Influence of the Hydric State and Lime Treatment on the Thermal Conductivity of a Calcareous Tufa

K. Mekaideche, F-E. M. Derfouf, A. Laimeche, N. Abou-Bekr

Abstract


An experimental study was conducted to investigate changes of thermal conductivity of a raw and lime-treated calcareous tufa (north-west of Algeria) during drying process. Treated (with 4% of lime) and untreated samples were prepared by static compaction at the Standard Proctor Optimum (SPO), Modified Proctor Optimum (MPO) and at a constant stress level of 4 MPa. Transient Hot Wire (THW) method was used to measure the thermal conductivity and the water content and degree of saturation of samples were determined at various drying times. Results show that the drying process induces a decrease in thermal conductivity. This parameter seems to vary linearly with the water content and the degree of saturation. In addition, it was found that the lime treatment leads also to a decrease in the thermal conductivity. Thus, the drying process and the lime treatment will jointly contribute to the reduction of the thermal conductivity of the studied material in such a way that it is more insulating than some traditional building materials like concrete or fired bricks.

 

Doi: 10.28991/cej-2021-03091663

Full Text: PDF


Keywords


Thermal Conductivity; Water Content; Degree of Saturation; Tufa; Lime Stabilization.

References


Ramesh, T., Ravi Prakash, and K.K. Shukla. “Life Cycle Energy Analysis of Buildings: An Overview.” Energy and Buildings 42, no. 10 (October 2010): 1592–1600. doi:10.1016/j.enbuild.2010.05.007.

El Hassar, Sidi Mohamed Karim. Guide pour une construction éco-énergétique en Algérie. Éditions universitaires européennes, (2016).

Darwish, Mohamed, SafwanKhedr, Fady Halim, and Rana Khalil. “Development and Performance of Manual Technique Used in Production of Compressed Earth Blocks.” Sustainable Civil Infrastructures (November 1, 2019): 1–12. doi:10.1007/978-3-030-34249-4_1.

Shukla, Ashish, G.N. Tiwari, and M.S. Sodha. “Embodied Energy Analysis of Adobe House.” Renewable Energy 34, no. 3 (March 2009): 755–761. doi:10.1016/j.renene.2008.04.002.

Morel, J.C, A Mesbah, M Oggero, and P Walker. “Building Houses with Local Materials: Means to Drastically Reduce the Environmental Impact of Construction.” Building and Environment 36, no. 10 (December 2001): 1119–1126. doi:10.1016/s0360-1323(00)00054-8.

Cagnon, H., J.E. Aubert, M. Coutand, and C. Magniont. “Hygrothermal Properties of Earth Bricks.” Energy and Buildings 80 (September 2014): 208–217. doi:10.1016/j.enbuild.2014.05.024.

Ashour, Taha, AzraKorjenic, Sinan Korjenic, and Wei Wu. “Thermal Conductivity of Unfired Earth Bricks Reinforced by Agricultural Wastes with Cement and Gypsum.” Energy and Buildings 104 (October 2015): 139–146. doi:10.1016/j.enbuild.2015.07.016.

Laborel-Préneron, A., C. Magniont, and J-E. Aubert. “Hygrothermal Properties of Unfired Earth Bricks: Effect of Barley Straw, Hemp Shiv and Corn Cob Addition.” Energy and Buildings 178 (November 2018): 265–278. doi:10.1016/j.enbuild.2018.08.021.

Oti, J.E., J.M. Kinuthia, and J. Bai. “Design Thermal Values for Unfired Clay Bricks.” Materials & Design 31, no. 1 (January 2010): 104–112. doi:10.1016/j.matdes.2009.07.011.

Mansour, Mohamed Ben, Ahmed Jelidi, AmelSoukainaCherif, and Sadok Ben Jabrallah. “Optimizing Thermal and Mechanical Performance of Compressed Earth Blocks (CEB).” Construction and Building Materials 104 (February 2016): 44–51. doi:10.1016/j.conbuildmat.2015.12.024.

Laurent, Jean-Paul. "Propriétés thermiques du matériau terre." Cahiers du CSTB 279 (1987): 2156.

Meukam, P, Y Jannot, A Noumowe, and T.C Kofane. “Thermo Physical Characteristics of Economical Building Materials.” Construction and Building Materials 18, no. 6 (July 2004): 437–443. doi:10.1016/j.conbuildmat.2004.03.010.

