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Abstract 

In this study, we applied RiverWare modeling approach to evaluate the management decisions on surface water and 

groundwater diversions in the agricultural watershed of the Urumqi River Basin of Xinjiang in Northwestern China. A 

rule-based daily time step RiverWare model was developed to simulate the hydrologic effects of different water 

management alternatives considering irrigation and drainage systems, crop water use, and diversion rules at the diversion 

dams within the basin. Daily data period from 2005 to 2009 was used to calibrate the model and 2010-2012 was used to 

validate the model. A calibrated daily RiverWare model was then used to evaluate the management decisions under 

different drought scenarios that generated by using the snowmelt runoff model (SRM) that developed to simulate inflow 

from upstream of Yingxiongqiao gaging station. Two drought scenarios (reduced precipitation and increased temperature) 

analysis were performed, and the corresponding hydrological variables were compared to the baseline scenario. The results 

indicated that the model adequately reproduced the historical inflows for the Wulabo Reservoir. The scenario analysis 

results suggest that the reduced precipitation led to increased groundwater pumping for irrigation both in the spring and 

summer. The increased temperature induces a significant increase in surface runoff in the basin and leads to increased crop 

water demand within the irrigation district, and however does not necessarily reduce the groundwater pumpage. Water 

operation policies from RiverWare provide guidelines for conjunctive use of groundwater and surface water resources 

within the basin under different water supply scenarios in the future. 
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1. Introduction 

Mountain snowmelt-fed rivers in northwestern China are the primary water resource supply for public use, agriculture 

irrigation, environmental use, hydropower and other purposes. In recent years, global climate change has already 

affected the local hydrology and water cycle in these areas [1]. Notably, the glacier and snow-covered areas were 

influenced as they are susceptible to temperature factor, and can affect the timing and magnitude of the streamflow in 

this region significantly [2, 3]. Due to increasingly frequent and severe periods of drought and growing demand, the 

river alone no longer meets the regional water needs, leading to increased groundwater extraction and dropping water 

tables [4]. This is especially true in the Upper Urumqi River Basin, which supports the primary vegetable supplier to the 

populous Urumqi, the capital city of the Xinjiang Uyghur Autonomous Region, China. The Upper Urumqi River Basin 

is in the middle portion of the northern flank of the Tianshan Mountains, about 175 km from Urumqi. Persistent drought, 

climate change and population growth in the region pose significant challenges in the management of limited water 
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resources, particularly in the lower Urumqi river basin. As stream water is a critical water supply for Urumqi city, the 

streamflow characteristics and changes have drawn considerable attention with the rapid population growth and water 

shortage under climate change. Many studies have been conducted in the basin over last decades, including groundwater 

and surface water supply variations in the agricultural basin upstream from Wulabo reservoir, how its reaction to the 

changing environment including frequent drought, population growth and sharply increased water demand in the area. 

One of the approaches in the arid region to meet demands during the drought is the conjunctive use of surface water 

and groundwater. This technique might be especially important as a buffer function for mitigating impacts of drought, 

such as increased heat and reduced precipitation [5]. In general, two-way exchange between surface water and 

groundwater directly affects the quality and quantity of surface water and groundwater bodies, which not only impact 

on the water chemical composition and evolution but also alter groundwater and ecological balance. The interaction is 

often complicated by human activities and climate change including surface water diversion, groundwater pumping, and 

irrigation, as they could significantly alter the flow regimes of both surface water and groundwater [6, 7]. Hence, 

understanding the complex behavior of the integrated surface water and groundwater system is very important to the 

regional water resources management [8]. There are many research results reported in the literature for coupling surface 

and subsurface flow across a range of scales into proper deliberation of regional water management policies in the last 

decades [8-12]. Many models were developed and applied in modeling of the interaction of groundwater and surface 

water for over forty years. To name a few, Sokrut (2001) developed the integrated model, here called ECOFLOW, based 

on the source codes of groundwater flow model (MODFLOW-88) and physically distributed watershed model 

(ECOMAG) [13]. Markstrom et al. (2008) developed an integrated hydrologic model called GSFLOW (Ground-water 

and Surface-water FLOW) based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling 

System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW) [14]. Kim et al. 

(2008) proposed a new approach whereby the characteristics of the hydrologic response units (HRUs) in the SWAT 

model are exchanged with cells in the MODFLOW model [15]. Tian et al. (2015) developed a new model coupled with 

the Storm Water Management Model (SWMM), and Ground-Water and Surface-Water Flow Model (GSFLOW). The 

new (GSFLOW) model was applied to study the hydrologic cycle of the Zhangye basin, northwest China, a typical arid 

to the semi-arid area with significant irrigation [16].  

