Determination of Reinforced Concrete Rectangular Sections Having Plastic Moments Equal to all IPE Profiles

Sayeh Beroual, Mohamed Laid Samai


The comparison between steel structures and reinforced concrete structures has always been governed by economy and response to earthquake. Steel structures being lighter and are thus more efficient to resist earthquake. On the other hand, they are more expensive (4 to 5 times). Theoretically, two structural elements having the same plastic moment have an equal failure or collapse load. Different profiles of IPE are realized in industry and all their characteristics are determined with a great precision (weight, geometrical characteristics and thus their plastic moment). Determining equivalent rectangular singly reinforced concrete cross-sections is not easy and seems impossible to be solved analytically. To a given profile it may be found a multitude of equivalent rectangular reinforced concrete cross-section (singly and doubly reinforced with different yield strengths and compositions of concrete). To take into consideration all these factors, it is absolutely necessary to construct three axis design charts with an appropriate choice of system of coordinates in order to cover all possible ranges of different parameters. The choice of all these possible rectangular reinforced concrete sections is governed by the plastic performance of these later. They must be under reinforced, allowing plastification of steel before failure in order to permit the redistribution phenomenon in plastic analysis. The exploitation of these different charts has revealed that the absolute majority of these rectangular reinforced concrete cross-section are reasonably well designed and are in conformity with the dimensions used in practice. The results of the present characterization using Eurocode 2 characteristics are compared to those of CP110. The impact does not seem to be very relevant.


Doi: 10.28991/cej-2021-03091677

Full Text: PDF


Reinforced Concrete; IPE Profile; Equivalent Sections; Plastic Moments; Reduced Moments; Reinforcement Ratio.


Karimizadeh Amirhossein. “Comparaison of steel and reinforced Concrete as a Sustainable Building Material in North Cyprus” Master Dissertation, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ), 2015.

Celik T. and Kamali S. “Multidimensional Comparison of Lightweight Steel and Reinforced Concrete Structures: A Case Study.” Tehnicki Vjesnik-Technical Gazette 25, no. 4 (August 2018): 1234 – 1242. doi: 10.17559/TV-20160901185826.

Okeniyi A.G., Alli O. O., Amusat T. A. and Akolade A.S. “British Standard and Euro Code: Model of Singly Reinforced Rectangular Concrete under Actions.” Civil and Environmental Research 12, no.6 (June 2020): 55 – 63. doi:10.7176/cer/12-6-05.

AL-Eyssawi T. A. J. “Comparative Study on the Required Tension Reinforcement for Singly Reinforced Concrete Rectangular Beams According to Different Codes.” Journal of Babylon University/Engineering Sciences 23, no.2 (2015).

Beroual Sayeh, Tekkouk Abdelhadi and Samai Mohamed Laid. “The Theoretical Prediction of Collapse Mechanisms for Masonry-Infilled Steel Frames.” Arabian Journal for Science and Engineering 43, no. 10 (April 17, 2018): 5615–5633. doi:10.1007/s13369-018-3235-x.

Moy Stuart S. J. “Plastic Methods for Steel and Concrete Structures, Second Edition” (1996). doi:10.1007/978-1-349-13810-4.

Ashrafzadeh P. and Kheyrolahi A. “Seismic Design of Steel Structures with Special Flexural Frame Based on Performance by Durability Method.” Civil Engineering Journal 4, no. 12 (December 02, 2018): 2926–2936. doi:10.28991/cej-03091209.

Al-Ansari M. S. and Afzal M. S. “Simplified Irregular Beam Analysis and Design.” Civil Engineering Journal 5, no. 7 (July, 2019):1577–1589. doi:10.28991/cej-2019-03091354.

Abedini M. and Zhang C. “Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review.” Archives Computational Methods in Engineering (September 15, 2020). doi:10.1007/s11831-020-09483-5.

Yang K. H., Mun J. H., Hwang S. H. and Song J. K. “Flexural Capacity and Ductility of Lightweight Concrete T‐Beams". Strctural Concrete 21 no. 6 (October 01, 2020): 2708-2721. doi:10.1002/suco.201900473.

Nogueira C. G., Rodrigues I. D. “New Design Model of Reinforced Concrete Beams in Bending Considering the Ductility Factor.” Revista IBRACON de Estruturas e Materiais 13 no.1 (March 27, 2020): doi:10.1590/s1983-41952020000100009.

