Effect of Recharge and Abstraction on Groundwater Levels

Rael Nyakundi, Maurice Nyadawa, John Mwangi


Groundwater constitutes 99% of all liquid freshwater globally that is available for human use. Groundwater levels in the Nairobi aquifer system (NAS) have been declining over time because of excessive abstraction fueled by increased water demand. This has increased the cost of pumping and drilling boreholes, which is unsustainable. The objective of this study is to determine the effect of recharge and abstraction on groundwater levels using a more realistic approach by estimating recharge using the SWAT model while considering climatic data, soil type, land use/cover, and topography. Recharge obtained from SWAT was applied in MODFLOW to model the groundwater system. Results showed that the average annual recharge was 73 mm, which is about 9.7% of the precipitation. Groundwater levels decreased with an increase in abstraction and a decrease in recharge and vice versa. Groundwater levels will decrease by 76 m by the year 2063 if the abstraction rate is kept constant and the recharge is maintained, and will decrease by 14m by the year 2030 if the trend of abstraction rate continues to increase while recharge is kept constant. The abstraction rate should be regulated according to available recharge and recharge enhanced to avoid possible depletion of groundwater.


Doi: 10.28991/CEJ-2022-08-05-05

Full Text: PDF


Recharge; Abstraction; Groundwater; Groundwater Levels; SWAT; MODFLOW.


Dalin, C., Taniguchi, M., & Green, T. R. (2019). Unsustainable groundwater use for global food production and related international trade. Global Sustainability, 2. doi:10.1017/sus.2019.7.

Shishaye, H. A., Tait, D. R., Befus, K. M., & Maher, D. T. (2019). Correction: An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia. Hydrogeology Journal, 27(6), 2305–2305. doi:10.1007/s10040-019-01964-7.

Gleeson, T., Cuthbert, M., Ferguson, G., & Perrone, D. (2020). Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48(1), 431–463. doi:10.1146/annurev-earth-071719-055251.

Zwarteveen, M., Kuper, M., Olmos-Herrera, C., Dajani, M., Kemerink-Seyoum, J., Frances, C., ... & De Bont, C. (2021). Transformations to groundwater sustainability: from individuals and pumps to communities and aquifers. Current Opinion in Environmental Sustainability, 49, 88-97. doi:10.1016/j.cosust.2021.03.004.

Aguilera, H., Guardiola-Albert, C., Naranjo-Fernández, N., & Kohfahl, C. (2019). Towards flexible groundwater-level prediction for adaptive water management: using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64(12), 1504–1518. doi:10.1080/02626667.2019.1651933.

Ghimire, U., Shrestha, S., Neupane, S., Mohanasundaram, S., & Lorphensri, O. (2021). Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand. Science of the Total Environment, 792, 148370. doi:10.1016/j.scitotenv.2021.148370.

Wilopo, W., Putra, D. P. E., & Hendrayana, H. (2021). Impacts of precipitation, land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia. Environmental Monitoring and Assessment, 193(2). doi:10.1007/s10661-021-08863-z.

Duy, N. Le, Nguyen, T. V. K., Nguyen, D. V., Tran, A. T., Nguyen, H. T., Heidbüchel, I., Merz, B., & Apel, H. (2021). Groundwater dynamics in the Vietnamese Mekong Delta: Trends, memory effects, and response times. Journal of Hydrology: Regional Studies, 33, 100746. doi:10.1016/j.ejrh.2020.100746.

Lam, Q. D., Meon, G., & Pätsch, M. (2021). Coupled modelling approach to assess effects of climate change on a coastal groundwater system. Groundwater for Sustainable Development, 14, 100633. doi:10.1016/j.gsd.2021.100633.

Prajapati, R., Upadhyay, S., Talchabhadel, R., Thapa, B. R., Ertis, B., Silwal, P., & Davids, J. C. (2021). Investigating the nexus of groundwater levels, rainfall and land-use in the Kathmandu Valley, Nepal. Groundwater for Sustainable Development, 14, 100584. doi:10.1016/j.gsd.2021.100584.

Lumi, N., & Region, S. (2019). Water Resources Authority (WRA). Water Resources Situation Report.

Omondi, S., & Christophe, J. (2017). Imprints of climate change and anthropogenic activities on groundwater resources in the Nairobi aquifer system (Kenya). School of geoscience, College of Physical Science, University of Aberdeen, Aberdeen, United Kingdom. Available online: http://www.iah-british.org/wp-content/uploads/2017/11/Oiro_Ineson2017_poster.pdf (accessed on March 2022).

Foster, S., Garduño, H., Kemper, K., Tuinhof, A., & Nanni, M. (2006). Making intensive use of groundwater more sustainable key lessons from field experience. In: Sahuquillo A, Capilla J, Martinez Cortina L, Vila XS (eds.) Groundwater Intensive Use. IAH Selected Papers on Hydrogeology 7, 1st edn. IAH, Goring, UK, 410.

Van Schmidt, N. D., Wilson, T. S., & Langridge, R. (2022). Linkages between land-use change and groundwater management foster long-term resilience of water supply in California. Journal of Hydrology: Regional Studies, 40, 101056. doi:10.1016/j.ejrh.2022.101056.

Oiro, S., Comte, J. C., Soulsby, C., MacDonald, A., & Mwakamba, C. (2020). Depletion of groundwater resources under rapid urbanisation in Africa: recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeology Journal, 28(8), 2635–2656. doi:10.1007/s10040-020-02236-5.

Oiro, S., Comte, J. C., Soulsby, C., & Walraevens, K. (2018). Using stable water isotopes to identify spatio-temporal controls on groundwater recharge in two contrasting East African aquifer systems. Hydrological Sciences Journal, 63(6), 862–877. doi:10.1080/02626667.2018.1459625.

