Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature

Jay K. Bhavsar, Vijay Panchal


The growth of the construction industry has expanded the demand for ceramic building products such as ceramic tiles, which constitute essential building materials. Nonetheless, a huge quantity of waste powder is produced during the polishing of ceramic tiles. The disposal of ceramic waste powder is a key environmental concern that needs to be properly addressed. The purpose of this research is to evaluate the potential of recycling ceramic waste powder as a geopolymer binder. The main objective consists of exploring the impacts of two types of ceramic waste powder (vitrified tiles and wall tiles) on the partial substitution of fly ash in geopolymer concrete. For this, concrete was prepared under ambient conditions without oven curing. Slump, compressive strength, split tensile strength, and modulus of elasticity tests were performed to measure the workability and the mechanical properties of the geopolymer concrete. Its durability was evaluated through water absorption and sorptivity tests. The microstructural behavior was investigated using scanning electron microscopy and X-ray diffraction measurements. The investigation revealed that a 15% partial replacement of fly ash by wall-tile ceramic waste powder in geopolymer concrete gave similar compressive strength, a 3% increase in tensile strength, and a 7% improvement in the modulus of elasticity. Partial replacement of fly ash with 15% vitrified ceramic waste powder reduced sorptivity and improved the microstructure of geopolymer concrete. The findings revealed that ceramic waste powder can be used to replace 10–15% of the fly ash in M35 grade structural geopolymer concrete, which can be cured under ambient conditions.


Doi: 10.28991/CEJ-2022-08-07-05

Full Text: PDF


Sorptivity; Modulus of Elasticity; Water Absorption; Ceramic Waste Recycling.


Saranya, P., Nagarajan, P., & Shashikala, A. P. (2019). Development of ground-granulated blast-furnace slag-dolomite geopolymer concrete. ACI Materials Journal, 116(6), 235–243. doi:10.14359/51716981.

Reddy, D. V., Edouard, J.-B., & Sobhan, K. (2013). Durability of Fly Ash–Based Geopolymer Structural Concrete in the Marine Environment. Journal of Materials in Civil Engineering, 25(6), 781–787. doi:10.1061/(asce)mt.1943-5533.0000632.

Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. doi:10.1016/j.conbuildmat.2016.11.034.

Frayyeh, Q. J., & Kamil, M. H. (2021). The Effect of Adding Fibers on Dry Shrinkage of Geopolymer Concrete. Civil Engineering Journal, 7(12), 2099–2108. doi:10.28991/cej-2021-03091780.

Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. doi:10.1007/s10853-006-0584-8.

Deb, P. S., & Sarker, P. K. (2017). Effects of Ultrafine Fly Ash on Setting, Strength, and Porosity of Geopolymers Cured at Room Temperature. Journal of Materials in Civil Engineering, 29(2), 6016021. doi:10.1061/(asce)mt.1943-5533.0001745.

Phoo-Ngernkham, T., Phiangphimai, C., Damrongwiriyanupap, N., Hanjitsuwan, S., Thumrongvut, J., & Chindaprasirt, P. (2018). A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Advances in Materials Science and Engineering, 2018, 1–13. doi:10.1155/2018/2460403.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. doi:10.1007/s10853-006-0637-z.

Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. doi:10.1016/S0008-8846(98)00243-9.

Mustafa Al Bakria, A. M., Kamarudin, H., Bin Hussain, M., Khairul Nizar, I., Zarina, Y., & Rafiza, A. R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, 22, 286–291. doi:10.1016/j.phpro.2011.11.045.

Cheng, Y. hong, Huang, F., Liu, R., Hou, J. long, & Li, G. lu. (2016). Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Materials and Structures, 49(3), 729–738. doi:10.1617/s11527-015-0533-6.

García-Ten, F. J., Quereda Vázquez, M. F., Gil Albalat, C., Chumillas Villalba, D., Zaera, V., & Segura Mestre, M. C. (2016). LIFE CERAM. Zero waste in ceramic tile manufacture. Key Engineering Materials, 663, 23–33. doi:10.4028/www.scientific.net/KEM.663.23.

El-Dieb, A. S., Taha, M. R., Kanaan, D., & Aly, S. T. (2018). Ceramic waste powder: From landfill to sustainable concretes. Proceedings of Institution of Civil Engineers: Construction Materials, 171(3), 109–116. doi:10.1680/jcoma.17.00019.