In this study, we have utilized RiverWare model in addressing the management decisions on surface water diversions 

and groundwater withdrawal under several drought scenarios in Urumqi River Basin. RiverWare™ is a general-purpose 

river and reservoir modeling application developed by the Center for Advanced Decision Support for Water and 

Environmental Systems of the University of Colorado in collaboration with the Tennessee Valley Authority, the U.S. 

Bureau of Reclamation and the U.S. Army Corp of Engineers. RiverWare can be run either as a stand-alone application 

or in concert with other models and databases. It can be used to simulate hydrologic responses of river systems, given 

regulated inflows and management decisions such as reservoir releases, diversions and return flows. Models are built 

using a palette of objects that represent features in the basin and user selectable methods that characterize physical 

processes. The model can be used to simulate river flow and water operations decisions as well as conjunctive 

management scenarios in a river basin by incorporating physical layout of diversions, reaches, crop and riparian water 

depletion, groundwater sub-basins, drains, canals, etc. RiverWare is currently used for planning and scheduling 

operations in several river basins in the United States such as the Middle Rio Grande, Truckee-Carson, Colorado River, 

and Tennessee Valley [17]. RiverWare model had been developed for Middle Rio Grande for flood control planning 

and water operations. Since 2010, research efforts have been dedicated to establishing this RiverWare model to simulate 

water operations in the Rio Grande reach starts from Elephant Butte Reservoir to the Rio Grande at El Paso gaging 

station [18-19]. 

It is the viability of RiverWare in river and reservoir system modeling which drives us to use the model in addressing 

the issues in highly-managed Urumqi River Basin, particularly under drought scenarios. We tried to answer what-if 

questions in the changing environment in the basin using drought scenario analysis by linking the results of previously 

developed snowmelt runoff model (SRM) in the mountainous upper Urumqi River Basin [20-22] and calibrated 

RiverWare model that developed in the lower agricultural basin upstream from Wulabo Reservoir. For that purpose, this 

study is considering the management decisions on surface water and groundwater diversions in the agricultural basin in 

the vicinity of the river corridor and the irrigated agricultural area within the river basin. A rule-based daily time step 

RiverWare models were developed to simulate the hydrologic effects of different water management alternatives by 

considering irrigation and drainage systems, crop water use, and diversion rules at the diversion dams within the basin. 

RiverWare groundwater objects were added to simulate the alluvial aquifer and pumping in the irrigation district, and 

to quantify surface water and groundwater diversions and to evaluate the hydrologic effects of different water 

management alternatives. A calibrated daily RiverWare model was then used to assess the management decisions under 

different drought scenarios that generated by using the snowmelt runoff model (SRM) that developed to upstream at the 

outlet of the mountain (Yingxiongqiao gaging station).  
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2. Study Area and Data 

Urumqi River basin is located at the longitude of 86°45′E and 87°56′E，latitude of 43°00′N and 44°07′
N, and has an area of 4,684 km2, the total length of 214 km, and 62.6 km up to the river outlet from Tianshan Mountain 

(As shown in Figure 1). According to the statistics from Yingxiongqiao hydrological station, between the years of 1958 

to 2009, the average annual runoff is 2.42×108 m3, the average temperature is 1.6℃, and average precipitation is 456.9 

mm. The glacier and snow stored on the northern slopes of Tianshan in Xinjiang melt to feed a number of streams during 

the spring and summer seasons. The typical arid and semi-arid climate dominates the agricultural area where the 

irrigation is dependent upon the snowmelt runoff, particularly in the summer. Among them, the discharge of the Urumqi 

River is mainly fed by snowmelt and precipitation with proportions of 37% and 36% respectively [23]. 

The direction of groundwater flow in the basin is northeast, from the mountains into the valley and then north and east 

down to the river. Recharge to the basin is via seepage from the river and irrigation canals. Some recharge also occurs 

from subsurface flow through the coarse sediments in mountain front tributaries and arroyos. A single layer of coarse 

sand and gravel form a permeable formation of several hundred meters thick. Towards lower valley, the thickness is 

changing, and due to complicated river bed geology, groundwater storage is limited. In the past, the groundwater was 

recharged by the rivers flowing from the Tianshan Mountain into the basin, and springs discharge water from the aquifer 

toward the lower end of study area near Wulabo Reservoir. Recently the river water is diverted through canals and stored 

in reservoirs, the leakage through the river bed is not predominant, but instead, water infiltrates from delivery and field 

channels and irrigation losses. At the same time, groundwater is also extracted heavily by well pumping for irrigation 

in the agricultural area of the basin [24]. 