Mumma, A., Lane, M., Kairu, E., Tuinhof, A., & Hirji, R. (2011). Kenya groundwater governance case study. Water paper, World Bank, Washington, United States. Available online: https://openknowledge.worldbank.org/handle/10986/17227 (accessed on February 2022).

Mohamed, M. M., El-Shorbagy, W., Kizhisseri, M. I., Chowdhury, R., & McDonald, A. (2020). Evaluation of policy scenarios for water resources planning and management in an arid region. Journal of Hydrology: Regional Studies, 32, 100758. doi:10.1016/j.ejrh.2020.100758.

Yifru, B. A., Chung, I. M., Kim, M. G., & Chang, S. W. (2020). Assessment of groundwater recharge in agro-urban watersheds using integrated SWAT-MODFLOW model. Sustainability (Switzerland), 12(16), 6593. doi:10.3390/su12166593.

Gong, C., Zhang, Z., Wang, W., Duan, L., & Wang, Z. (2021). An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of the Total Environment, 788, 147799. doi:10.1016/j.scitotenv.2021.147799.

Obuobie, E., Diekkrueger, B., Agyekum, W., & Agodzo, S. (2012). Groundwater level monitoring and recharge estimation in the White Volta River basin of Ghana. Journal of African Earth Sciences, 71–72, 80–86. doi:10.1016/j.jafrearsci.2012.06.005.

Al-Murad. (2010). Freshwater Situation in Kuwait-Remote Sensing Inputs on Possibility of Artificial Recharge. Physics International, 1(1), 69–76. doi:10.3844/pisp.2010.69.76.

Mwangi, W., Isaiah, N., & Shadrack, K. (2017). Application Of Hydrological Models In Poorly Gauged Watersheds A Review Of The Usage Of The Soil And Water Assessment Tool SWAT In Kenya. International Journal of Scientific & Technology Research, 6(08), 132–141.

Foster, S., Tuinhof, A., & van Steenbergen, F. (2012). Managed groundwater development for water-supply security in Sub-Saharan Africa: Investment priorities. Water SA, 38(3), 359–366. doi:10.4314/wsa.v38i3.1.

Chebet, E. B., Kibet, J. K., & Mbui, D. (2020). The assessment of water quality in river Molo water basin, Kenya. Applied Water Science, 10(4). doi:10.1007/s13201-020-1173-8.

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012). Soil & Water Assessment Tool. Input/Output Documentation, Version 2012, Texas water Resource Institute, Texas, United States.

Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420–4433. doi:10.1002/hyp.10933.

Kimaru, A. N., Gathenya, J. M., & Cheruiyot, C. K. (2019). The temporal variability of rainfall and streamflow into Lake Nakuru, Kenya, assessed using swat and hydrometeorological indices. Hydrology, 6(4), 88. doi:10.3390/hydrology6040088.

Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (pp. 6-A16). US Geological Survey, US Geological Survey, Reston, United State. doi:10.3133/tm6a16.

Oakland, G. B. (1953). Determining Sample Size. The Canadian Entomologist, 85(3), 108–113. doi:10.4039/Ent85108-3.

Abbaspour, K. C., Vaghefi, S. A., & Srinivasan, R. (2017). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water (Switzerland), 10(1), 6. doi:10.3390/w10010006.

Johnston, R. B. (2016). Arsenic and the 2030 Agenda for sustainable development. Arsen Res Glob Sustain-Proc. 6th Int. Congr. Arsen Environ AS, 2016, 12-4. doi:10.1201/b20466-7.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J-L., …., Bitz, C. M., Bony, S., & Booth, B. B. B. (2013). Long-term Climate Change: Projections, Commitments and Irreversibility. Climate Change 2013 - The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029-1136. (Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, United Kingdom.

Aghsaei, H., Mobarghaee Dinan, N., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., & Wagner, P. D. (2020). Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 712, 136449. doi:10.1016/j.scitotenv.2019.136449.

Moono, J. (2021). Agenda 2063: The Africa We Want. Academia Letters. doi:10.20935/al1336.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153.

Japan International Corporation Agency, Nippon Koei Co. LTD. (2013). The Project on the Development of the National Water Master Plan 2030, Final Report. The Republic of Kenya, Ministry of Environment, Water and Natural Resources, Water Resources Management.

Tuinhof, A., Foster, S., & Garduño, H. (2008). Groundwater in Sub-Saharan Africa. Applied Groundwater Studies in Africa. doi:10.1201/9780203889497.ch2.

Mutua, S., Ghysels, G., Anibas, C., Obando, J., Verbeiren, B., Van Griensven, A., Vaessens, A., & Huysmans, M. (2020). Understanding and conceptualization of the hydrogeology and groundwater flow dynamics of the Nyando River Basin in Western Kenya. Journal of Hydrology: Regional Studies, 32, 100766. doi:10.1016/j.ejrh.2020.100766.

Lancia, M., Petitta, M., Zheng, C., & Saroli, M. (2020). Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area: From passive withdrawals to active management. Journal of Hydrology: Regional Studies, 32, 100749. doi:10.1016/j.ejrh.2020.100749.

Akurugu, B. A., Obuobie, E., Yidana, S. M., Stisen, S., Seidenfaden, I. K., & Chegbeleh, L. P. (2022). Groundwater resources assessment in the Densu Basin: A review. Journal of Hydrology: Regional Studies, 40, 101017. doi:10.1016/j.ejrh.2022.101017.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-05-05


  • There are currently no refbacks.

Copyright (c) 2022 RAEL MONGINA NYAKUNDI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.