Sánchez de Rojas, M. I., Frías, M., Sabador, E., Asensio, E., Rivera, J., & Medina, C. (2018). Use of ceramic industry milling and glazing waste as an active addition in cement. Journal of the American Ceramic Society, 101(5), 2028–2037. doi:10.1111/jace.15355.

Huseien, G. F., Sam, A. R. M., Shah, K. W., & Mirza, J. (2020). Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Construction and Building Materials, 236, 117574. doi:10.1016/j.conbuildmat.2019.117574.

Aly, S. T., Kanaan, D. M., El-Dieb, A. S., & Abu-Eishah, S. I. (2018). Properties of Ceramic Waste Powder-Based Geopolymer Concrete. International Congress on Polymers in Concrete (ICPIC 2018), 429–435. doi:10.1007/978-3-319-78175-4_54.

Rashad, A. M., & Essa, G. M. F. (2020). Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 111, 103617. doi:10.1016/j.cemconcomp.2020.103617.

Zhang, G. Y., Bae, S. C., Lin, R. S., & Wang, X. Y. (2021). Effect of waste ceramic powder on the properties of alkali–activated slag and fly ash pastes exposed to high temperature. Polymers, 13(21). doi:10.3390/polym13213797.

Shoaei, P., Musaeei, H. R., Mirlohi, F., Narimani zamanabadi, S., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686. doi:10.1016/j.conbuildmat.2019.116686.

Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., & Tahir, M. M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. doi:10.1016/j.conbuildmat.2019.03.194.

Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3), 3473–3483. doi:10.1016/j.ceramint.2020.09.191.

Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., & Mendes, B. C. (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101156.

Saxena, R., & Gupta, T. (2022). Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. Journal of Material Cycles and Waste Management, 24(2), 725–742. doi:10.1007/s10163-022-01353-5.

Memiş, S., & Bılal, M. A. M. (2022). Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust. Environmental Science and Pollution Research, 29(11), 15876–15895. doi:10.1007/s11356-021-16869-w.

Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430–439. doi:10.1016/j.conbuildmat.2016.12.111.

Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. doi:10.1016/j.conbuildmat.2016.02.106.

Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:10.1016/j.jclepro.2019.119679.

Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675–683. doi:10.1016/j.conbuildmat.2015.10.044.

Parveen, Singhal, D., Junaid, M. T., Jindal, B. B., & Mehta, A. (2018). Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Construction and Building Materials, 180, 298–307. doi:10.1016/j.conbuildmat.2018.05.286.

Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. doi:10.1016/j.conbuildmat.2017.01.056.

Naskar, S., & Chakraborty, A. K. (2016). Effect of nano materials in geopolymer concrete. Perspectives in Science, 8, 273–275. doi:10.1016/j.pisc.2016.04.049.

Wardhono, A., Gunasekara, C., Law, D. W., & Setunge, S. (2017). Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Construction and Building Materials, 143, 272–279. doi:10.1016/j.conbuildmat.2017.03.153.

Shah, K. W., & Huseien, G. F. (2020). Bond strength performance of ceramic, fly ash and GBFS ternary wastes combined alkali-activated mortars exposed to aggressive environments. Construction and Building Materials, 251, 119088. doi:10.1016/j.conbuildmat.2020.119088.

IS-3812 (Part1). (2013). Indian Standard Pulverized Fuel Ash-Specification, Part 1 for Use as Pozzolana in Cement, Cement Mortar and Concrete (Third Revision). Bureau of Indian Standards, New Delhi, India.

El-Dieb, A. S., Taha, M. R., & Abu-Eishah, S. I. (2019). The use of ceramic waste powder (CWP) in making eco-friendly concretes. Ceramic Materials: Synthesis, Characterization, Applications and Recycling, 1-35. doi:10.5772/intechopen.81842.

Sathish Kumar, V., Ganesan, N., & Indira, P. V. (2017). Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete. IOP Conference Series: Earth and Environmental Science, 80(1), 12011. doi:10.1088/1755-1315/80/1/012011.

IS-383. (2016). Indian Standard Coarse and Fine Aggregates for Concrete (Third Revision). Bureau of Indian Standards, New Delhi, India.

Lloyd, N., & Rangan, V. (2010). Geopolymer concrete with fly ash. The Second International Conference on sustainable construction Materials and Technologies, 28-30 June, 2010, Ancona, Italy.

