Characteristics of Combined Rice and Wheat Husk Ashes as a Partial Replacement for Cement in Mortar

Damas Nangi Masanja, Mgaza Somo Muya, Patrice Nyangi

Abstract


The potential to recycle and utilize agricultural waste as a building material has been demonstrated in a variety of applications. The goal of this study was to assess the feasibility of partially substituting combined rice and wheat husk ashes (CORWHA) for cement in mortar. The two agricultural waste ashes, rice husk and wheat husk, were evaluated separately before being combined. Both husks were burned separately in an open room to reduce volume before being cremated for 2 hours at a regulated temperature of 600 °C to eliminate carbon and generate reactivity. The chemical and physical properties of the ashes were evaluated after grinding and sieving to determine their cementitious qualities before developing and testing 12 mix proportions of CORWHA and cement for mortar production. The mixing was done at three different percentages of cement replacement: 20, 30, and 40%. According to the findings, the maximum cement replacement yielding 5.98 MPa mortar strength is 30%, with a mixed proportion of 11% wheat husk ash (WHA) and 19% rice husk ash (RHA). It was also found that 95% of RHA is silica and 1.67% is alkaline, while 63% of WHA is silica and 12.16% is alkaline, which is good for preventing porosity and corrosion of reinforcement bars.

 

Doi: 10.28991/CEJ-2022-08-04-04

Full Text: PDF


Keywords


Rice Husk; Wheat Husk; Agro-Waste Ashes; Cement Replacement.

References


Wei, J., Liang, G., Alex, J., Zhang, T., & Ma, C. (2020). Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability (Switzerland), 12(3), 812. doi:10.3390/su12030812.

Farooque, K. N., Zaman, M., Halim, E., Islam, S., Hossain, M., Mollah, Y. A., & Mahmood, A. J. (2009). Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 44(2), 157-162. doi:10.3329/bjsir.v44i2.3666.

Imoisili, P. E., Ukoba, K. O., & Jen, T.-C. (2020). Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash. Boletín de La Sociedad Española de Cerámica y Vidrio, 59(4), 159–164. doi:10.1016/j.bsecv.2019.09.006.

Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. doi:10.1016/j.jclepro.2020.124353.

Barbieri, V., Lassinantti Gualtieri, M., & Siligardi, C. (2020). Wheat husk: A renewable resource for bio-based building materials. Construction and Building Materials, 251. doi:10.1016/j.conbuildmat.2020.118909.

Sathawane, S. H., Vairagade, V. S., & Kene, K. S. (2013). Combine effect of rice husk ash and fly ash on concrete by 30% cement replacement. Procedia Engineering, 51, 35-44. doi:10.1016/j.proeng.2013.01.009.

Terzioğlu, P., Yücel, S., & Kuş, Ç. (2019). Review on a novel biosilica source for production of advanced silica-based materials: Wheat husk. Asia-Pacific Journal of Chemical Engineering, 14(1), 1-14. doi:10.1002/apj.2262.

Rithuparna, R., Jittin, V., & Bahurudeen, A. (2021). Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: A review. Journal of Cleaner Production, 316, 128242. doi:10.1016/j.jclepro.2021.128242.

National Bureau of Statistics (NBS-Tanzania) (2018). National Environment Statistics Report, 2017 (NESR, 2017). Dar es Salam, Tanzania. Available online: https://www.nbs.go.tz/nbs/takwimu/Environment/NESR_2017.pdf (accessed on February 2022).

Kazuva, E., Zhang, J., Tong, Z., Si, A., & Na, L. (2018). The DPSIR model for environmental risk assessment of municipal solid waste in Dar es Salaam city, Tanzania. International Journal of Environmental Research and Public Health, 15(8), 1692. doi:10.3390/ijerph15081692.

Nyampundu, K., Mwegoha, W. J. S., & Millanzi, W. C. (2020). Sustainable solid waste management Measures in Tanzania: An exploratory descriptive case study among vendors at Majengo market in Dodoma City. BMC Public Health, 20(1), 1-16. doi:10.1186/s12889-020-08670-0.

Mdoe, J. E. (2014). Agricultural waste as raw materials for the production of activated carbon: can Tanzania venture into this business? Huria: Journal of the Open University of Tanzania, 16, 89–103.

Raheem, A. A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31, 101428. doi:10.1016/j.jobe.2020.101428.

Siddique, R., & Cachim, P. (2018). Waste and supplementary cementitious materials in concrete. Woodhead Publishing. doi:10.1016/C2016-0-04037-8.