In this study, the river basin upstream from Wulabo Reservoir (located at the northeast end of the study area) is selected 

as the study area. The lower end of the study area is chosen as the inflow into Wulabo reservoir since no river channels 

exist in the lower part of Wulabo reservoir, where outflow from the reservoir is delivered to downstream via constructed 

canals. The study watershed is divided into two parts: (a) the upper mountainous watershed where no agricultural 

activities exist upstream from Yingxiongqiao gaging station. An SRM model was developed to the part of the basin for 

simulating snowmelt runoff at Yingxiongqiao gaging station [20]. We design drought scenarios using SRM model in 

this section of the river basin. (b) Lower valley where primary agricultural production occurs, downstream of 

Yingxiongqiao gaging station and upstream of Wulabo Reservoir, this is the main study area in this study. 

There are two gage stations along the river and one meteorological station in the basin. The Yingxiongqiao gaging 

station is located at the mountain outlet at an altitude of 1920 m. Wulabo reservoir inflow is measures at the east edge 

of Urumqi city and the end of Qingnian irrigation district (lower west side agricultural area of the study area). The 

Daxigou meteorological station is located at the high-altitude mountain area at 3,539 m (Figure 1). Daily stream flow 

and weather data are available at all stations from January 1, 2005, to December 31, 2012. The period of 2005-2008 was 

used as a calibration period and from 2009-2012 was used for RiverWare model validation period.  

The main crops in the study area include winter wheat, cotton, and vegetables. Typical irrigation techniques used in 

the area are flood irrigation for winter wheat, and furrow irrigation for all other row crops including cotton and most 

vegetables. Data utilized in the model include historical flow data at gaging stations, canal diversions, estimated water 

demands based on historic data, estimated seepage losses along the canals and river reach, and time lag estimated from 

the water operations procedure of the irrigation districts. 
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Figure 1. Location of Urumqi River Basin and Study Area 

3. Methodology 

The irrigation and drainage network in the study area is very complex.  First, a conceptual node-link model was 

developed to characterize the relationships between the river, canals, laterals, and drains as well as diversion points. 

Then, a RiverWare model was developed to simulate water flows within the study area based on the conceptual model. 

RiverWare reach objects are linked directly to the groundwater objects to accomplish physical simulation of the surface-

water/groundwater interaction through head-dependent flux calculations. Existing groundwater characteristics and the 

data necessary for simulating groundwater responses were obtained from the previous work [23, 24]. Other parameters, 

such as the stage-discharge rating curve, the conductance of the riverbed, and the geometry of the river bed, are 

determined using GIS and on-site measurements.  

3.1. Conceptual Model Layout 

The overall layout of the conceptual model of irrigation network within the irrigation district is shown in Figure 2. 

Daxigou diversion dam is located approximately 5 km downstream of Yingxiongqiao gaging station and is the initial 

diversion point from the river channel. At this location, water is diverted to the west side agricultural area through the 

Gongsheng main canal and to the east side agricultural area through the Huangcaoliangzi canal. The Gongsheng main 

canal diverts water to irrigate farms in the vicinity of Gongsheng village (Zhaojiahuangzi and Yongfengxiang) 

agricultural area. The Huangcaoliangzi canal diverts water from the mainstream to the Hangcaoliangzi water users 

including several agricultural village units on the east side of the river. At the downstream of Daxigou diversion, there 

is Qingnian canal diversion, which diverts water to the Qingnian main canal and delivers to the whole Qingnian Irrigation 

District on the west side of the river channel. The water from the main canals is then diverted through laterals and 

irrigation ditches to farm fields for irrigation or diverted for urban water users. The drainage system collects the return 
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flow from the farm fields, discharges it downstream and returns it to the river or some sections of main channels and 

finally to Wulabo Reservoir.  The agricultural water users were divided based on the administrative boundaries at the 

village level, and historical crop acreage for each water user was collected and used to estimate crop water requirement. 