IS-1199 (Part 2). (2018). Indian Standard Fresh Concrete-Methods of Sampling, Testing and Analysis, Part 2 determination of consistency of fresh concrete (first revision). Bureau of Indian Standards, New Delhi, India.

IS-516 (Part1-Sec1). (2021). Hardened Concrete-Methods of Test-Part1 Testing of Strength of Hardened Concrete-Section 1Compressive, Flexural and Split tensile Strength. Bureau of Indian Standards, New Delhi, India.

IS-5816. (1999). Indian Standard Splitting tensile Strength of Concrete Method of Test (First revision). Bureau of Indian Standards, New Delhi, India.

ASTM C642-13. (2013). Standard Test Method for density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States.

IS-456. (2000). Indian Standard Plain and reinforced Concrete Code of Practice (Fourth Revision). Bureau of Indian Standards, New Delhi, India.

Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. doi:10.1016/j.cemconres.2006.10.008.

Balamuralikrishnan, R., & Saravanan, J. (2021). Effect of addition of alccofine on the compressive strength of cement mortar cubes. Emerging Science Journal, 5(2), 155-170. doi:10.28991/esj-2021-01265.

Provis, J. L., & van Deventer, J. S. J. (2007). Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chemical Engineering Science, 62(9), 2318–2329. doi:10.1016/j.ces.2007.01.028.

IS-10262. (2019). Indian Standard Concrete Mix proportioning-Guidelines (Second Revision). Bureau of Indian Standards, New Delhi, India.

Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P., & Illikainen, M. (2019). Development of One-Part Alkali-Activated Ceramic/Slag Binders Containing Recycled Ceramic Aggregates. Journal of Materials in Civil Engineering, 31(2), 4018386. doi:10.1061/(asce)mt.1943-5533.0002608.

Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836, 155577. doi:10.1016/j.scitotenv.2022.155577.

Chindaprasirt, P., & Rattanasak, U. (2017). Characterization of the high-calcium fly ash geopolymer mortar with hot-weather curing systems for sustainable application. Advanced Powder Technology, 28(9), 2317–2324. doi:10.1016/j.apt.2017.06.013.

Amin, S. K., El-Sherbiny, S. A., El-Magd, A. A. M. A., Belal, A., & Abadir, M. F. (2017). Fabrication of geopolymer bricks using ceramic dust waste. Construction and Building Materials, 157, 610–620. doi:10.1016/j.conbuildmat.2017.09.052.

Vaidya, S., Diaz, E. I., & Allouche, E. N. (2011). Experimental evaluation of self-cure geopolymer concrete for mass pour applications. World of Coal Ash (WOCA) Conference, 9-12 May, 2011, Denver, United States.

Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7). doi:10.1061/(asce)mt.1943-5533.0001157.

Lee, S., & Shin, S. (2019). Prediction on compressive and split tensile strengths of GGBFS/FA based GPC. Materials, 12(24), 4198. doi:10.3390/MA12244198.

Diaz-Loya, E. I., Allouche, E. N., & Vaidya, S. (2011). Mechanical properties of fly-ash-based geopolymer concrete. ACI Materials Journal, 108(3), 300–306. doi:10.14359/51682495.

Jindal, B. B., Jangra, P., & Garg, A. (2020). Effects of ultra-fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete. Materials Today: Proceedings, 32, 871–877. doi:10.1016/j.matpr.2020.04.219.

McCarter, W. J., Ezirim, H., & Emerson, M. (1992). Absorption of water and chloride into concrete. Magazine of Concrete Research, 44(158), 31–37. doi:10.1680/macr.1992.44.158.31.

Alexander, M. G., Mackechnie, J. R., & Ballim, Y. (1999). Guide to the use of durability indexes for achieving durability in concrete structures, Research Monograph No. 2. University of Cape Town, Department of Civil Engineering: Cape Town, South Africa.

Chen, X., Zhang, D., Cheng, S., Xu, X., Zhao, C., Wang, X., Wu, Q., & Bai, X. (2022). Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment. Journal of Building Engineering, 52, 104418. doi:10.1016/j.jobe.2022.104418.

Alehyen, S., El Achouri, M., & Taibi, M. (2017). Characterization, microstructure and properties of fly ash-based geopolymer. Journal of Materials and Environmental Science, 8(5), 1783–1796.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-05


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.