGBoost model and SHAP (SHapley Additive exPlanations) analysis to study 

two-wheeler crash severity. The study identified road category, urbanization level, two-wheeler category, and rider age 

as significant factors. It also noted that crash severity was higher for older riders and male two-wheeler riders, with rural 

areas, older riders, and non-helmet use associated with increased crash severity. Most recently, Santos et al. [17] 

conducted a study in Portugal comparing Decision Tree (DT), XGBoost, Random Forest (RF), Logistic Regression 

(LR), Support Vector Machine (SVM), Gradient Boosting (GB), and K-Nearest Neighbor (KNN). They found that RF 

and LR models performed best in predicting injury severity. Key risk factors identified included alcohol consumption, 

motorcycle age, road type, and gender. The study also noted that accidents occurring on weekends, involving older 

motorcycles, and on dry roads tended to increase severity. 

This review reveals a consistent trend toward the superior performance of machine learning models—especially 

Random Forest—in motorcycle crash severity prediction. The increasing use of SHAP analysis further highlights the 

need for model interpretability to support actionable policy insights. Building on this foundation, the present study 
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contributes to the literature by implementing a unified framework that integrates model comparison, class imbalance 

handling (via SMOTE and cost-sensitive learning), and SHAP-based interpretability. Using a nationally representative 

Thai dataset (2020–2022), the study applies four supervised models and evaluates performance using both conventional 

and imbalance-aware metrics (Balanced Accuracy and Matthews Correlation Coefficient), offering a rare combination 

of methodological rigor and real-world relevance in an underexplored, high-risk context. 

3. Data Description 

This research utilizes data obtained from the Thailand Highway Accident Information Management System 

(HAIMS), focusing solely on motorcycle crashes occurring within the timeframe of 2020 to 2022. Throughout this three-

year interval, a cumulative total of 12,266 motorcycle crashes were documented. Following an extensive data cleansing 

process, 36 variables were identified and organized into five distinct categories of explanatory factors, which encompass 

roadway characteristics (the number of lanes (2, 4, 6, or ≥ 8), surface type (asphalt or other), median type (no median, 

flush and painted, raised, depressed, or barrier), and intersection type (four-leg, T, Y, U-turn, public area connection, 

private connection, or bridge section)), environmental characteristics (daytime, raining), causative factors of the 

accident (front-path interruption, illegal passing, violating the traffic signs, alcohol consumption, drowsiness), 

characteristics of the accident (head-on, rear-end, side swipe in parallel lane, off carriageway to the left/right, out of 

control on carriageway), and vehicles involved in the accident (car, van, pick-up truck 4 wheels, truck more than 6 

wheels).  

The dataset covers crashes on Thailand’s national highway network, spanning both urban and rural regions. These 

roads feature mixed traffic conditions—including a high volume of motorcycles, limited lane separation, and seasonal 

rainfall—that are known to affect crash dynamics and severity. Thailand’s notably high motorcycle ownership and crash 

fatality rates make it a critical setting for severity modeling in developing countries. 

Table 2 summarizes the descriptive statistics of the dataset and the injury severity distribution: Severe/Fatal (44.13%) 

and Minor/PDO (55.87%). 

Table 2. Overview of variable descriptive statistics 

Variables Frequency (%) Mean SD 

Injury Severity    

Severe/Fatal 5,413 (44.13%)   

Minor/PDO 6,853 (55.87%)   

Roadway Characteristics    

UNDER MAINTENANCE 421 (3.43%) 0.034 0.182 

UNDER CONSTRUCTION 669 (5.45%) 0.055 0.227 

LANE = 2 3,606 (29.40%) 0.294 0.456 

LANE = 4 5,479 (44.67%) 0.447 0.497 

LANE = 6 1,161 (9.47%) 0.095 0.293 

LANE ≥ 8 1,780 (14.51%) 0.145 0.352 

ASPHALT 10,135 (82.63%) 0.826 0.379 

NO MEDIAN 3,886 (31.68%) 0.317 0.465 

FLUSH AND PAINTED MEDIAN 1,208 (9.85%) 0.098 0.298 

RAISED MEDIAN 3,611 (29.44%) 0.294 0.456 

DEPRESSED MEDIAN 2,183 (17.80%) 0.178 0.383 

BARRIER MEDIAN 1,378 (11.23%) 0.112 0.316 

PLAIN ROAD 12,004 (97.86%) 0.979 0.145 

FOUR-LEG_INT 564 (4.60%) 0.046 0.209 

T_INT 714 (5.82%) 0.058 0.234 

Y_INT 127 (1.04%) 0.010 0.101 

U_TURN 785 (6.40%) 0.064 0.245 

CONNECT_PUBLIC AREA 424 (3.46%) 0.035 0.183 

CONNECT_PRIVATE 211 (1.72%) 0.017 0.130 

BRIDGE SECTION 177 (1.44%) 0.014 0.119 



Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4250 

 

Environmental Characteristics    

DAYTIME 7,409 (60.40%) 0.604 0.489 

RAINING 574 (4.68%) 0.047 0.211 

Accident Causes    

FRONT-PATH INTERRUPTION 2,801 (22.84%) 0.228 0.420 

ILLEGAL PASSING 95 (0.77%) 0.008 0.088 

VIOLATING THE TRAFFIC SIGNS 356 (2.90%) 0.029 0.168 

ALCOHOL CONSUMPTION 238 (1.94%) 0.019 0.138 

DROWSINESS 107 (0.87%) 0.009 0.093 

Accident Characteristics    

HEAD-ON 564 (4.60%) 0.046 0.209 

REAR-END 3,515 (28.66%) 0.287 0.452 

SIDE SWIPE IN PARALLEL LANE 2,107 (17.18%) 0.172 0.377 

OFF CARRIAGEWAY TO THE LEFT/RIGHT 825 (6.73%) 0.067 0.250 

OUT OF CONTROL ON CARRIAGEWAY 492 (4.01%) 0.040 0.196 

Accident-involved Vehicles    

CAR 3,438 (28.03%) 0.280 0.449 

VAN 165 (1.35%) 0.013 0.115 

PICK-UP TRUCK 4 WHEELS 3,536 (28.83%) 0.288 0.453 

TRUCK MORE THAN 6 WHEELS 1,298 (10.58%) 0.106 0.308 

Note: SD = Standard Deviation 

Originally, HAIMS categorized crash severity into four levels: property damage only (PDO), minor injury, severe 

injury, and fatality. However, severe and fatal crashes constituted a small fraction of the data, introducing class 

imbalance. To enhance model stability and predictive reliability, these were grouped into two categories: (1) Minor/PDO 

and (2) Severe/Fatal. This binary grouping approach is consistent with prior machine learning research on crash severity 

[20-22] and enhances the interpretability of results while maintaining predictive robustness. 