 

Figure 2. The conceptual model layout of the river, diversions, canals and water users (WUs) in the study area 

3.2. River Ware Model Design 

3.2.1. Division of Reaches and Groundwater Objects 

The selected river channel is simulated by dividing into three reaches. With the addition of groundwater objects to 

simulate the interaction of surface-water and groundwater, the reach length was determined by the length in the 

downstream direction of the groundwater objects. Analysis of the slope of the river segment indicated that a reach length 

of 10 to 20 kilometers would be sufficient to adequately simulate the groundwater objects that are connected to river 

stream. Table 1 describes the division of the river reaches in the basin, from Yingxiongqiao gaging station through 

Wulabo Reservoir near Urumqi City. The boundaries of some of the reaches were adjusted to the location of gages or 

other physical structures in the river. The irrigated corridor along the lower river segments consists of two linear river 

segments that approximately follow the curvature of the river. Some cross-sections were surveyed in the field, and 

average properties for each reach were derived using GIS (As shown in Table 1). 

Table 1. Properties of reaches in the study basin 

Reach         Reach Name Length (km) Slope Width (m) Elevation (m) 

Reach 1 Yingxiongqiao- GongshengMainCanal 16.8 0.0152 167 1641 

Reach 2 GongshengMainCanal- TaipingMainCanal 9.9 0.0156 294 1427 

Reach 3 TaipingMainCanal Wulabo Reservoir 16.2 0.0167 633 1236 

The groundwater objects (GWOs) in RiverWare simulate the losses to and gains from the river. The shallow 

groundwater system is simulated by River Ware groundwater objects in the model with head-dependent flux between 

groundwater objects and the river, drains, other groundwater objects, and the deep aquifer. The simulation of the shallow 

groundwater system was completed using a horizontal course discretization. In each reach, a set of three groundwater 

objects were used to simulate the river and the surrounding irrigated areas. For the groundwater objects that are located 

to the east and west of the river, one boundary was the boundary of the river groundwater object, and the other boundary 

was either the extent of the irrigated area or the canal furthest from the river. 
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A shown in Figure 3, a total of six Groundwater Objects (GWOs) has been delineated in the lower valley 

corresponding to River Reaches 2 and 3. Groundwater objects were assigned to the Reaches 2 and 3 based on the 

assumption that there is one groundwater object associated with the river reaches, and one groundwater object on each 

side of each River Reach object, for a maximum of three groundwater objects that may be associated with each Reach 

Object. No GMOs were designed in the area related to Reach 1, since there is no irrigated area exists in this section of 

the river. The groundwater objects also interact with deeper groundwater layers by use of the deep percolation option of 

the groundwater object. The locations of the areas represented by groundwater objects are shown in Figure 3.   

 

Figure 3. Delineation of Groundwater Objects (GWOs) in the study basin 

3.2.2. River Ware Model Configuration 

Based on the conceptual layout of the hydrologic system of the study area, a rule-based River Ware model at daily 

time steps was constructed to simulate flows in the river and irrigation network within the study area (as shown in Figure 

4). A daily rule-based simulation model was developed by calibrating and validating the model for the periods of 2005-

2008 and 2009-2012, respectively. The model includes the river reach from the Yingxiongqiao to Wulabo Reservoir and 

its associated diversion points and gaging stations, main canals and diversions into laterals, and return flows. The model 

also incorporates agricultural water users and groundwater pumping during the crop growing season. The rules are 

written to reflect the diversion operations at Daxigo diversion for Gongsheng canal and Hungcaoliangzi canal, and 

Qingnian diversion for Qingnian Main canal. The diversion practices are a conditional diversion at each diversion 

location based on the flow magnitude in the Urumqi River mainstream. 

  

Figure 4. Part of RiverWare model layout for an agricultural area in the lower valley 
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Numerous RiverWare objects were used to simulate the hydrological system of the study basin; including reach, 

diversion, water user, and gaging stations. The Reach objects simulate river channel, canals, laterals, and drains. Seepage 

losses from the canal system are considered as 10% of the total flow based on the seepage losses study and historical 

records of the irrigation district. Diversion objects were used to account for the diversions from the river to canals and 

the canals to the laterals. Rules are written to reflect conditional diversions at different canal heads based on upstream 

flow conditions and demand from the agricultural area. The Diversion objects make a summation of inflows and 

outflows at each time step to determine the needed diversion from upstream. This flow rate then compounds as it 

migrates from the bottom of the model to the top, eventually resulting in the total required inflow for each time step.  

The Water User objects are used to define the crop water consumptive use in each water user. A major component of 

water use in the basin is the crop consumptive use. The model simulates the crops consumptive use by using a water 

user object for each of the areas that are simulated by one of the east and west groundwater objects. The reference 

evapotranspiration is estimated using the Hargreaves and Samani equation [25] due to lack of measured data availability. 