Boussafel S. “Analyse plastique d’éléments structuraux rectilignes en béton armé et en charpente métallique-Etude comparative.” Magister Dissertation, Mentouri Brothers University (2003): Constantine, Algeria.

CP110-2:1972. “Code of practice for the structural use of concrete. Design charts for singly reinforced beams, doubly reinforced beams and rectangular columns.” (November 1972).

BS 8110-3:1985. “Structural use of concrete. Design charts for singly reinforced beams, doubly reinforced beams and rectangular columns.” (December 1985).

Chaterbache R. “Caractérisation de sections en BOA et en BDSA équivalentes à la gamme de profilés IPE en utilisant les caractéristiques des matériaux adoptées par les Eurocodes 2 et 3.” Magister Dissertation, Mentouri Brothers University (2017): Constantine, Algeria.

Boulaares S. “Comportement d'éléments structuraux en béton de sable armé.” Magister Dissertation, Mentouri Brothers University (2009): Constantine, Algeria.

BAEL Rules 91 revised 99, DTU P 18-702. “Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites.” (February 2000).

Boutlikht M. and Samai M. L. “Contribution à l'étude du comportement des poutres en béton armé et en charpente métallique (Caractérisation de sections en BA en utilisant les caractéristiques réelles et celles adoptées par deux codes: CP11O et BAEL).” University Meetings of Civil Engineering (May 26, 2015): Bayonne, France.

Boutlikht M. “Comportement d’éléments structuraux rectilignes en béton armé et en charpente métallique en flexion pure.” Magister Dissertation, Hadj Lakhdar University (2005): Batna, Algeria.

BS EN 1992-1-1:2004+A1:2014. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings (July 2015).

Bhatt P., MacGinley T. J. and Choo B. S. “Reinforced Concrete Design to Eurocodes Design Theory and Examples, Fourth Edition” (December 10, 2013): 80 – 111. doi:10.1201/b15266.

Beroual Sayeh. “Caractérisation de sections en béton armé équivalentes à la gamme des profilés (IPE) en utilisant les caractéristiques des matériaux adoptées par les Eurocodes 2 et 3.” Magister Dissertation, University 20 August 1955 (July 03, 2008): Skikda, Algeria.

Yew-Chaye Loo. “Reinforced and Prestressed Concrete, Third Edition” (December, 2018). doi:10.1017/9781108278263.

Bayagoob K. H., Yardim Y. and Ramoda S. A. “Design Chart for Reinforced Concrete Rectangular Section.” 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, Epoka University (May 23-25, 2013): Tirana, Albania.

Barros A. F. M., Barros M. H. F. M. and Ferreira C. C. “Optimal Design of Rectangular RC Section for Ultimate Bending Strength.” Structural and Multidisciplinary Optimisation 45, no.6 (June 2012): 845 – 860. doi:10/1007/s00158-011-0717-9.

Shehata I. A. E. M., Shehata L. C. D. and Garcia S. L. G. “Minimum steel ratios in reinforced concrete beams made of concrete with different strengths – Theoretical approach.” Materials and Structures 36, no.1 (January 2003): 3 – 11. doi:10.1007/bf02481565.

Abdulsada A. A., Khalel R. I. and Sarsam K. F. “Influence of Minimum Tension Steel Reinforcement on behavior of singly Reinforced Concrete Beams in Flexure.” Engineering and Technology Journal 38, no. 7A (July 25, 2020): 1034 – 1046. doi:10.30684/etj.v38i7a.902.

Okeniyi A. G., Alli O. O. and Ojedokun O. Y. “Predictive Model of Moment of Resistance for Rectangular Reinforced Concrete Section under Actions.” Civil and Environmental Research 2, no.4 (2012): 1 – 9.

Mosley Bill, Bungey John and Hulse Ray “Reinforced Concrete Design to Eurocode 2, Seventh Edition” (April 10, 2012).

BS EN 1993-1-1:2005+A1:2014. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings (June 2015).

Full Text: PDF

DOI: 10.28991/cej-2021-03091677


  • There are currently no refbacks.

Copyright (c) 2021 Sayeh Beroual, Mohamed Laid Samai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.