Sharma, N. K., Williams, W. S., & Zangvil, A. (1984). Formation and structure of silicon carbide whiskers from rice hulls. Journal of the American Ceramic Society, 67(11), 715-720. doi:10.1111/j.1151-2916.1984.tb19507.x.

Singh, B. (2018). Rice husk ash. Waste and Supplementary Cementitious Materials in Concrete, 417–460. doi:10.1016/b978-0-08-102156-9.00013-4.

Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies, 6(4), 299–313. doi:10.1080/21870764.2018.1539210.

Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. doi:10.1016/j.rser.2012.02.051.

Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy, 9(7), 352. doi:10.3390/agronomy9070352.

Mtunguja, M. A. (2018). Mbeya Region Socio-Economic Profile. National Bureau of Statistics, Dar Es Salaam, Tanzania. Available online: http://www.tzonline.org/pdf/Mbeyareg.pdf (accessed on January 2022).

Paul, A., Kurtis, K. E., Kahn, L. F., & Singh, P. M. (2014). Assessment of sand quality on concrete performance: examination of acidic and sulfate/sulfide-bearing sands (No. FHWA-GA-15-1315). Office of Research, Department of Transportation, Georgia, United States. Available online: https://rosap.ntl.bts.gov/view/dot/28653 (accessed on January 2022).

World Health Organization (WHO). (1997). Guidelines for drinking water standards. Geneva, Switzerland.

Mboya, H. A., King’ondu, C. K., Njau, K. N., & Mrema, A. L. (2017). Measurement of Pozzolanic Activity Index of Scoria, Pumice, and Rice Husk Ash as Potential Supplementary Cementitious Materials for Portland Cement. Advances in Civil Engineering 2017. doi:10.1155/2017/6952645.

Wan Mohammad, W. A. S. Bin, Othman, N. H., Wan Ibrahim, M. H., Rahim, M. A., Shahidan, S., & Rahman, R. A. (2017). A review on seashells ash as partial cement replacement. IOP Conference Series: Materials Science and Engineering, 271(1). doi:10.1088/1757-899X/271/1/012059.

CE 202. (2017). Engineering Materials Lab (Lab Manual). Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh. Available online: https://www.coursehero.com/file/39157834/ce-202pdf/ (accessed on March 2022).

Iqtidar, A., Bahadur Khan, N., Kashif-ur-Rehman, S., Faisal Javed, M., Aslam, F., Alyousef, R., … Mosavi, A. (2021). Prediction of Compressive Strength of Rice Husk Ash Concrete through Different Machine Learning Processes. Crystals, 11(4), 352. doi:10.3390/cryst11040352.

Lakshani, M. M. T., Jayathilaka, T. K. G. A., & Thamboo, J. A. (2020). Experimental investigation of the unconfined compressive strength characteristics of masonry mortars. Journal of Building Engineering, 32, 101558. doi:10.1016/j.jobe.2020.101558.

Larisa, U., Solbon, L., & Sergei, B. (2017). Fiber-reinforced Concrete with Mineral Fibers and Nanosilica. Procedia Engineering, 195, 147–154. doi:10.1016/j.proeng.2017.04.537.

Pokorný, J., Pavlíková, M., Záleská, M., Rovnaníková, P., & Pavlík, Z. (2016). Coagulated silica - A-SiO2 admixture in cement paste. AIP Conference Proceedings, 1752, 040023–6. doi:10.1063/1.4955254.

Zareei, S. A., Ameri, F., Dorostkar, F., & Ahmadi, M. (2017). Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Studies in Construction Materials, 7, 73–81. doi:10.1016/j.cscm.2017.05.001.

Aksoğan, O., Binici, H., & Ortlek, E. (2016). Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Construction and Building Materials, 106, 253–263. doi:10.1016/j.conbuildmat.2015.12.102.

Khan, K., Ullah, M. F., Shahzada, K., Amin, M. N., Bibi, T., Wahab, N., & Aljaafari, A. (2020). Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Construction and Building Materials, 258, 119589. doi:10.1016/j.conbuildmat.2020.119589.

Bazzar, K., Hafiane, F. Z., & Alaoui, A. H. (2021). The Early Age Strength Improvement of the High Volume Fly Ash Mortar. Civil Engineering Journal, 7(8), 1378–1388. doi:10.28991/cej-2021-03091731.

H. A. Mboya, A. (2019). Potential of Scoria, Pumice, and RHA as Supplementary Cementitious Materials for Reducing Setting Time and Improving Early Strength of Pozzolan Blended Composite Cement. The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-04-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Damas Nangi Masanja

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message