Ethical approval: This study received the ethical approval from the Human Research Ethics Office of Suranaree 

University of Technology, Thailand (Approval Code: COE No.1/2568). 

4. Research Methodology 

4.1. Methodological Framework 

The overall methodological framework of this study is illustrated in Figure 1. The flowchart outlines the sequential 

stages of the research process, beginning with data collection from the Highway Accident Information Management 

System (HAIMS) for motorcycle crashes during 2020–2022. The next steps involve data preprocessing and feature 

categorization, followed by handling class imbalance using Synthetic Minority Oversampling Technique (SMOTE) for 

KNN and NB, and class weights for DT and RF. Model training was performed with an 80/20 stratified train–test split 

and 5-fold cross-validation, accompanied by hyperparameter optimization using GridSearchCV and 

RandomizedSearchCV. Four supervised learning models—Decision Tree (DT), K-Nearest Neighbor (KNN), Naïve 

Bayes (NB), and Random Forest (RF)—were developed and tuned. 

The optimized models were then compared using both conventional and imbalance-sensitive metrics, including 

accuracy, balanced accuracy, precision, recall, F1-score, area under the curve (AUC), and Matthews Correlation 

Coefficient (MCC). Based on performance evaluation, the best-performing model was selected and further 

interpreted using SHapley Additive exPlanations (SHAP) to identify the most influential predictors. Finally, the 

findings were discussed, and policy recommendations were proposed to improve motorcycle crash safety 

outcomes. 
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Figure 1. Methodological framework of the study 

4.2. Model Descriptions 

4.2.1. Decision Tree (DT) 

Decision Tree (DT) represents a widely utilized methodology within the domain of machine learning, predominantly 

employed for classification endeavors, commonly referred to as the classification tree methodology. The DT employs a 

flowchart-like framework for categorization. Internal nodes indicate tests on variables, connectors denote test results, 

and terminal nodes indicate class categories. The routes leading from root to terminal nodes illustrate categorization 

guidelines. DT, along with the related influence diagram, serves as a visual and analytical decision support mechanism 

for classification analysis. In crash severity modeling, each node signifies a severity predictor while each branch reflects 

a state of the variable. A tree leaf represents the anticipated injury severity based on the training dataset's information. 

Upon acquiring a new crash sample from the test dataset, predictions regarding crash severity can be derived by tracing 

the tree from root to leaf utilizing variable values. The crux of the decision tree lies in selecting optimal attributes, aiming 

for branch nodes to exhibit maximal category homogeneity, thus enhancing node purity. 

4.2.2. K-Nearest Neighbor (KNN) 

The KNN algorithm is alternatively known as the Nearest Neighbor Classification (NNC). In the context of a 

predictive modeling scenario, the KNN algorithm determines a data point by examining the k closest data points. It 
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applies the nearest neighbor rule, assigning a new sample to a particular class based on the closeness of a group of 

existing labeled data instances. In essence, the instance's classification is determined by the predominant class among k 

nearest data points [23]. The KNN methodology necessitates two critical decisions: the selection of the value of k and 

the selection of a proximity measure. The best k value is typically established by experimenting with various values for 

this parameter and identifying the one that yields the highest predictive accuracy. The Euclidean distance, which can be 

conceptualized as the physical distance between points in a two-dimensional space, serves as the distance metric utilized 

in the KNN algorithm. 

4.2.3. Naïve Bayes (NB) 

The Naïve Bayes algorithm represents a supervised machine learning technique often utilized as a linear model for 

different categorization tasks. It is rooted in Bayes' theorem and operates under the premise that the features within the 

dataset are independent given certain conditions. It is acknowledged that, on occasion, the assumption of independent 

features may be compromised; nevertheless, the Naïve Bayes algorithm demonstrates commendable performance even 

when operating under such unrealistic assumptions, particularly in scenarios involving limited sample sizes [24]. In the 

context of a classification task, let 𝑌 denote the variable subject to classification, while 𝑋 signifies a collection of 

features represented as 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛). Based on Bayes' theorem, the anticipated likelihood of the class variable 

𝑌 = 𝑦𝑖 , contingent upon 𝑥, is articulated as follows (Equation 1): 

𝑃(𝑌 = 𝑦𝑖|𝑋) =
𝑃(𝑋 = 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)|𝑌 = 𝑦𝑖 )𝑃(𝑌=𝑦𝑖)

𝑃(𝑋=𝑥=(𝑥1,𝑥2,…,𝑥𝑛))
  (1) 

The Naïve Bayes algorithm is characterized by its rapid computation, ease of implementation, accuracy, and 

robustness, making it a widely used as a classification technique applied in a diverse array of use cases [25]. 

4.2.4. Random Forest (RF) 

The RF algorithm, as introduced by Breiman [26], constitutes a collective learning approach built on the foundation 

of the decision tree framework. It utilizes a resampling technique to generate 𝑘 subsets from the original dataset and 

subsequently utilized to train 𝑘 decision trees. The random forest is constructed by combining individual models. This 

RF method effectively reduces the problem of overfitting commonly associated with decision tree (DT) models. Each 

decision tree within the RF framework makes predictions using the test set, and the ultimate classification is decided by 

a consensus vote among the models. 