Each water user object uses data for crop ET rate, crop area and farm efficiency to determine the volume of crop ET, 

and total return flow from surface water and groundwater. The total aggregated daily ET values and total cropland for 

the water user object were utilized to calculate daily total crop water use. Based on the agricultural growth data in the 

Qingnian irrigation district, the following average crop acreage was used to calculate crop irrigation requirements for 

each water users. For all of these categories, the crop coefficients and lengths of crop development stages listed in FAO 

Irrigation and Drainage Paper No. 56 [26] were used (As shown in Table 2.) 

Table 2.  Crop Coefficients and Lengths of Crop Development Stages [26] 

CROP TYPE 
Average 

Acreage (%) 

Crop Coefficients (Kc)  Lengths of Crop Development Stages (days) 

Initial Mid End Initial Developing Mid-season Late-season Total 

WINTER WHEAT 20 0.7 1.15 0.32 20 25 60 30 135 

BARLEY 20 0.3 1.15 0.25 20 25 60 30 135 

POTATO 12 0.5 1.15 0.75 25 30 45 30 130 

VEGETABLES 23 0.7 1.05 0.95 30 40 40 20 130 

NURSERY AND OTHERS 25 0.5 1.1 0.65 30 30 100 30 190 

By combining the crop coefficients, lengths of growing periods, beginning and ending dates for growing seasons, and 

reference ET time series, ET time series for each of the crop categories were determined at the Qingnian irrigation 

district. The ET time series obtained in this manner was reduced by 10% to better estimate the water demand in 

calibrating the RiverWare model to the Qingnian irrigation district. 

3.3. Drought Scenarios Configuration 

The River Ware model has the advantages of simulating river and reservoir operations, groundwater and surface water 

interaction in the irrigation area and is more suitable to the complicated agricultural land located in the lower basin of 

the Urumqi River. Once the rule-based River Ware model calibrated and validated using historical observations, it can 

be used to perform drought scenario analysis using runoff variations at Yingxiongqiao gaging station and likely 

increased crop water use demand in the irrigation district due to a higher temperature during the drought. To design 

drought scenarios, we have utilized previous a Snowmelt Runoff Model (SRM) [20] that developed to the upper 

mountainous watershed upstream of Yingxiongqiao gaging station. The SRM model predictions at Yingxiongqiao 

gaging station under designed drought scenarios will be used as an input for River Ware model that was developed for 

the agricultural watershed from Yingxiongqiao gaging station to Wulabo Reservoir for evaluation of water supply 

management decisions under f drought scenarios in the Basin.  

To address this, three different drought scenarios were designed based on the temperature and precipitation changes 

(as shown in Table 3); they are: Baseline condition - Average of daily modeled flow at Yingxiongqiao station for the 

years of 2005, 2006, 2007; Reduced precipitation - upper basin average precipitation reduced by 30% compared to the 

precipitation in the baseline condition; Increased temperature - upper basin average temperature increased by 2.5℃ 

compared to the temperature in the baseline condition. Based on the different scenarios, the calibrated SRM model for 

the watershed upstream of Yingxiongqiao station was used to generate daily runoff during snowmelt season (March 

through October) at Yingxiongqiao gaging station. At the same time, we assume that the precipitation change does not 

affect crop evapotranspiration in the irrigation district. It should be noted that, as the temperature rises, the 

evapotranspiration from the agricultural crop and other vegetation increases. In this study, the evapotranspiration 

increase under increased temperature (when temperature increases by 2.5℃) considered as 8% based on the reference 

evapotranspiration calculation using Hargreaves and Samani equation [25]. 
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The generated daily runoff at Yingxiongqiao gaging station using SRM under different scenarios is then fed into River 

Ware model as inputs, and the increased crop water use under increased temperature scenario will be increased for each 

water user in the irrigation district. Then, the River Ware models rerun for different runoff and crop water use conditions 

under different scenarios to generate the surface water and groundwater conjunctive use water operation strategies for 

agricultural production in the Qingnian irrigation district within the study area.  

Table 3. Scenario configuration and daily spring-summer (March-August) runoff variation at Yingxiongqiao Gaging Station 

Scenario Name Baseline Reduced precipitation Increased temperature 

Scenario 

Condition 

Spring-Summer runoff (106m3) 

Average of 2005-2007’s 

Simulated flow 

192 

Precipitation Reduced by 

30% 

137 

Temperature Increased by 

2.5℃ 

216 

Runoff Volume Changes at Yingxiongqiao Station (%) 0% -28.6% +12.5% 

Crop Evapotranspiration Changes 0% 0% +8% 

4. Results and Discussion 

4.1. Model Calibration and Validation  

During the calibration period (from January 1, 2005 to December 31, 2009), the selected model parameters were 

adjusted to minimize the difference between daily observed and reservoir inflow at Wulabo Reservoir through adjusting 

the initial groundwater object elevations such that the groundwater objects elevations were realistic representations of 

the alluvial aquifer heads, aquifer’s horizontal hydraulic conductivity, and canal seepage percentage to simulate the river 

and drain flows. We also tried different reduced rate of ET estimates and irrigation efficiencies to match the inflow at 

