Parametric Study of a Soil Erosion Control Technique: Concrete Lozenges Channels

Latifa El Bouanani, Khadija Baba, Ghizlane Ardouz, Fatima Ezzahraa Latifi

Abstract


A new technique, "the concrete lozenges channels" is described in this paper. It is an erosion control measure to attenuate the water soil loss quantity to a tolerable level. These are open inclined channels that form lozenges on the slope. In fact, they drain rainfall, runoff, and sediments alongside the slope into the ditch. Using the RUSLE erosion model for erosion assessment, the parameters that had the most influence on the percentage decrease of the soil erodibility are discussed. A comparison between techniques already used, that is, the concrete arches and the concrete lozenge channels proposed in this paper, makes it possible to mention the shortcomings and the strengths of each technique. In fact, the percentage decrease in erosion soil loss is about 42% for 2 arches and is about 49% for 2 lozenges. If the number of channels present on the slope increases, the area exposed to erosion decreases. By comparing the study case, the exposed area for one lozenge is less by 39% to 68% than the exposed area for one arch. The total perimeter lengths are comparable. In this article, a parametric study is undertaken to define the optimum dimensions and optimum number of concrete inclined channels. The ditch section and the inclined channel section are determining factors in the lozenge sizing.

 

Doi: 10.28991/CEJ-2022-08-09-09

Full Text: PDF


Keywords


Water Erosion; RUSLE; Concrete Lozenges Channel Sizing; Parametric Study; Optimal Geometry.

References


McColl, S. T. (2022). Landslide causes and triggers. Landslide Hazards, Risks, and Disasters, 13–41. doi:10.1016/b978-0-12-818464-6.00011-1.

Piacentini, T., Galli, A., Marsala, V., & Miccadei, E. (2018). Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water (Switzerland), 10(10), 1314. doi:10.3390/w10101314.

Karapa, E., Harianto, T., Muhiddin, A. B., & Irmawaty, R. (2022). Slope Reinforcement Model Scale Test with X-Block. Civil Engineering Journal (Iran), 8(3), 612–621. doi:10.28991/CEJ-2022-08-03-014.

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. doi:10.1016/j.envsci.2015.08.012.

Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A. A., & Guzzetti, F. (2018). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Science of the Total Environment, 610–611, 867–879. doi:10.1016/j.scitotenv.2017.08.064.

Elbouanani, L., Baba, K., Ouadif, L., Lahmili, A., & Bahi, L. (2018). Concrete lozenges impact on the slope erodibility. MATEC Web of Conferences, 149, 02073. doi:10.1051/matecconf/201814902073.

Ketema, A., & Dwarakish, G. S. (2021). Water erosion assessment methods: a review. ISH Journal of Hydraulic Engineering, 27(4), 434–441. doi:10.1080/09715010.2019.1567398.

Karydas, C. G., Panagos, P., & Gitas, I. Z. (2012). A classification of water erosion models according to their geospatial characteristics. International Journal of Digital Earth, 7(3), 229–250. doi:10.1080/17538947.2012.671380.

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration, the University of Virginia, Charlottesville, United States.

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1996). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 537, U. S. Department of Agriculture (USDA), Washington, United States.

Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225. doi:10.1016/j.iswcr.2019.05.004.

Kumar, M., Sahu, A. P., Sahoo, N., Dash, S. S., Raul, S. K., & Panigrahi, B. (2022). Global-scale application of the RUSLE model: a comprehensive review. Hydrological Sciences Journal, 67(5), 806–830. doi:10.1080/02626667.2021.2020277.

Lu, H., Prosser, I. P., Moran, C. J., Gallant, J. C., Priestley, G., & Stevenson, J. G. (2003). Predicting sheetwash and rill erosion over the Australian continent. Australian Journal of Soil Research, 41(6), 1037–1062. doi:10.1071/SR02157.

Chehlafi, A., Kchikach, A., & Derradji, A. (2014). Protection of motorway embankments by concrete or masonry arches. Journées nationales de géotechnique et de géologie de l’ingénieur. (In French).

Mouisat, A., Harrouni, C., Chaouki, A. L., Douaik, A., Derradji, A., & Tlemcani, N. E. B. (2020). Effectiveness of biological engineering methods to fight against water erosion of the marly slopes of the Fez-Taza highway. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 8(1), 1-12. (In French).

Boukhir, M., Mohamed, J., Lahsaini, M., & Mounadel, A. (2017). Geological studies and technical recommendations for an eventual new track map of the portion of road that connects Fez to my Yaacoub (North Morocco). American Journal of Innovative Research and Applied Sciences, 5(6), 424-433. (In French).