To implement the RF algorithm, it is imperative to determine two critical parameters: the total count of trees (𝑘) to 

be generated and the subset of features chosen at each split (𝑚). The algorithm draws 𝑘 bootstrap samples from the 

initial dataset, while the remaining portion, known as the out-of-sample data, is employed to evaluate the predictions’ 

accuracy. Following the cultivation of 𝑘 trees utilizing 𝑚 randomly selected attributes, predictions for novel instances 

are established by combining the outcomes of these 𝑘 trees. The initial data set is illustrated in the following manner 

[27]: 

𝑆 = [(𝑥𝑖 , 𝑦𝑗), 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑀]  (2) 

In which 𝑥  signifies an instance and 𝑦 corresponds to an attribute of 𝑆. Every entry in the initial training data 

encompasses 𝑁 samples and 𝑀 features. The method for choosing resampled subsets and formulating the random forest 

technique using multiple trees is delineated below: 

𝑆𝑇𝑟𝑎𝑖𝑛 = [𝑆1, 𝑆2, … , 𝑆𝑘]  (3) 

In this context, 𝑆𝑇𝑟𝑎𝑖𝑛 includes a portion of 𝑘 bootstrap training sets. Consequently, 𝑘 decision trees are built using 

these 𝑘 sets. These 𝑘 trees are subsequently aggregated to form an RF technique, as illustrated below: 

𝐻(𝑋, 𝑂𝑗) = ∑ ℎ𝑖(𝑥, 𝑂𝑗), (𝑗 = 1, 2, … , 𝑚)𝑘
𝑖=1   (4) 

In this context, 𝑋 denotes the input feature array derived from the training set, ℎ𝑖(𝑥, 𝑂𝑗) represents a meta- level 

decision tree model, and 𝑂𝑗  is an independently and identically distributed sequence that governs the development 

trajectory of the tree. 

4.3. Model Training and Validation 

All models were trained using an 80/20 train-test split with a fixed random seed of 42 to ensure reproducibility, a 

common approach in traffic safety and crash severity prediction studies [28-30]. Stratified sampling preserved the class 
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distribution across splits. For model evaluation and tuning, 5-fold cross-validation was applied using GridSearchCV or 

RandomizedSearchCV, with AUC as the primary scoring metric. To avoid potential bias, SMOTE was applied only to 

the training set, with the test set left unchanged. Hyperparameter tuning was conducted with stratified cross-validation, 

and results were evaluated using both conventional and imbalance-sensitive metrics (balanced accuracy, MCC, and 

AUC). Preliminary comparisons with and without SMOTE confirmed that the oversampling procedure improved class 

balance without introducing significant synthetic noise. To address class imbalance, SMOTE was applied for KNN and 

NB, while DT and RF used class_weight='balanced'. All final performance metrics were computed on the independent 

test set. For hyperparameter optimization, DT, KNN, and NB models were tuned using GridSearchCV, while RF used 

RandomizedSearchCV with 100 iterations. Key parameters such as max_depth, min_samples_split, and class_weight 

(DT), n_neighbors and distance metrics (KNN), var_smoothing (NB), and n_estimators, max_depth, and class_weight 

(RF) were systematically explored. This approach ensured that each model was fairly tuned under comparable validation 

settings before performance comparison. All models were evaluated on the same stratified test set using consistent 

performance metrics to support a transparent and equitable comparison. 

4.4. Model Performance Evaluation Metrics  

The primary measures for judging categorization methods include accuracy, precision, recall, F1-Score and the Area 

Under the Curve (AUC). These metrics have been widely utilized in studies on traffic crash severity prediction [31-33]. 

They are derived from the confusion matrix (CM) as presented in Table 3. Columns in the CM indicate predicted class 

instances, while rows indicate actual class instances, with correct predictions located on the diagonal. True positives 

(TP) and True negatives (TN) refer to instances that are accurately identified. A false positive (FP) is an instance 

incorrectly labeled as positive, whereas a false negative (FN) is an instance incorrectly labeled as negative. The 

performance metric calculation formulas are specified in Equations 5 to 8.  

Accuracy is defined as the proportion of correctly classified crashes. However, due to the moderate class imbalance 

in crash severity data, relying solely on accuracy may provide a misleading assessment of model performance. To 

address this, additional metrics were examined. Balanced Accuracy captures the average recall for both classes, 

providing a more equitable measure under imbalance. Matthews Correlation Coefficient (MCC) evaluates the overall 

quality of binary classifications by considering all elements of the confusion matrix and is particularly robust for 

imbalanced data. Together, these metrics offer a more comprehensive and fair evaluation of model performance. 

Accuracy represents the fraction of instances that are accurately recognized: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

Precision is the ratio of accurate positive predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

Recall quantifies the correctly classified positive instances: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

The F1-Score, representing the harmonic mean of precision and recall, varies between 0 and 1, with 1 signifying 

optimal effectiveness and 0 signifying the least: 

𝐹1_𝑆𝑐𝑜𝑟𝑒 =
2×(𝑅×𝑃)

𝑅+𝑃
  (8) 

The Area Under the Curve (AUC) for the Receiver Operating Characteristic (ROC) curve, frequently referred to as 

AUROC, represents an exceptionally valuable evaluative metric. The ROC curve, alternatively termed the 

sensitivity/specificity curve, constitutes a probabilistic graphical representation that facilitates the assessment of 

classification model efficacy. A classification model exhibiting an AUC value proximate to 1 is typically proficient in 

accurately predicting the binary outcomes of 0 as 0 and 1 as 1. 

Table 3. Confusion Matrix (CM) 

 
Total instances 

Predicted class 

 Positive Negative 

Actual class 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 
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4.5. SHapley Additive exPlanations (SHAP) 

According to Lundberg & Lee [34], the SHAP methodology employs Shapley values to clarify the outcomes 

generated by machine learning techniques. Drawing from joint game analysis, these scores quantify the specific impact 

of all attributes on the overall outcome [35]. Initially, the SHapley Additive exPlanations methodology constructs a 

framework incorporating all input features. It then creates another version that omits the feature of interest, thereby 

allowing for an examination of how its exclusion influences the model's accuracy. The SHAP score associated with a 

feature is characterized as its incremental impact on the prediction. The subsequent equation is employed to compute 

the SHAP score for the feature [36]: 

∅𝑖 = ∑
|𝑆|!(|𝑋|−|𝑆|−1)!

|𝑋|!
[𝑓𝑆⋃{𝑖}(𝑥𝑆⋃{𝑖}) − 𝑓𝑆(𝑥𝑆)] 𝑆⊆𝑋∖{𝑖}   (9) 

In this context, ∅𝑖 denotes the incremental impact of a feature, synonymous with its SHAP score; 𝑋 signifies the 

entirety of features; 𝑆 represents a smaller group of all features; and 𝑥𝑆 indicates the scores corresponding to the features 

within 𝑆. To evaluate the effect of the specific feature in question, a framework 𝑓𝑆⋃{𝑖} is developed that includes this 

feature, while another framework 𝑓𝑆 is developed without it. The predictions yielded by the two models are subsequently 

juxtaposed with the current output, represented as 𝑓𝑆⋃{𝑖}(𝑥𝑆⋃{𝑖}) − 𝑓𝑆(𝑥𝑆). Given that the specific feature in question is 

also contingent upon other features within the framework, the discrepancies are computed across all conceivable the 

smaller group of all features [34]. 