Xu, Xiangtian, Weidong Zhang, Caixia Fan, and Gaosheng Li. “Effects of Temperature, Dry Density and Water Content on the Thermal Conductivity of GenheSilty Clay.” Results in Physics 16 (March 2020): 102830. doi:10.1016/j.rinp.2019.102830.

Phung, Tuan Anh. "Formulation et caractérisation d'un composite terre-fibres végétales : la bauge." PhD diss., Normandie Université, (2018).

Idder, Abdelghani, AbdelmadjidHamouine, BoudjemaaLabbaci, and RabiaAbdeldjebar. “The Porosity of Stabilized Earth Blocks with the Addition Plant Fibers of the Date Palm.” Civil Engineering Journal 6, no. 3 (March 1, 2020): 478–494. doi:10.28991/cej-2020-03091485.

Taallah, Bachir, and AbdelhamidGuettala. “The Mechanical and Physical Properties of Compressed Earth Block Stabilized with Lime and Filled with Untreated and Alkali-Treated Date Palm Fibers.” Construction and Building Materials 104 (February 2016): 52–62. doi:10.1016/j.conbuildmat.2015.12.007.

Liuzzi, S., M.R. Hall, P. Stefanizzi, and S.P. Casey. “Hygrothermal Behaviour and Relative Humidity Buffering of Unfired and Hydrated Lime-Stabilised Clay Composites in a Mediterranean Climate.” Building and Environment 61 (March 2013): 82–92. doi:10.1016/j.buildenv.2012.12.006.

Akinmusuru, Joe O. “Thermal Conductivity of Earth Blocks.” Journal of Materials in Civil Engineering 6, no. 3 (August 1994): 341–351. doi:10.1061/(asce)0899-1561(1994)6:3(341).

Goual, Idriss, Mohamed SayehGoual, SaïdTaibi, and Nabil Abou-Bekr. “Amélioration Des Propriétés D’un Tuf Naturel Utilisé En Technique Routière Saharienne Par Ajout D’un Sable Calcaire.” European Journal of Environmental and Civil Engineering 16, no. 6 (June 2012): 744–763. doi:10.1080/19648189.2012.667653.

Daheur, ElhadjGuesmia, Said Taibi, IdrissGoual, and Zhong-Sen Li. “Hydro-Mechanical Behavior from Small Strain to Failure of Tuffs Amended with Dune Sand – Application to Pavements Design in Saharan Areas.” Construction and Building Materials 272 (February 2021): 121948. doi:10.1016/j.conbuildmat.2020.121948.

Loualbia, Hamza, MyriamDuc, AbdellahDemdoum, and SadokFeia. “Study of the Curing Behaviour of an Algerian Calcareous Crust.” Geotechnical and Geological Engineering (September 14, 2020). doi:10.1007/s10706-020-01552-7.

AFNOR Standards-XP-P94-041, Soils investingation and testing. Granulometric description. Wetsievingmethod. - Sols: reconnaissance et essais, Décembre (1995).

AFNOR-Standards -NFP94-057:Soilsinvestingation and testing. Granulometric analysis. Hydrometer method. , Mai (1992).

AFNOR-Standards NFP94-051: Soils investingation and testing. Determination of Atterberg's limits. Liquid limit test using Cassagrande apparatus. Plastic limit test on rolled thread, Mars (1993).

AFNOR-Standards NF P 94-054: Soils investingation and testing Determination of particle density. Pycnometer method, (October 1991).

AFNOR-Standards NF P 94-048: Soils investingation and testing. Determination of the carbonate content – Calcimeter method, (October 1996).

AFNOR Standards- XP P13-901: Compressed earth blocks for walls and partitions: definitions - Specifications - Test methods - Delivery acceptance conditions, October 2001.

K. Sebâa, K. Mekaideche, A. Benchouk A, F-M. Derfouf, N. Abou-Bekr , S. Taibi. Mise au point d’une brique de terre compactée: Aspects mécaniques, 4ème Colloque International Sols Non Saturés &Construction Durable, Oran, 30 et 31 Octobre, (2018).

Izemmourena, O., and A. Guettala. "Amélioration de la durabilité des briques de terre comprimée à base d’un sol de la région de Biskra." In MATEC Web of Conferences, vol. 11, p. 02001. EDP Sciences, (2014).

AFNOR-Standards NF P 94-093: Soils investingation and testing. Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test, (October 1999).

Moevus, M., L. Fontaine, and R. Anger. "Caractéristiques mécaniques, thermiques et hygrométriques du matériau terre crue: bilan de la littérature." Editions CRAterre éditions, Villefontaine (2012).