Wulabo reservoir better. Once calibrated, the calibrated model was run for the validation period (from January 1, 2009, 

to December 31, 2012) using the parameters from the end of the calibration run as the initial values for the validation 

run. The daily inflow to the reservoir from the RiverWare simulation was compared to historically observed flows to 

verify that the overall flows in the model are correct.   

As shown in Figure 5 and 6, the inflow values at the Wulabo Reservoir from the RiverWare simulation were compared 

to historic inflows to verify that the simulated flows match well with observed historic value. For inflow calibration at 

the Wulabo Reservoir, both time series and scatter plots between the modeled inflow and recorded inflow indicated the 

acceptable performance with a coefficient of determinations of 0.66 and 0.49 for calibration and validation periods, 

respectively. The model calibration and validation show that the developed RiverWare model captures the timing and 

magnitude of the inflow relatively well for the study area. It is also observed that there are some errors when simulating 

reservoir inflow in the summer both in calibration and validation period. This may be due to the complexity of the 

system at this river sections that are affected by substantial human intervention, particularly during the summer irrigation 

season when water demand is high.  

 

Figure 5. Daily time series plot of measured and simulated Wulabo Reservoir inflow 
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Figure 6. Scatter plot of measured and simulated daily Wulabo inflow for calibration and validation period 

We also calculated the following statistical measures for calibration and validation period to evaluate the performance 

of the model. They are the coefficient of determination (R2), the Mean Absolute Error (MAE), the Root–Mean-Squared 

Error (RMSE), Relative Root Mean Squared Error (RRE) and Nash–Sutcliffe model efficiency coefficient (NSE). The 

coefficient of determination is an indication of the percent of the variation of the observed salinities being explained by 

simulated salinity. The RMSE is a measure of the deviation of the simulated salinities from the measured salinities. 

Nash-Sutcliffe model efficiency, NSE, is a model evaluation criterion proposed by Nash and Sutcliffe (1970) [27]. As 

shown in Table 4, the Nash–Sutcliffe model efficiency for the calibration period is 0.63 while for the validation period 

is 0.43. This indicates the model efficiency is acceptable for the calibration period than the validation period. However, 

the model performed similarly in terms of errors, including Root mean squared error (RMSE), Mean Absolute Error 

(MAE), Relative Root Mean Squared Error (RRE), indicating that the model suitable for both calibration and validation 

period.  

The model underestimates the higher inflows than the observed at the Wulabo Reservoir. This may be because runoffs 

from local arroyos, particularly two seasonal streams (East Baiyang and West Baiyang Rivers) are not incorporated in 

the simulations, as there is no runoff data available. To better simulate impacts of local storm events on the river flow 

as well as the potential release of flood flow using irrigation networks, it is recommended that the local arroyos be 

evaluated, and its runoff events are considered in the enhancement of the model configuration in the future study in the 

basin. In general, the model construction is promising by capturing major features in the system and producing well-

simulated inflow to the Wulabo Reservoir. Results indicate that the RiverWare model captured key features and showed 

a high correlation between the simulated flow and historic observations, and can be used for water operation 

management under different scenarios. 

Table 4. Statistical measures for calibration and validation periods of the RiverWare Model 

Measures Calibration Period Validation Period 

Coefficient of Determination (R2) 0.66 0.49 

Nash–Sutcliffe model efficiency (NSE) 0.63 0.43 

Root mean squared error (RMSE), 106m3 0.25 0.23 

Mean Absolute Error (MAE), 106m3 0.15 0.14 

Relative Root Mean Squared Error (RRE) 0.03 0.06 

4.2. Scenario Analysis  

4.2.1. Generated daily flow for different scenarios 

A developed snowmelt runoff model upstream from the Yingxiongqiao gaging station [20] was used to generate daily 

runoff for spring and summer seasons at Yingxiongqiao gaging station based on the designed scenarios. The generated 

daily runoff was used as input to the RiverWare model. The RiverWare model was then used to assess alternative water 

management strategies including daily water operation at the irrigation districts by considering the conjunctive use of 

surface water and groundwater resources. As shown in Table 3, three scenarios were considered in the study: Baseline 

condition (Average of 2005-2007), Reduced precipitation (upper basin average precipitation reduced by 30%), Increased 

temperature (upper basin average temperature increased by 2.5℃). The baseline flow is considered as the average flow 

and weather conditions from 2005 to 2007. The Reduced Prep scenario is the precipitation in the upper basin decreased 

by 30% as compared to baseline year, and the Increased Temp scenario is considered as the temperature in the upper 

basin is increased by 2.5 ℃ and evapotranspiration is also increased by 8% respectively as compared to the baseline 
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year. The calibrated daily rule-based simulation RiverWare model was used to simulate water management operation 

policies at the lower valley of the study area under different scenarios.  