5. Model Results and Discussion 

5.1. Model Performance Comparison 

To gauge the efficacy of multiple machine learning techniques in anticipating the seriousness of traffic injury, this 

study implemented and evaluated four distinct models: Decision Tree (DT), K-Nearest Neighbor (KNN), Naïve Bayes 

(NB), and Random Forest (RF). The effectiveness of these algorithms was quantified by utilizing a wide range of metrics 

to ensure thorough evaluation.  

Table 4 provides a comprehensive summary of the performance metrics for each model. The models demonstrated 

slight variations in accuracy, with Random Forest (RF) achieving the highest accuracy at 0.666, followed by Decision 

Tree (DT) at 0.656, Naïve Bayes (NB) at 0.629, and K-Nearest Neighbor (KNN) at 0.623. Precision, which evaluates 

the proportion of true positive predictions among all predicted positives, was also highest for RF (0.663), followed by 

DT (0.652), NB (0.627), and KNN (0.625). Similarly, Recall, reflecting the proportion of true positive instances 

correctly identified, aligned with the accuracy rankings: RF at 0.666, DT at 0.656, NB at 0.629, and KNN at 0.623. The 

F1-Score, a harmonic mean of precision and recall, ranged from RF at 0.660 to DT at 0.648, NB at 0.628, and KNN at 

0.623. 

Table 4. Overview of performance metrics for each model 

Models Accuracy 
Balanced  

Accuracy 
Precision Recall F1-Score AUC MCC 

Decision Tree (DT) 0.656 0.636 0.652 0.656 0.648 0.700 0.285 

K-Nearest Neighbor (KNN) 0.623 0.618 0.625 0.623 0.623 0.676 0.235 

Naïve Bayes (NB) 0.629 0.620 0.627 0.629 0.628 0.673 0.241 

Random Forest (RF) 0.666 0.649 0.663 0.666 0.660 0.726 0.308 

Among the performance metrics, the Area Under the Curve (AUC) provided the clearest differentiation of the 

models’ discriminative abilities. As illustrated in Figure 2 and Table 4, the AUC values emphasize each model's 

ability to distinguish between classes. RF achieved the highest AUC at 0.726, indicating superior discriminative 

performance. This was followed by DT at 0.700, KNN at 0.676, and NB at 0.673. Figures 2-a to 2-d display the 

individual ROC curves for each model, providing a detailed visual comparison of their performance across varying 

thresholds. 

In addition to conventional metrics, Table 4 also reports Balanced Accuracy and Matthews Correlation Coefficient 

(MCC) to account for class imbalance. RF again achieved the highest values in both (Balanced Accuracy = 0.649, MCC 

= 0.308), reinforcing its superior generalization performance and robustness against class bias. 
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Figure 2. Comparison of Area Under the Curve (AUC): (a) AUC_DT; (b) AUC_KNN; (c) AUC_NB; (d) AUC_RF 

In summary, the Random Forest model consistently outperformed the other algorithms across all evaluation metrics, 

making it the most effective approach for predicting motorcycle crash severity in this study. This superior performance 

is likely due to its ensemble structure, which enhances stability, reduces overfitting, and captures complex nonlinear 

interactions among predictors—advantages especially relevant in heterogeneous crash data. These results align with 

previous studies that have demonstrated RF’s consistent edge in traffic safety prediction tasks [11, 12, 15, 17]. In 

contrast, the lower performance of NB and KNN may stem from their respective assumptions about feature 

independence and local similarity, which can limit their accuracy in high-dimensional, correlated crash datasets. From 

a practical standpoint, RF’s strong showing across conventional and imbalance-sensitive metrics (Balanced Accuracy, 

MCC) reinforces its suitability for real-world implementation, offering both predictive strength and reliability in 

imbalanced datasets common in traffic injury research. 

Taken together, these comparisons confirm that ensemble methods such as Random Forest are particularly well 

suited for heterogeneous and imbalanced crash data. While simpler methods like KNN and NB may offer interpretability 

or computational efficiency, their limitations reduce their practical utility for policy applications where accuracy and 

robustness are essential. 

Compared to previous studies, our results confirm the strong performance of Random Forest reported in other 

contexts such as Ghana, Pakistan, and Portugal, but also demonstrate its robustness in Thailand where motorcycle 

crashes dominate the road traffic landscape. This extension to a low- and middle-income country context adds new 

evidence that ensemble models remain effective even when data conditions and traffic patterns differ substantially from 

those in high-income countries. 

5.2. Model Interpretation 

To interpret the predictions of the most effective model, SHapley Additive exPlanations (SHAP) were used to 

analyze the Random Forest output. This interpretability method allows us to unpack the 'black box' nature of machine 

learning model, revealing the nuanced interplay of various features in predicting crash outcomes. 

The SHAP bee swarm plot in Figure 3 provides valuable insights into the variables affecting the assessment of the 

seriousness of injuries in motorcycle crashes as predicted by the Random Forest model, particularly for predicting 

whether crash results in severe or fatal injuries (class 1). The SHAP scores plotted on the X-axis illustrate the degree of 
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impact every variable has on the model's outcome: positive SHAP scores increase the likelihood of a severe outcome, 

while negative values decrease it. The features are ranked by their importance on the Y-axis, with the most critical 

factors at the top. 

 

Figure 3. The impact of features on motorcycle crash injury severity 

Key predictors associated with increased injury severity include nighttime crashes, involvement of large trucks, the 

presence of depressed medians, two-lane roads, pick-up trucks, and head-on collisions. These conditions contribute to a 

higher predicted probability of severe or fatal injuries (class 1). In contrast, crashes occurring during the daytime, side-

swipe and rear-end collisions, and those involving passenger cars are linked to a reduced likelihood of severe outcomes. 