Roose, E., & De Noni, G. (2004). Les effets d'actions incitatives de lutte contre l'érosion en Afrique du nord et en Amérique Latine/The effects of incentive schemes in the fight against erosion in North Africa and Latin America. Revue de géographie alpine, 92(1), 49-60. doi:10.3406/rga.2004.2277. (In French).

Bala Subramanian, A. (2017). Methods of controlling soil erosion. Centre for Advanced Studies in Earth Science, University of Mysore. Mysore, India.

Rango, A., & Arnoldus, H. M. J. (1987). Development of watersheds. Cahiers techniques de la FAO, 36. (In French).

Breckling, J. (1989). The Analysis of Directional Time Series: Applications to Wind Speed and Direction. Lecture Notes in Statistics, Springer, New York, United States. doi:10.1007/978-1-4612-3688-7.

Renard, K., Foster, G., Weesies, G., Mcool, D., & Yoder, D. (1995). The Revised Universal Soil Loss Equation. Department of Defense. In Interagency Workshop on Technologies to Address Soil Erosion on Department of Defense Lands, San Antonio, United States.

Xiao, L., Li, G., Zhao, R., & Zhang, L. (2021). Effects of soil conservation measures on wind erosion control in China: A synthesis. Science of the Total Environment, 778, 146308. doi:10.1016/j.scitotenv.2021.146308.

Smith, D. D. (1948). Evaluating soil losses from field areas. Journal of Agricultural Engineering Research, 29, 394-398.

Gimeno-Vives, O., de Lamotte, D. F., Leprêtre, R., Haissen, F., Atouabat, A., & Mohn, G. (2020). The structure of the Central-Eastern External Rif (Morocco); Poly-phased deformation and role of the under-thrusting of the North-West African paleo-margin. Earth-Science Reviews, 205. doi:10.1016/j.earscirev.2020.103198.

D'Assisi Tramparulo, F., Ciarcia, S., El Ouaragli, B., Vitale, S., & Najib Zaghloul, M. (2016, April). The Eocene-Miocene tectonic evolution of the Rif chain (Morocco): new data from the Jebha area. EGU General Assembly Conference, 17-22 April, 2016, Vienna, Austria.

Mustafa, Y. M., Al-Amoudi, O. S. B., Ahmad, S., & Maslehuddin, M. (2018). Geotechnical Properties of Plastic Marl Contaminated with Diesel. Arabian Journal for Science and Engineering, 43(10), 5573–5583. doi:10.1007/s13369-018-3224-0.

Arifuzzaman, Md., Najjar, M., Mahmud, M. N., Saiful Islam, A. B. M., Khan, M., & Ali, M. M. (2017). Enhancing the Properties of Marl Soils for Effective Construction in Saudi Arabian Region. Engineering Journal, 21(4), 111–126. doi:10.4186/ej.2017.21.4.111.

Mebarki, M., Kareche, T., Benyahia, S., Derfouf, F. E. M., Abou-Bekr, N., & Taibi, S. (2020). Volumetric behavior of natural swelling soil on drying-wetting paths. Application to the Boumagueur marl -Algeria-. Studia Geotechnica et Mechanica, 42(3), 248–262. doi:10.2478/sgem-2019-0042.

Alonso, E. E., Pineda, J. A., & Cardoso, R. (2010). Degradation of marls; two case studies from the Iberian Peninsula. Geological Society Engineering Geology Special Publication, 23(1), 47–75. doi:10.1144/EGSP23.5.

Krisnayanti, D. S., Bunganaen, W., Frans, J. H., Seran, Y. A., & Legono, D. (2021). Curve number estimation for ungauged watershed in semiarid region. Civil Engineering Journal (Iran), 7(6), 1070–1083. doi:10.28991/cej-2021-03091711.

Jalali-Milani, S., Asghari-Kaljahi, E., Barzegari, G., & Hajialilue-Bonab, M. (2017). Consolidation deformation of Baghmisheh marls of Tabriz, Iran. Geomechanics and Engineering, 12(4), 561–577. doi:10.12989/gae.2017.12.4.561.

Zobiri, M., Mazour, M., & Morsli, B. (2018). Water erosion on marl slopes and prevention of its effects using conservation of water and soil systems in the Wadi Isser watershed - Algeria. Journal of Water and Land Development, 37(1), 161–169. doi:10.2478/jwld-2018-0035.

Qadem, Q. Z. (2019). Climate variability and their impact on the spatio-temporal organization of precipitation. Case of the Wadi Mikkes and Fez watersheds. Morocco. Environmental and Water Sciences, public Health and Territorial Intelligence Journal, 3(4), 253-260. doi:10.48421/IMIST.PRSM/ewash-ti-v3i4.16153.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 latifa el bouanani, khadija baba, ghizlane ardouz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message