The precipitation and temperature changes in the upstream mountainous area have significant impacts on the 

streamflow at the mountain outlet as measured at Yingxiongqiao gaging station. Figure 7 illustrates generated daily 

spring-summer (March-August) runoff at Yingxiongqiao gaging station under different scenarios. As can be seen from 

Figure7, the runoff changes significantly as the precipitation in the upper basin changes. Particularly, the magnitudes of 

summer precipitation change affect summer runoff mostly. However, the precipitation has an insignificant effect on the 

timing of streamflow. Similarly, the effect of temperature on spring-summer runoff is significant. As the temperature 

rises, the more runoff occurs in the spring; this is because the Urumqi River is the snow-dominated watershed where 

most of its runoff comes from the snowmelt, the increased spring runoff is large because of the increase of temperature 

in the basin. The generated daily runoff at Yingxiongqiao gaging station was used as the input to the daily rule-based 

RiverWare model to provide water operation policies at the lower valley irrigation district.  

 

Figure 7. Generated daily spring-summer (March-August) runoff at Yingxiongqiao Gaging Station under different scenarios 

4.2.2. Surface Water Diversion 

The functional relationships between diversions at Huangcaoliangzi canal, Gongsheng canal and Qingnian canal 

diversion points and river flow in the main river channel based on laws and regulations in the districts were considered 

and defined in RiverWare model by writing rules in RiveWare Policy Language (RPL) and incorporation of them into 

the model. According to the water allocation policies that regulated for decades by the water management bureau of the 

county, the number of diversions is determined by the water amount in the river. For example, as the largest water user 

in the area, the diversions to Qingnian Irrigation District is proportional diversion based on the runoff in the river on a 

year. As indicated in Figure 8, the daily diverted flow from the river to Qingnian irrigation district follows the same 

pattern and magnitude as in the spring-summer daily flow under different scenarios. The more water in the river, the 

more diversions occur at the Qingnian diversion dam. During the reduced precipitation scenario, the diversion at the 

Qingnian diversion was reduced significantly as compared to other scenarios due to reduced flow in the river. 

 

Figure 8. Simulated daily diversions at Qingnian diversion dam during the spring-summer season under different scenarios 
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4.2.3. Conjunctive Uses of Surface Water and Groundwater  

The conjunctive use of the surface water and groundwater in irrigation districts are evaluated based on the simulation 

results from the RiverWare model that run from March to August under different scenarios. For brevity, some results in 

the Qingnian irrigation district are presented in this paper. The daily canal diversions and groundwater pumping under 

different climate scenarios for the Qingnian irrigation districts are shown in Figure 9. As can be seen, groundwater is 

used to supplement surface water to cope with the irrigation demands to meet the deficits in irrigation season. In the 

baseline flow scenario, the groundwater pumping occurs mostly in the spring and early summer (March to middle July) 

due to lack of surface water in the river. After July, as the temperature rises, the snowmelt runoffs start to add up the 

surface water in the river, and consequently, there is enough surface water for irrigation during the summer, no need for 

groundwater pumping in the summer almost all the time. In reduced precipitation scenario, the reduced precipitation 

resulted in the reduced runoff, and more groundwater pumping occurs for irrigation both in the spring and summer. Due 

to not enough surface water can meet crop water requirements in spring and summer; more groundwater pumping is 

required to meet irrigation needs. In increased temperature scenario, the impact of temperature on surface runoff is 

significant in the basin, and more snowmelt water occurs at the end of spring compared to other scenarios. Because the 

increased temperature induces the increased crop evapotranspiration, the water demand in the irrigation district 

increases. This will require more groundwater pumping even there is more water in the river. Hence the whole pattern 

of conjunctive use of surface water and groundwater under increased temperature scenario is similar to the baseline 

scenario, except there is less groundwater pumping during spring than surface water diversion.  