These patterns are consistent with prior research and highlight practical roadway and vehicle-related conditions that 

elevate or mitigate injury severity. 

The following discussion expands on these findings by explaining how each key feature influences the model’s 

predictions, supported by prior research. 

At the forefront of influential factors, the result shows that the time of day plays a pivotal role in injury severity 

prediction. Daytime crashes are associated with lower injury severity compared to nighttime incidents. This temporal 

effect aligns with previous research by Chang et al. [37], who found that unlit darkness was linked to higher injury 

severity, which can be attributed to decreased visibility and longer reaction times during nighttime conditions [38]. The 

stark contrast between daytime and nighttime crash severities underscores the need for enhanced safety measures during 

darker hours, such as improved road lighting and increased awareness campaigns targeting night riders. 

The involvement of large trucks (more than six wheels) emerges as the second most critical factor, showing a strong 

correlation with increased injury severity. This finding resonates with recent research by Kanitpong et al. [39], Laphrom 

et al. [40], who attributed this heightened risk to the substantial size and mass differentials between trucks and 

motorcycles. The vulnerability of motorcyclists in such collisions highlights the urgent need for strategies to mitigate 

these high-risk interactions, possibly through dedicated lane policies or advanced warning systems for both truck drivers 

and motorcyclists. This highlights the urgent need for truck lane management or separation strategies to reduce 

motorcycle–truck conflicts. 
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Furthermore, the analysis reveals that side swipes in parallel lanes lead to less serious injuries. This counterintuitive 

finding might be attributed to the glancing nature of these impacts, as suggested by Agyemang et al. [41] in their 

comprehensive study of factors influencing motorcycle collision severity. Additionally, the presence of cars in crash 

scenarios shows a mixed impact, with a slight tendency towards decreased severity, possibly due to the comparative 

protection offered by car structures in collisions with motorcycles. This trend was similarly observed in an investigation 

conducted by Se et al. [42]. 

The results point out that road infrastructure elements demonstrate significant influence on crash severity outcomes. 

Depressed medians are connected to more severe injuries, potentially owing to the higher risk of more severe impacts 

or rollovers. This aligns with the findings by Se et al. [43], who observed that flush and depressed median factors produce 

a favorable marginal impact on fatal injuries, consequently raising the chances of fatalities during a collision. 

Conversely, barrier medians slightly decrease injury severity, likely due to their protective function in preventing cross-

median collisions, agreeing with the research from Champahom et al. [44]. A plausible explanation is that a barrier 

median limits the possibility of turning, guiding such actions to safer locations, which helps to decrease the risk of head-

on accidents and dangerous overtaking scenarios. 

Moreover, the number of lanes shows varied effects, with two-lane roads slightly increasing severity risk. This 

nuanced impact of road configuration on motorcycle safety supported by Se et al. [42], which demonstrated that 

collisions on two-lane roadways exhibit a significantly elevated the likelihood of severe injuries and fatalities compared 

to collisions on four-lane roadways. This phenomenon might arise because two-lane roadways are often non-separated 

and situated in rural regions characterized by elevated speed limits; consequently, incidents on these roadways are 

susceptible to severe impacts, including head-on crashes and accidents related to excessive speed. This suggests that 

targeted investment in safer rural two-lane roadways could substantially reduce motorcycle crash severity. 

With regard to road surface, crashes on asphalt road surface displayed a relatively neutral impact, with a slight 

tendency towards reduced severity compared to other surface types, corresponding to observations by Champahom et 

al. [44], who uncovered that the severity of crashes is typically higher on concrete surfaces than those on asphalt 

pavements. One possible explanation may be the material properties of asphalt, providing better traction and smoother 

driving surfaces, are likely to contribute to safer driving conditions and reduced injury severity. 

The analysis additionally highlights that the feature related to four-wheeled pick-up trucks shows high SHAP scores, 

indicating a higher likelihood of severe injuries in collisions involving such vehicles. Pick-up trucks often have higher 

centers of gravity, which can contribute to rollover crashes, leading to more severe injuries. Past research by Chang et 

al. [45] reported that collisions involving substantial vehicles, including pick-up trucks and tractor-trailers, have been 

demonstrated to significantly elevate the probability of death by 77% in non-intersection accidents and by 102% in 

intersection, correspondingly. 

With respect to the collision types, the model result demonstrates distinct impacts: rear-end collisions lead to less 

serious injuries than those associated with alternative categories, while head-on crash, when they occur, are strongly 

associated with increased severity. In head-on collisions, the substantial force generated by vehicles moving directly 

towards each other is likely to escalate the level of injury severity [37, 46]. 

The findings further delineate that crashes involving a front-path interruption are linked to a higher probability of 

serious injuries. Positive SHAP values suggest that these interruptions, which may involve sudden obstacles or loss of 

control, significantly increase the likelihood of serious consequences. The finding is reasonable and supported by prior 

studies, owing to the significant deceleration triggered by sudden stopping [47, 48]. 

The model also captures the heightened risk associated with out-of-control incidents on carriageways and the varied 

impacts of road construction zones. Areas under construction demonstrated a minimal impact on injury severity, 

suggesting that reduced speeds in these zones may offset potential hazards. In construction zones equipped with amber 

or warning signals, motorists exhibited a decreased chance of being involved in serious accidents [49]. 

Notably, crashes occurring on roads with four or more than eight lanes, roads with raised medians, and roads without 

medians show minimal SHAP influence, suggesting negligible contribution to injury severity. Additionally, crashes 

involving U-turns or occurring during rainy conditions show a small but positive association with severe injuries. 

While many of these results are consistent with international studies, some differences also emerge. For instance, 

the prominence of rural two-lane roads and depressed medians as critical predictors appears more specific to Thailand’s 

infrastructure context, where motorcycles frequently share non-divided highways with heavy vehicles. This contrasts 

with findings from high-income countries, where factors such as alcohol or speeding often dominate severity models. 

These differences highlight the importance of tailoring countermeasures to local traffic and roadway conditions rather 

than directly transferring strategies across regions. 