Hall, Matthew, and David Allinson. “Assessing the Effects of Soil Grading on the Moisture Content-Dependent Thermal Conductivity of Stabilised Rammed Earth Materials.” Applied Thermal Engineering 29, no. 4 (March 2009): 740–747. doi:10.1016/j.applthermaleng.2008.03.051.

Alrtimi, A., M. Rouainia, and S. Haigh. “Thermal Conductivity of a Sandy Soil.” Applied Thermal Engineering 106 (August 2016): 551–560. doi:10.1016/j.applthermaleng.2016.06.012.

Chen, Shan Xiong. “Thermal Conductivity of Sands.” Heat and Mass Transfer 44, no. 10 (January 8, 2008): 1241–1246. doi:10.1007/s00231-007-0357-1.

D. G Fredlund, &H.Rahardjo. Soil mechanics for unsaturated soils. John Wiley& Sons, (1993).

Boutonnier, L. (2007). Comportement hydromécanique des sols fins proches de la saturation. Cas des ouvrages en terre: coefficient B, déformations instantanées et différées, retrait/gonflement (Doctoral dissertation, Grenoble INPG).

Mňahončáková, E., M. Jiřičková, Z. Pavlík, L. Fiala, P. Rovnaníková, P. Bayer, and R. Černý. “Effect of Moisture on the Thermal Conductivity of a Cementitious Composite.” International Journal of Thermophysics 27, no. 4 (July 2006): 1228–1240. doi:10.1007/s10765-006-0073-y.

Consoli, Nilo Cesar, Luizmar da Silva Lopes, and Karla SalvagniHeineck. “Key Parameters for the Strength Control of Lime Stabilized Soils.” Journal of Materials in Civil Engineering 21, no. 5 (May 2009): 210–216. doi:10.1061/(asce)0899 1561(2009)21:5(210).

George, S.Z., D.A. Ponniah, and J.A. Little. “Effect of Temperature on Lime-Soil Stabilization.” Construction and Building Materials 6, no. 4 (January 1992): 247–252. doi:10.1016/0950-0618(92)90050-9.

Tran, ThanhDanh, Yu-Jun Cui, Anh Minh Tang, Martine Audiguier, and Roger Cojean. “Effects of Lime Treatment on the Microstructure and Hydraulic Conductivity of Héricourt Clay.” Journal of Rock Mechanics and Geotechnical Engineering 6, no. 5 (October 2014): 399–404. doi:10.1016/j.jrmge.2014.07.001.

Norouzian, Kamyar, Nader Abbasi, and Jahangir AbediKoupai. “Evaluation of Softening of Clayey Soil Stabilized with Sewage Sludge Ash and Lime.” Civil Engineering Journal 4, no. 4 (May 3, 2018): 743. doi:10.28991/cej-0309129.

Wang, Yejiao, Yu-Jun Cui, Anh Minh Tang, Chao-Sheng Tang, and Nadia Benahmed. “Changes in Thermal Conductivity, Suction and Microstructure of a Compacted Lime-Treated Silty Soil during Curing.” Engineering Geology 202 (March 2016): 114–121. doi:10.1016/j.enggeo.2016.01.008.

Mojumdar, S. C., L. Raki, N. Mathis, K. Schimdt, and S. Lang. “Thermal, Spectral and AFM Studies of Calcium Silicate Hydrate-Polymer Nanocomposite Material.” Journal of Thermal Analysis and Calorimetry 85, no. 1 (July 2006): 119–124. doi:10.1007/s10973-005-7354-8.

Lemaire, Kévin, Dimitri Deneele, Stéphanie Bonnet, and Michel Legret. “Effects of Lime and Cement Treatment on the Physicochemical, Microstructural and Mechanical Characteristics of a Plastic Silt.” Engineering Geology 166 (November 2013): 255–261. doi:10.1016/j.enggeo.2013.09.012.

DTRC3-2, Thermal regulation of residential buildings e calculating methods for determining building heat losses, CNERIB, Algiers [in French] www.cnerib. edu.dz, 1997.

Hens, Hugo SL. Applied Building Physics: Ambient Conditions. Building Performance and Material Properties, second edition, Ernst & Sohn, USA. Ernst & Sohn, USA, 2012.


Full Text: PDF

DOI: 10.28991/cej-2021-03091663

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Derfouf Feth-Ellah Mounir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message