 

Figure 9. Surface water and groundwater conjunctive use for Qingnian Canal Irrigation District under different scenarios 
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4.2.4. Discharge into the Wulabo Reservoir 

Wulabo Reservoir inflow changes under different flow scenarios. As can be seen from Figure 10, the impact of 

increased temperature on the reservoir inflow is not significant as compared to baseline scenario in spring and early 

summer. The August inflow tends to increase as compared to baseline since the higher temperature induces more 

snowmelt runoff during the summer when the temperature hits high. On the contrary, the reduced precipitation results 

in reduced reservoir inflow both in spring and summer, since most of the surface runoff is used to meet upstream 

irrigation and other water use needs, consequently less water comes into the reservoir. When it compared the impact of 

precipitation and temperature on the reservoir inflow, it seems that the reduced precipitation results considerable runoff 

reduction and inflow reduction to the reservoir.  

 

Figure 10. Simulated daily Wulabo Reservoir inflow during the spring-summer season under different scenarios 

As indicated in Table 5, 30% reduction in average precipitation in the upper basin (as in Reduced Precipitation 

scenario), resulting in over 30% reduction to the spring-summer total inflow of the Wulabo Reservoir from March 1st 

to August 31st in a year. In contrary, the impact of temperature changes (Increased temperature scenario) is not as 

significant as precipitation regarding the magnitude of inflow changes. The 2.5 ℃ increases on average upper basin 

temperature, resulting in 0.6% increases to the spring-summer total inflow of the Wulabo Reservoir from March 1st to 

August 31st in a year. This indicates that complex hydrological impacts of temperature increase in this snowmelt-

dominated basin. Although higher the temperature indices more snowmelt runoff, it also increases crop water demand 

and other evaporative losses from water surfaces of canals, river, ponds, which in turn offset the water budget in the 

study basin.  

Table 5. Spring-summer Wulabo Reservoir total inflow volume at different scenarios (106 m3) 

Scenarios Baseline Reduced Prep Increased Temp 

Spring-Summer Inflow (106  m3) 72.9 49.4 73.4 

Changes in Inflow (%) 0.0 -32.3 0.6 

5. Conclusion 

Because of the frequent occurrence of drought and growing water demand in arid regions of the world, the river alone 

could no longer meet the regional water needs, leading to increased groundwater extraction and dropping groundwater 

tables. A better understanding of the conjunctive water uses crucial in sustainable water management. In this study, daily 

rule-based RiverWare models were developed for the agricultural watershed of Urumqi River, Xinjiang, China. This 

was the very first attempt to use the RiverWare model to simulate groundwater and surface water conjunctive use under 

different drought scenarios in China’s dry west mountainous watershed where the snowmelt is the dominant source of 

water.  

The model has successfully captured the complex hydrological process in the study area using multiple groundwater 

objects (GWOs), seepage losses from the canals and the river, groundwater pumping, and returns flow. The river reaches 

were divided based on the length of reach and shape of river reach, as well as locations of gaging stations. The 
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conjunctive use of groundwater and surface water was further evaluated for irrigation districts in the study area under 

different drought scenarios by linking the predictions of snowmelt runoff models (SRM) into the developed RiverWare 

models in the basin. The results from the research suggested that the RiverWare model has the advantages of simulating 

river and reservoir operations, groundwater and surface water conjunctive use in the irrigation area and is more suitable 

to the complicated agricultural land that located in the lower basin of the river. The RiverWare models adequately 

reproduced the historic reservoir inflows for the Wulabo Reservoir with acceptable flexibility and accuracy. In general, 

the water allocation policies from RiverWare models’ outcome provide guidelines for conjunctive uses of groundwater 

and surface water resources within the basin under different water supply scenarios in the future. 

The design and configuration of the RiverWare model in this study are based on the availability of representative data 

on the relevant physical features of the irrigation system, GIS data, and some onsite measurements. The model 

underestimates the higher inflows than the observed at the Wulabo Reservoir. This may be because runoffs from local 

arroyos, particularly two seasonal streams (East Baiyang and West Baiyang Rivers) are not incorporated in the 

simulations, as there is no runoff data available. To better simulate impacts of local storm events on the river flow as 

well as the potential release of flood flow using irrigation networks, it is recommended that the local arroyos be 

evaluated, and its runoff events are considered in the enhancement of the model configuration in the future study in the 

basin. Water demand estimates for crop water consumptive uses was hindered by lack of historical crop acreage and 

crop pattern data. By accessing and incorporating detailed historic crop acreage data as well as local crop coefficients, 

it is anticipated to generate more accurate water demand estimation in the future studies in the basin.  
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