By combining these interpretations with evidence from prior studies, the analysis not only validates existing 

knowledge but also identifies context-specific risks unique to Thailand, strengthening the case for tailored 

countermeasures.  
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These findings highlight not only statistical associations but also practical risk factors that can guide targeted safety 

measures. While Section 6 presents the overall policy recommendations, the discussion here emphasizes how specific 

predictors—such as nighttime conditions, large trucks, and rural roadway features—directly influence crash severity 

and therefore warrant particular attention from policymakers. 

6. Conclusion 

This study evaluated the predictive performance of four supervised learning algorithms—Decision Tree (DT), K-

Nearest Neighbor (KNN), Naïve Bayes (NB), and Random Forest (RF)—to model motorcycle crash injury severity 

using nationally representative crash data from Thailand (2020–2022). Thirty-six explanatory variables were analyzed 

across roadway, environmental, vehicle, crash types, and causative factors. After preprocessing and addressing class 

imbalance, the models were trained, validated, and compared across multiple conventional and imbalance-sensitive 

metrics. The Random Forest model consistently outperformed the other approaches, achieving the highest accuracy, 

balanced accuracy, AUC, and MCC, confirming the advantage of ensemble-based methods for heterogeneous and 

imbalanced traffic data. The SHAP analysis provided transparency into model predictions by identifying critical 

determinants of severity, including nighttime crashes, large truck involvement, depressed medians, two-lane roads, and 

head-on collisions. These findings highlight both behavioral and infrastructure-related conditions that exacerbate 

motorcyclist vulnerability in Thailand. 

The contribution of this study lies in demonstrating the utility of ensemble methods for crash severity analysis in a 

motorcycle-dominated, low- and middle-income country context, while also addressing the interpretability challenge 

through SHAP analysis. Based on the insights gained, several countermeasures are recommended. First, nighttime safety 

improvements are needed, including better road lighting, reflective pavement markings, and stricter enforcement during 

hours of darkness. Second, large truck management should be prioritized by introducing truck lane separation or time-

based restrictions in areas with high motorcycle traffic. Third, roadway infrastructure enhancements are critical, 

particularly on two-lane rural highways, where interventions such as centerline barriers, median treatments, and shoulder 

widening could reduce the risk of head-on and high-impact crashes. Additionally, improving the design of depressed 

medians and strengthening traffic control in construction zones can help mitigate severe crash outcomes. While some 

measures such as truck lane separation may face practical challenges in Thailand’s current infrastructure, other 

interventions—including lighting improvements, reflective markings, enforcement, and low-cost roadway treatments—

are more immediately feasible and can still provide substantial safety benefits. Collectively, these measures can 

substantially reduce injury severity among motorcyclists. Beyond methodological contributions, this study demonstrates 

how machine learning combined with SHAP interpretability can support context-specific, evidence-based policymaking 

to reduce the burden of motorcycle crashes and improve overall road safety. 

6.1. Limitations and Future Research 

Undeniably, this research, like any other, is not without its limitations. Future investigations may extend the analysis 

by incorporating additional machine learning methodologies, including Neural Networks, Bayesian Networks, Deep 

Learning, and advanced ensemble or boosting approaches such as Gradient Boosting and XGBoost. These techniques 

may achieve higher predictive accuracy and help uncover additional latent patterns in crash dynamics, offering further 

insight into the trade-offs between predictive strength, interpretability, and practical applicability in traffic safety 

analysis. 

Another limitation is that this study did not explicitly apply dimensionality reduction or feature selection methods. 

Although the moderate number of predictors (36 variables) and the use of tree-based models with embedded feature 

selection helped mitigate overfitting risk, future work could systematically evaluate feature selection or dimensionality 

reduction approaches such as PCA, LASSO, or recursive feature elimination to further validate and refine predictor sets. 

This study was also limited by the absence of certain contextual factors, such as road lighting conditions, traffic 

density, and enforcement data, which may act as unobserved confounders. Although proxy variables such as time of day 

and roadway type capture some of these effects, future research should integrate richer datasets, including road inventory 

databases, traffic monitoring systems, and enforcement records, to more directly account for these influences and 

improve explanatory power. 

Finally, this study focused on retrospective crash severity prediction using historical crash records, which limits 

direct application in real-time crash risk warning systems. Future research should explore integration with real-time data 

streams (e.g., traffic sensors, weather stations, and GPS devices) and develop methods to adapt SHAP interpretability 

to streaming contexts, enabling dynamic and actionable risk warnings. 



Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4259 

 

7. Declarations  

7.1. Author Contributions 

Conceptualization, S.S. and V.R.; methodology, S.S.; software, S.S.; validation, T.C. and S.J.; formal analysis, S.S. 

and P.W.; investigation, P.W. and T.C.; data curation, S.S., P.W., and T.C.; writing—original draft preparation, S.S.; 

writing—review and editing, P.W. and T.C.; visualization, S.S.; supervision, S.J. and V.R. All authors have read and 

agreed to the published version of the manuscript. 

7.2. Data Availability Statement 

The data presented in this study are available on request from the corresponding author. 

7.3. Funding and Acknowledgements 

This research was supported by Suranaree University of Technology (SUT). The authors would like to thank the 

Department of Highway for supporting the road traffic crash data. 

7.4. Institutional Review Board Statement 

This research was approved by the Ethics Committee for Research Involving Human Subjects, Suranaree University 

of Technology (COE No.1/2568). 

7.5. Conflicts of Interest 

The authors declare no conflict of interest.  

8. References  

[1] WHO. (2023). Road traffic injuries. World Health Organization (WHO), Geneva, Switzerland. Available online: 

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on September 2025).  

[2] Santos, K., Dias, J. P., & Amado, C. (2022). A literature review of machine learning algorithms for crash injury severity 

prediction. Journal of Safety Research, 80, 254–269. doi:10.1016/j.jsr.2021.12.007. 

[3] Chan, J. Y. Le, Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W., & Chen, Y. L. (2022). Mitigating the 

Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics, 10(8), 1283. 

doi:10.3390/math10081283. 

[4] Mohamad, I., Jomnonkwao, S., & Ratanavaraha, V. (2022). Using a decision tree to compare rural versus highway motorcycle 

fatalities in Thailand. Case Studies on Transport Policy, 10(4), 2165–2174. doi:10.1016/j.cstp.2022.09.016. 

[5] Sahu, S., Maram, B., Gampala, V., & Daniya, T. (2023). Analysis of Road Accidents Prediction and Interpretation Using KNN 

Classification Model. Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, 

vol 490. Springer, Singapore. doi:10.1007/978-981-19-4052-1_18. 

[6] Yahaya, M., Jiang, X., Fu, C., Bashir, K., & Fan, W. (2019). Enhancing Crash Injury Severity Prediction on Imbalanced Crash 

Data by Sampling Technique with Variable Selection. 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, 

363–368. doi:10.1109/ITSC.2019.8917223. 

[7] Scarano, A., Rella Riccardi, M., Mauriello, F., D’Agostino, C., Pasquino, N., & Montella, A. (2023). Injury severity prediction 

of cyclist crashes using random forests and random parameters logit models. Accident Analysis & Prevention, 192, 107275. 

doi:10.1016/j.aap.2023.107275. 

[8] Yan, M., & Shen, Y. (2022). Traffic Accident Severity Prediction Based on Random Forest. Sustainability (Switzerland), 14(3), 

1729. doi:10.3390/su14031729. 

[9] Yang, J., Han, S., & Chen, Y. (2023). Prediction of Traffic Accident Severity Based on Random Forest. Journal of Advanced 

Transportation, 2023. doi:10.1155/2023/7641472. 

[10] Wahab, L., & Jiang, H. (2020). Severity prediction of motorcycle crashes with machine learning methods. International Journal 

of Crashworthiness, 25(5), 485–492. doi:10.1080/13588265.2019.1616885. 

[11] Wahab, L., & Jiang, H. (2019). A comparative study on machine learning based algorithms for prediction of motorcycle crash 

severity. PLoS ONE, 14(4), 214966. doi:10.1371/journal.pone.0214966. 

[12] Rezapour, M., Farid, A., Nazneen, S., & Ksaibati, K. (2021). Using machine leaning techniques for evaluation of motorcycle 

injury severity. IATSS Research, 45(3), 277–285. doi:10.1016/j.iatssr.2020.07.004. 

[13] Rezapour, M., Nazneen, S., & Ksaibati, K. (2020). Application of deep learning techniques in predicting motorcycle crash 

severity. Engineering Reports, 2(7), 12175. doi:10.1002/eng2.12175. 

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries


Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4260 

 

[14] Rezapour, M., Mehrara Molan, A., & Ksaibati, K. (2020). Analyzing injury severity of motorcycle at-fault crashes using machine 

learning techniques, decision tree and logistic regression models. International Journal of Transportation Science and 

Technology, 9(2), 89–99. doi:10.1016/j.ijtst.2019.10.002. 

[15] Mansoor, U., Jamal, A., Su, J., Sze, N. N., & Chen, A. (2023). Investigating the risk factors of motorcycle crash injury severity 

in Pakistan: Insights and policy recommendations. Transport Policy, 139, 21–38. doi:10.1016/j.tranpol.2023.05.013. 

[16] Kashifi, M. T. (2023). Investigating two-wheelers risk factors for severe crashes using an interpretable machine learning 

approach and SHAP analysis. IATSS Research, 47(3), 357–371. doi:10.1016/j.iatssr.2023.07.005. 

[17] Santos, K., Firme, B., Dias, J. P., & Amado, C. (2024). Analysis of Motorcycle Accident Injury Severity and Performance 

Comparison of Machine Learning Algorithms. Transportation Research Record, 2678(1), 736–748. 

doi:10.1177/03611981231172507. 

[18] Ali, Y., Hussain, F., & Haque, M. M. (2024). Advances, challenges, and future research needs in machine learning-based crash 

prediction models: A systematic review. Accident Analysis & Prevention, 194, 107378. doi:10.1016/j.aap.2023.107378. 

[19] Rezapour, M., & Ksaibati, K. (2020). Application of various machine learning architectures for crash prediction, considering 

different depths and processing layers. Engineering Reports, 2(8), 12215. doi:10.1002/eng2.12215. 

[20] Sum, S., Se, C., Champahom, T., Jomnonkwao, S., Sinha, S., & Ratanavaraha, V. (2025). A random forest and SHAP-based 

analysis of motorcycle crash severity in Thailand: Urban-rural and day-night perspectives. Transportation Engineering, 21, 

100369. doi:10.1016/j.treng.2025.100369. 

[21] Agheli, A., & Aghabayk, K. (2025). How does distraction affect cyclists’ severe crashes? A hybrid CatBoost-SHAP and random 

parameters binary logit approach. Accident Analysis & Prevention, 211, 107896. doi:10.1016/j.aap.2024.107896. 

[22] Sadeghi, M., Aghabayk, K., & Quddus, M. (2024). A hybrid Machine learning and statistical modeling approach for analyzing 

the crash severity of mobility scooter users considering temporal instability. Accident Analysis & Prevention, 206, 107696. 

doi:10.1016/j.aap.2024.107696. 

[23] Sambasivam, G., Amudhavel, J., & Sathya, G. (2020). A Predictive Performance Analysis of Vitamin D Deficiency Severity 

Using Machine Learning Methods. IEEE Access, 8, 109492–109507. doi:10.1109/ACCESS.2020.3002191. 

[24] Domingos, P., & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine 

Learning, 29(2–3), 103–130. doi:10.1023/a:1007413511361. 

[25] Kazmierska, J., & Malicki, J. (2008). Application of the Naïve Bayesian Classifier to optimize treatment decisions. Radiotherapy 

and Oncology, 86(2), 211–216. doi:10.1016/j.radonc.2007.10.019. 

[26] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. doi:10.1023/a:1010933404324. 

[27] Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., & Li, K. (2017). A Parallel Random Forest Algorithm for Big Data in a 

Spark Cloud Computing Environment. IEEE Transactions on Parallel and Distributed Systems, 28(4), 919–933. 

doi:10.1109/TPDS.2016.2603511. 

[28] Sonnatthanon, N., & Choocharukul, K. (2025). Crash severity prediction using a virtual geometry-group-based deep learning 

approach with images-based feature representation. Results in Engineering, 27, 106155. doi:10.1016/j.rineng.2025.106155. 

[29] Mohsin, A. S. M., Choudhury, S. H., & Muyeed, M. A. (2025). Automatic priority analysis of emergency response systems 

using internet of things (IoT) and machine learning (ML). Transportation Engineering, 19, 100304. 

doi:10.1016/j.treng.2025.100304. 

[30] Acı, Ç. İ., Mutlu, G., Ozen, M., & Acı, M. (2025). Enhanced Multi-Class Driver Injury Severity Prediction Using a Hybrid Deep 

Learning and Random Forest Approach. Applied Sciences (Switzerland), 15(3), 1586. doi:10.3390/app15031586. 

[31] Dia, Y., Faty, L., Sarr, M. D., Sall, O., Bousso, M., & Landu, T. T. (2022). Study of Supervised Learning Algorithms for the 

Prediction of Road Accident Severity in Senegal. 2022 7th International Conference on Computational Intelligence and 

Applications (ICCIA), 123–127. doi:10.1109/iccia55271.2022.9828434. 

[32] Dong, S., Khattak, A., Ullah, I., Zhou, J., & Hussain, A. (2022). Predicting and Analyzing Road Traffic Injury Severity Using 

Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations. International Journal of Environmental 

Research and Public Health, 19(5), 2925. doi:10.3390/ijerph19052925. 

[33] Ijaz, M., lan, L., Zahid, M., & Jamal, A. (2021). A comparative study of machine learning classifiers for injury severity prediction 

of crashes involving three-wheeled motorized rickshaw. Accident Analysis & Prevention, 154, 106094. 

doi:10.1016/j.aap.2021.106094. 

[34] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information 

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December, 2017, Long Beach, 

United States. 



Civil Engineering Journal         Vol. 11, No. 10, October, 2025 

4261 

 

[35] Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. 

Knowledge and Information Systems, 41(3), 647–665. doi:10.1007/s10115-013-0679-x. 

[36] Tahfim, S. A. S., & Yan, C. (2021). Analysis of severe injuries in crashes involving large trucks using K-prototypes clustering-

based GBDT model. Safety, 7(2), 32. doi:10.3390/safety7020032. 

[37] Chang, F., Yasmin, S., Huang, H., Chan, A. H. S., & Haque, M. M. (2021). Injury severity analysis of motorcycle crashes: A 

comparison of latent class clustering and latent segmentation based models with unobserved heterogeneity. Analytic Methods 

in Accident Research, 32, 100188. doi:10.1016/j.amar.2021.100188. 

[38] Marcoux, R., Yasmin, S., Eluru, N., & Rahman, M. (2018). Evaluating temporal variability of exogenous variable impacts over 

25 years: An application of scaled generalized ordered logit model for driver injury severity. Analytic Methods in Accident 

Research, 20, 15–29. doi:10.1016/j.amar.2018.09.001. 

[39] Kanitpong, K., Jensupakarn, A., Dabsomsri, P., & Issalakul, K. (2024). Characteristics of motorcycle crashes in Thailand and 

factors affecting crash severity: Evidence from in-depth crash investigation. Transportation Engineering, 16, 100227. 

doi:10.1016/j.treng.2024.100227. 

[40] Laphrom, W., Se, C., Champahom, T., Jomnonkwao, S., Wipulanusat, W., Satiennam, T., & Ratanavaraha, V. (2024). XGBoost-

SHAP and Unobserved Heterogeneity Modelling of Temporal Multivehicle Truck-Involved Crash Severity Patterns. Civil 

Engineering Journal (Iran), 10(6), 1890–1908. doi:10.28991/CEJ-2024-010-06-011. 

[41] Agyemang, W., Adanu, E. K., & Jones, S. (2021). Understanding the Factors That Are Associated with Motorcycle Crash 

Severity in Rural and Urban Areas of Ghana. Journal of Advanced Transportation, 2021, 6336517. doi:10.1155/2021/6336517. 

[42] Se, C., Champahom, T., Jomnonkwao, S., Wisutwattanasak, P., Laphrom, W., & Ratanavaraha, V. (2023). Temporal Instability 

and Transferability Analysis of Daytime and Nighttime Motorcyclist-Injury Severities Considering Unobserved Heterogeneity 

of Data. Sustainability (Switzerland), 15(5), 4486. doi:10.3390/su15054486. 

[43] Se, C., Champahom, T., Jomnonkwao, S., Chaimuang, P., & Ratanavaraha, V. (2021). Empirical comparison of the effects of 

urban and rural crashes on motorcyclist injury severities: A correlated random parameters ordered probit approach with 

heterogeneity in means. Accident Analysis &amp; Prevention, 161, 106352. doi:10.1016/j.aap.2021.106352. 

[44] Champahom, T., Wisutwattanasak, P., Chanpariyavatevong, K., Laddawan, N., Jomnonkwao, S., & Ratanavaraha, V. (2022). 

Factors affecting severity of motorcycle accidents on Thailand’s arterial roads: Multiple correspondence analysis and ordered 

logistics regression approaches. IATSS Research, 46(1), 101–111. doi:10.1016/j.iatssr.2021.10.006. 

[45] Chang, F., Li, M., Xu, P., Zhou, H., Haque, M. M., & Huang, H. (2016). Injury severity of motorcycle riders involved in traffic 

crashes in Hunan, China: A mixed ordered logit approach. International Journal of Environmental Research and Public Health, 

13(7), 714. doi:10.3390/ijerph13070714. 

[46] Prentkovskis, O., Sokolovskij, E., & Bartulis, V. (2010). Investigating Traffic Accidents: A Collision of Two Motor Vehicles. 

Transport, 25(2), 105–115. doi:10.3846/transport.2010.14. 

[47] Huang, H., Chin, H. C., & Haque, M. M. (2008). Severity of driver injury and vehicle damage in traffic crashes at intersections: 

A Bayesian hierarchical analysis. Accident Analysis & Prevention, 40(1), 45–54. doi:10.1016/j.aap.2007.04.002. 

[48] Zhou, M., & Chin, H. C. (2019). Factors affecting the injury severity of out-of-control single-vehicle crashes in Singapore. 

Accident Analysis & Prevention, 124, 104–112. doi:10.1016/j.aap.2019.01.009. 

[49] Ghasemzadeh, A., & Ahmed, M. M. (2019). Exploring factors contributing to injury severity at work zones considering adverse 

weather conditions. IATSS Research, 43(3), 131–138. doi:10.1016/j.iatssr.2018.11.002. 


